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Academic Model of a Sensor Network

We’re not always 
sure of what “X” is 

(and it keeps 
changing)

We’re not always 
sure of what “P” is 
(and it keeps 
changing)

We think we know 
what “Z” is (but it 
keeps changing)
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Primary Question

How should we optimize the measurement process in a 
sensor network for inference problems? 

• We can control sensors within resource constraints to obtain 
different types of information about the underlying phenomenon

• Control choices impact both quality of inference and resource 
expenditures.

Applications
• state estimation/tracking
• identification
• random field estimation
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Outline

• Distributed Inference in Resource Constrained Environments
Theoretical Bounds

Optimal schemes are infeasible
Can we give performance guarantees of approximation schemes 
as compared to optimal?

In-Network Processing with Dynamic Fusion Centers
Explicitily trade-off value of information discounted by 
resource expenditures
Incorporate measurement transmission and selection
Incorporate coding/transmission of probabilistic models
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In-Network Processing: Dynamic Fusion Centers 

Basic Intuition
• Measurements are not equally useful and incur different 

resource expenditures.

• Moving the fusion center dynamically is a compromise 
between centralized and decentralized approaches.

• Information regarding many phenomenon is “local”.

Zhao, Shin, Reich (2002)
• Consider a tracking application in which sensors yield noisy 

range measurements.

• Utilize the single sensor measurement which minimizes the 
expected uncertainty at the next time step.

• Perform fusion at the sensor with the highest expected 
uncertainty reduction.

• Implicitly captures the notion that communications and 
fusion of all measurements is prohibitive relative to the 
decrease in uncertainty of the kinematic state.
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• Having incorporated previous measurements 
(or a subset of those available) to compute a 
posterior               

choose the sensor whose measurement yields 
the highest expected information gain.

• Equivalent information-theoretic criterion:

• Such a strategy is myopic (searching over a 
small number of time steps) and greedy
(searching over the single best available 
measurement at each time step)

Maximizing Expected Information Gain
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Why Use Information-Theoretic Objective Criteria?

• Closeness in an L1 sense bounds errors in 
estimates of event probabilities.

• L1 is often difficult to optimize, K-L is not 
in many cases.

• Closeness in K-L bounds closeness in L1.



Page 8Massachusetts Institute of Technology

Value of Long Term Planning? 

Choosing the optimal set of measurements 
(sensors) is exponential in the planning 
horizon.

• Can we bound the difference in 
performance of approximate (tractable) 
algorithms as compared to optimal?

• Is there a performance gain if we 
incorporating planning over a longer 
time-horizon (non-myopic)
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• Assuming that observations are independent conditioned on the 
state, mutual information is submodular

If               then:

Capturing the Notion of Diminishing Returns
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A simple bound…

• Suppose we have M stages
Each stage involves selection 
of an observation for a 
different sensor or a 
different time step

• Suppose we use the greedy 
heuristic to select each 
observation:

Then…
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A simple bound…
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Online computable bound

• While the bound is tight, the proof gives rise to an online 
computable version which may be stronger in particular 
circumstances

• Let

• Then:

• This bound is tight in situations where the greedy selection 
leaves little information behind
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Online computable bound – example

• Suppose we model the depth of the ocean as a Gauss-Markov 
random field thin membrane model (500 × 100 cells)

• We seek to measure ocean depth using a surface vehicle traveling
along a fixed path

Available observations depend on current vehicle position

• We need to choose observations at each time
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Online computable bound – example
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Feasible Information Driven Sensor Planning

• Motivation & assumptions

• Constrained Markov Decision Process formulation
Communication constraint
Entropy constraint

• Approximations
Linearized Gaussian
Greedy sensor subset selection
n-Scan pruning

• Simulation results
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Incorporating Resource Constraints

• Object tracking using a network of sensors
Sensors provide localization in close vicinity

Sensors can communicate locally at cost ∝ f (range)

• Energy is a limited resource
Consumed by communication, sensing and computation
Communication is orders of magnitude more expensive than other tasks

• Sensor management algorithm must determine
Which sensors to activate at each time
Where the probabilistic model should be stored at each time
While trading off the competing objectives of estimation performance and 
communication cost
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Greedy Myopic Planning

• Model transmission occurs 
with little benefit to the 
inference problem.

• Single measurement used at 
each time.

• Resources are only implicitly 
incorporated into the 
inference problem.

Can we benefit by considering expected 
information gain discounted by resource 

expenditures over long horizons?
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Object state / location: xk / Lxk
Probabilistic model: Xk = p(xk|z0:k—1)

Notation

Leader node: lk

Position of sensor s: ls

Time index: k

Activated sensors: Sk ⊆ S

Sensor s measurement: zk
s

History of incorporated measurements: z0:k—1
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Example – observation/communications

Observation model: Communications cost:

i = i0

j = i4

i1

i2

i3

r
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Formulation

• We formulate as a constrained Markov Decision Process
Minimize uncertainty subject to a constraint on 
communication cost
Minimize communication cost subject to a constraint on 
estimation performance

• State is PDF (Xk = p(xk|z0:k—1)) and previous leader node (lk—1)
Dynamic programming equation for an N-step rolling horizon:

such that E{G(Xk, lk—1, uk:k+N—1)|Xk, lk—1} ≤ 0
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Communication-constrained formulation

• Cost-per-stage is such that the system minimizes joint expected 
conditional entropy of object state over planning horizon:

• Constraint applies to expected communication cost over planning 
horizon:
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Communication-constrained formulation

• Integrating the communication costs into the per-stage cost:

• Per-stage cost now contains both information gain and 
communication cost
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Information-constrained formulation

• Cost-per-stage is such that the system minimizes the energy 
consumed over the planning horizon:

• Constraint ensures that the joint entropy over the planning 
horizon is less than given threshold:
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Evaluating the DP

• DP has infinite state space, hence it cannot be evaluated exactly

• Conceptually, it could be evaluated through simulation

• Complexity is 
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Branching due to measurement values

• The first source of branching is that due to different values of
measurement

• If we approximate the measurement model as linear Gaussian 
locally around a nominal trajectory, then the future costs are 
dependent only on the control choices, not on the measurement 
values

• Hence this source of branching can be eliminated entirely
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Greedy sensor subset selection

• For large sensor networks complexity is high even for a single 
look-ahead step due to consideration of sensor subsets

• We decompose each decision stage into a generalized stopping 
problem, where at each substage we can

Add unselected sensor to the current selection
Terminate with the current selection

• The per-stage cost can be conveniently decomposed into a per-
substage cost which directly trades off the cost of obtaining 
each measurement against the information it returns:
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Greedy sensor subset selection

• Outer DP recursion

• Inner DP sub-problem
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n-Scan approximation

• The greedy subset selection is embedded within a n-scan pruning 
method (similar to the MHT) which addresses the growth due to 
different choices of leader node sequence

s1 s2 s3

G G G

G GG

s1 s2 s3 s1 s2 s3 s1 s2 s3

s1 s2 s3
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Simulation results
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Significant Cost Reduction

• Decomposed cost structure into a form in which greedy 
approximations are able to capture the trade-off 

Complexity O([Ns2
Ns]NNp

N) reduced to O(NNs
3)

Ns = 20 / Np = 50 / N = 10:  1.6 × 1090 8 × 105

Strong non-myopic planning for horizon lengths > 20 steps 
possible
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