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Waves in Space

Spatial waves form a most interesting/relevant class of signals to study:

• Pressure waves:

– Earthquakes/tsunamis, atmospheric variations, noise, ...
– Speech, underwater tracking, ultrasound images, oil mapping, ...

• Electromagnetic waves:

– Objects in outer space, light, nuclear radiation, ...
– Radio communications, radar, (controlled) nuclear energy, ...

Our goal in this work: compress waves, subject to a fidelity criterion.

IPAM, 1/10/2007.
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The Basic Toolbox for Processing Bandlimited Signals

Two fundamental bases: sincs and complex exponentials.

• Using sincs a suitably chosen discrete set of samples can be interpolated, to recover
the original signal.

• Using complex exponentials any LTI operator can be diagonalized, and this greatly
simplifies filter design tasks.

The basic signal processing toolbox:

g̃(t)f(t)

Filter

Anti-aliasing

Analog
f̃(t)

A/D
f̃(nT )

Filter

Digital g̃(nT )
D/A

But this is not a good way to go about processing spatial waves...

IPAM, 1/10/2007.



The Basic Toolbox for Processing Wave Fields?

The model of bandlimited signals and LTI operators is not appropriate here:

• Waves are typically confined to compact sets – not bandlimited

• No A/D converter can see an entire wave in space – no anti-aliasing filter

• Many typical operations are not LTI (“LSI”?) – unclear how Fourier basis helps

So, what is the right signal model then?

Waves are the solution of a partial differential equation.

IPAM, 1/10/2007.
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The Source Coding Problem for Spatial Waves

So, given:

• a compact set in euclidean space,

• propagation properties and boundary conditions,

• a source of information generating waves,

• a finite set of locations at which waves can be observed,

• and a fidelity criterion;

we wish to determine the rate/distortion tradeoffs that can be achieved when encoding
the solutions of this given PDE.

IPAM, 1/10/2007.
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The Wave Equation – Basic Definitions
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Source function s(x, t) Pressure field p(x, t)

At all membrane locations x ∈ [0, π], and at all times t ∈ R, we must have:

∂2p(x, t)

∂2x
+

1

c2

∂2p(x, t)

∂2t
+ s(x, t) = 0;

or equivalently, in frequency (and for a normalized frequency a = ω
c
),

∂2p̂(x, a)

∂2x
+ a2p̂(x, a) + ŝ(x, a) = 0.

A. J. Berkhout. Applied Seisimc Wave Theory. Elsevier, 1987.
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The Wave Equation – Solution

Under some assumptions (needlessly restrictive, but very useful to illustrate the points
we want to make), we can obtain a solution. Assume:

• a homogeneous, frictionless, one-dimensional membrane, of length π;

• perfectly reflecting boundaries: ∂p
∂x

∣

∣

∣

x=0
= ∂p

∂x

∣

∣

∣

x=0
= 0;

• a point source ŝ(x, a) = ŝ(a)δ(x − xo); then,

p̂(x, a) = ŝ(a)ĥ(x, a) = ŝ(a)

(

2
π

∑

n∈Z

cos(nxo) cos(nx)

n2 − a2

)

This is the structure in space and time of the data field we are trying to understand
how to compress subject to a fidelity criterion.
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Distributed Rate/Distortion Codes

A (2nR1...2nRN , ξ1...ξN , n, N, D̄) code:

• A block length n, and N locations 0 ≤ ξ1 < ξ2 < ... < ξN ≤ π.

• Encoding functions fk : P(ξk) → {1...2nRk}, (k = 1...N).

• A decoding function g : ΠN
i=1{1...2

nRk} → P .

• A distortion measure d(p, q) = 1
π

∫ π

x=0

∫

t∈R

(

p(x, t) − q(x, t)
)2

dxdt, and a

resulting distortion D̄ = d
(

p, g(f1(p(ξ1)...fN(p(ξN))
)

.

Note: all these codes can do is encode the functions they observe at a
fixed location, and deliver these encodings to a decoder that will use them
to estimate a solution of the wave equation.

IPAM, 1/10/2007.
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The Distributed Rate/Distortion Function

• Achievability with N encoders:

(R1...RN , D) is achievable if and only if there is a fixed finite N and locations
ξ1...ξN , such that for all ǫ > 0 and all n large enough, we can find a
(2nR1...2nRN , ξ1...ξN , n, N, D̄) code with D̄ < D + ǫ.

• Rate region with N encoders:

RN(D): closure of the set of all rates (R1...RN), such that (R1...RN ,D)
is achievable with N encoders.

• Finally: R(D) = inf
(R1...RN)∈RN(D), N≥1

N
∑

k=1

Rk.

End goal: describe RN(D) and R(D) in terms of computable information
theoretic quantities.

IPAM, 1/10/2007.
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A Simple Interpolation Formula

• Temporal sampling – assuming compactly supported ŝ(a), for any fixed ξ ∈ [0, π],

p(ξ, a) = s(a)ĥ(ξ, a) is compactly supported too. Standard.

• A simple relationship for spatial sampling: p̂(ξ′, a) = p̂(ξ, a)ĥ(ξ′,a)

ĥ(ξ,a)
. But...

– ŝ(a) has to be supported on compact sets excluding integers.
(Reminder: ĥ(ξ, a) = 2

π

P

n∈Z

cos(nξo) cos(nξ)

n2−a2 ).

– Need to understand when ĥ(x, a) can be zero!

Good news: ĥ(x, a) is analytic in both x and a – so, the number of zeros on any
compact set is finite. Better news: it is not straightforward to make sure those zeros
do not cause problems...
Example: is there one frequency ao such that, for all locations 0 ≤ ξ ≤ π, ĥ(ξ, ao) = 0?

IPAM, 1/10/2007.
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ĥ(ξ,a)
. But...
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A Sampling Theorem for Spatial Waves

There exist functions fk(x, a), such that for all 0 ≤ x ≤ π and for all a in the support
of ŝ,

p̂(x, a) =
N
∑

k=1

fk(x, a)p̂
(

kπ
N

, a
)

,

provided N ≥ Co
no log(no+1)

∆2 , for a ∈ I ⊂ (no, no + 1), I compact, no ∈ Z, and
∆ is the minimum distance from I to one of the resonant integer frequencies no or
no + 1.

• Key idea: for all a, show there is at least one k such that p
(

kπ
N

, a
)

6= 0.

• Significance: interpolation possible through linear filtering.

IPAM, 1/10/2007.



Scaling Behavior of the Distributed Rate/Distortion Function

An upper bound under dense sampling:

lim
N→∞

inf
(R1...RN)∈RN(D)

N
∑

k=1

Rk ≤ C < ∞.

• Key ideas:

– At each sampling location, a filtered version of the source is observed.
– Each sensor encodes only a narrowband segment of the source.
– Total bitrate ≈ bitrate required to encode the source.

• Significance 1: not true for processes bandlimited in space.

• Significance 2: Suggests what R
(

D
)

may look like...

IPAM, 1/10/2007.



A Sampling Theorem for Polyhedra in R
n

Can reconstruct an arbitrary polyhedron from a set of samples.
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So we can hear the shape of a drum after all! (article) Just have to listen carefully...

IPAM, 1/10/2007.
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The Class of “Network-in-the-Loop” Problems

Problems where communication between plant and controller happens over a network...

IPAM, 1/10/2007.



Real (??) Network-in-the-Loop Problems

Rendering of virtual acoustic sources, noise cancellation, cancer treatment, electronic
countermeasures, distributed transmitters/receivers, imaging of solid state objects, ...

In all cases, need a very large number of nodes to achieve good performance.

IPAM, 1/10/2007.



Main Corollary...

http://cn.ece.cornell.edu/
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