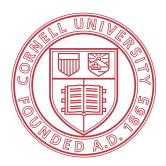
Detecting Polygons and Compressing Waves: Some New Twists on Classical Problems in Information Theory

Sergio D. Servetto

School of Electrical and Computer Engineering
Cornell University



(Presented at the IPAM Workshop on Mathematical Challenges in Sensor Networks, January 10th, 2007.)

Acknowledgements

- My collaborators on parts of this work:
 - Joe Rosenblatt (UIUC/Math).
 - Mingbo Zhao and Georgios N. Lilis (Cornell/ECE).
- Sources of support:
 - Fundamental Performance Limits of Large-Scale Sensor Networks.
 NSF CAREER award CCR-0238271.
 - The Reachback Channel in Wireless Sensor Networks.
 NSF SENSORS grant CCR-0330059. PI, joint with T. Berger, L. Tong, S. Wicker.
 - Self-Configuring Sensor Networks for Disaster Prevention, Mitigation and Recovery. NSF ITR grant ANR-0325556. Co-PI, joint with Cornell ECE, CEE and Economics faculty, and staff at NYS Wadsworth Labs.

Outline

- Waves in Space.
- A New Multiterminal Source Coding Problem.
- Some Results.
- Applications.

Outline

- Waves in Space.
- A New Multiterminal Source Coding Problem.
- Some Results.
- Applications.

Waves in Space

Spatial waves form a most interesting/relevant class of signals to study:

- Pressure waves:
 - Earthquakes/tsunamis, atmospheric variations, noise, ...
 - Speech, underwater tracking, ultrasound images, oil mapping, ...
- Electromagnetic waves:
 - Objects in outer space, light, nuclear radiation, ...
 - Radio communications, radar, (controlled) nuclear energy, ...

Waves in Space

Spatial waves form a most interesting/relevant class of signals to study:

- Pressure waves:
 - Earthquakes/tsunamis, atmospheric variations, noise, ...
 - Speech, underwater tracking, ultrasound images, oil mapping, ...
- Electromagnetic waves:
 - Objects in outer space, light, nuclear radiation, ...
 - Radio communications, radar, (controlled) nuclear energy, ...

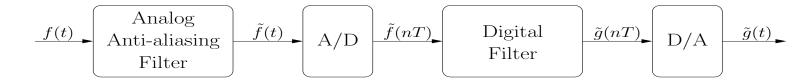
Our goal in this work: compress waves, subject to a fidelity criterion.

The Basic Toolbox for Processing Bandlimited Signals

Two fundamental bases: sincs and complex exponentials.

- Using sincs a suitably chosen discrete set of samples can be interpolated, to recover the original signal.
- Using complex exponentials any LTI operator can be diagonalized, and this greatly simplifies filter design tasks.

The basic signal processing toolbox:



But this is **not** a good way to go about processing spatial waves...

The Basic Toolbox for Processing Wave Fields?

The model of bandlimited signals and LTI operators is not appropriate here:

- Waves are typically confined to compact sets not bandlimited
- No A/D converter can see an entire wave in space no anti-aliasing filter
- Many typical operations are not LTI ("LSI"?) unclear how Fourier basis helps

The Basic Toolbox for Processing Wave Fields?

The model of bandlimited signals and LTI operators is not appropriate here:

- Waves are typically confined to compact sets not bandlimited
- No A/D converter can see an entire wave in space no anti-aliasing filter
- Many typical operations are not LTI ("LSI"?) unclear how Fourier basis helps

So, what is the right signal model then?

Waves are the solution of a partial differential equation. (animation)

The Source Coding Problem for Spatial Waves

So, given:

- a compact set in euclidean space,
- propagation properties and boundary conditions,
- a source of information generating waves,
- a finite set of locations at which waves can be observed,
- and a fidelity criterion;

The Source Coding Problem for Spatial Waves

So, given:

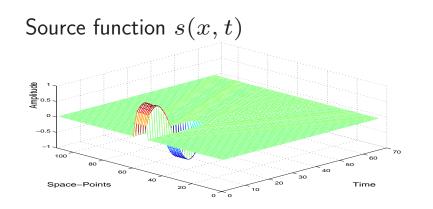
- a compact set in euclidean space,
- propagation properties and boundary conditions,
- a source of information generating waves,
- a finite set of locations at which waves can be observed,
- and a fidelity criterion;

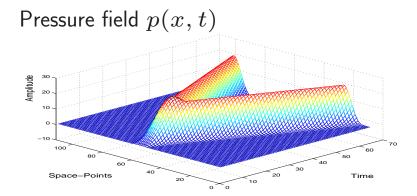
we wish to determine the rate/distortion tradeoffs that can be achieved when encoding the solutions of this given PDE.

Outline

- Waves in Space.
- A New Multiterminal Source Coding Problem.
- Some Results.
- Applications.

The Wave Equation – Basic Definitions





At all membrane locations $x \in [0, \pi]$, and at all times $t \in \mathbb{R}$, we must have:

$$\frac{\partial^2 p(x,t)}{\partial^2 x} + \frac{1}{c^2} \frac{\partial^2 p(x,t)}{\partial^2 t} + s(x,t) = 0;$$

or equivalently, in frequency (and for a normalized frequency $a = \frac{\omega}{c}$),

$$\frac{\partial^2 \hat{p}(x,a)}{\partial^2 x} + a^2 \hat{p}(x,a) + \hat{s}(x,a) = 0.$$

A. J. Berkhout. Applied Seisimc Wave Theory. Elsevier, 1987.

Under some assumptions (needlessly restrictive, but very useful to illustrate the points we want to make), we can obtain a solution. Assume:

Under some assumptions (needlessly restrictive, but very useful to illustrate the points we want to make), we can obtain a solution. Assume:

 \bullet a homogeneous, frictionless, one-dimensional membrane, of length π ;

Under some assumptions (needlessly restrictive, but very useful to illustrate the points we want to make), we can obtain a solution. Assume:

- \bullet a homogeneous, frictionless, one-dimensional membrane, of length π ;
- perfectly reflecting boundaries: $\frac{\partial p}{\partial x}\Big|_{x=0} = \frac{\partial p}{\partial x}\Big|_{x=0} = 0;$

Under some assumptions (needlessly restrictive, but very useful to illustrate the points we want to make), we can obtain a solution. Assume:

- \bullet a homogeneous, frictionless, one-dimensional membrane, of length π ;
- perfectly reflecting boundaries: $\frac{\partial p}{\partial x}\Big|_{x=0} = \frac{\partial p}{\partial x}\Big|_{x=0} = 0;$
- a point source $\hat{s}(x,a) = \hat{s}(a)\delta(x-x_o)$;

Under some assumptions (needlessly restrictive, but very useful to illustrate the points we want to make), we can obtain a solution. Assume:

- \bullet a homogeneous, frictionless, one-dimensional membrane, of length π ;
- perfectly reflecting boundaries: $\frac{\partial p}{\partial x}\Big|_{x=0} = \frac{\partial p}{\partial x}\Big|_{x=0} = 0;$
- a point source $\hat{s}(x,a) = \hat{s}(a)\delta(x-x_o)$; then,

$$\hat{p}(x,a) = \hat{s}(a)\hat{h}(x,a) = \hat{s}(a)\left(\frac{2}{\pi}\sum_{n\in\mathbb{Z}}\frac{\cos(nx_o)\cos(nx)}{n^2 - a^2}\right)$$

This is the structure in space and time of the data field we are trying to understand how to compress subject to a fidelity criterion.

A $(2^{nR_1}...2^{nR_N}, \xi_1...\xi_N, n, N, \bar{D})$ code:

• A block length n, and N locations $0 \le \xi_1 < \xi_2 < \ldots < \xi_N \le \pi$.

- A block length n, and N locations $0 \le \xi_1 < \xi_2 < ... < \xi_N \le \pi$.
- Encoding functions $f_k: \mathcal{P}(\xi_k) \to \{1...2^{nR_k}\}$, (k=1...N).

- A block length n, and N locations $0 \le \xi_1 < \xi_2 < ... < \xi_N \le \pi$.
- Encoding functions $f_k: \mathcal{P}(\xi_k) \to \{1...2^{nR_k}\}$, (k=1...N).
- A decoding function $g: \prod_{i=1}^{N} \{1...2^{nR_k}\} \to \mathcal{P}$.

- A block length n, and N locations $0 \le \xi_1 < \xi_2 < ... < \xi_N \le \pi$.
- Encoding functions $f_k: \mathcal{P}(\xi_k) \to \{1...2^{nR_k}\}$, (k=1...N).
- A decoding function $g: \prod_{i=1}^{N} \{1...2^{nR_k}\} \to \mathcal{P}$.
- A distortion measure $d(p,q) = \frac{1}{\pi} \int_{x=0}^{\pi} \int_{t \in \mathbb{R}} \left(p(x,t) q(x,t) \right)^2 dx dt$, and a resulting distortion $\bar{D} = d \left(p, g(f_1(p(\xi_1)...f_N(p(\xi_N))) \right)$.

A $(2^{nR_1}...2^{nR_N}, \xi_1...\xi_N, n, N, \bar{D})$ code:

- A block length n, and N locations $0 \le \xi_1 < \xi_2 < ... < \xi_N \le \pi$.
- Encoding functions $f_k: \mathcal{P}(\xi_k) \to \{1...2^{nR_k}\}, (k=1...N).$
- A decoding function $g: \Pi_{i=1}^N \{1...2^{nR_k}\} \to \mathcal{P}$.
- A distortion measure $d(p,q) = \frac{1}{\pi} \int_{x=0}^{\pi} \int_{t \in \mathbb{R}} \left(p(x,t) q(x,t) \right)^2 dx dt$, and a resulting distortion $\bar{D} = d \left(p, g(f_1(p(\xi_1)...f_N(p(\xi_N))) \right)$.

Note: all these codes can do is encode the functions they observe at a fixed location, and deliver these encodings to a decoder that will use them to estimate a solution of the wave equation.

The Distributed Rate/Distortion Function

• Achievability with N encoders:

 $(R_1...R_N,D)$ is achievable if and only if there is a fixed finite N and locations $\xi_1...\xi_N$, such that for all $\epsilon>0$ and all n large enough, we can find a $(2^{nR_1}...2^{nR_N},\xi_1...\xi_N,n,N,\bar{D})$ code with $\bar{D}< D+\epsilon$.

ullet Rate region with N encoders:

 $\mathcal{R}_N(D)$: closure of the set of all rates $(R_1...R_N)$, such that $(R_1...R_N,D)$ is achievable with N encoders.

• Finally:
$$\mathcal{R}(D) = \inf_{(R_1...R_N) \in \mathcal{R}_N(D), \ N \ge 1} \sum_{k=1}^N R_k.$$

End goal: describe $\mathcal{R}_N(D)$ and $\mathcal{R}(D)$ in terms of computable information theoretic quantities.

Outline

- Waves in Space.
- A New Multiterminal Source Coding Problem.
- Some Results.
- Applications.

• Temporal sampling – assuming compactly supported $\hat{s}(a)$, for any fixed $\xi \in [0, \pi]$, $p(\xi, a) = s(a)\hat{h}(\xi, a)$ is compactly supported too. Standard.

- Temporal sampling assuming compactly supported $\hat{s}(a)$, for any fixed $\xi \in [0, \pi]$, $p(\xi, a) = s(a)\hat{h}(\xi, a)$ is compactly supported too. Standard.
- A simple relationship for spatial sampling: $\hat{p}(\xi', a) = \hat{p}(\xi, a) \frac{\hat{h}(\xi', a)}{\hat{h}(\xi, a)}$. But...

- Temporal sampling assuming compactly supported $\hat{s}(a)$, for any fixed $\xi \in [0, \pi]$, $p(\xi, a) = s(a)\hat{h}(\xi, a)$ is compactly supported too. Standard.
- A simple relationship for spatial sampling: $\hat{p}(\xi', a) = \hat{p}(\xi, a) \frac{\hat{h}(\xi', a)}{\hat{h}(\xi, a)}$. But...
 - $\hat{s}(a)$ has to be supported on compact sets excluding integers. (Reminder: $\hat{h}(\xi, a) = \frac{2}{\pi} \sum_{n \in \mathbb{Z}} \frac{\cos(n\xi_O)\cos(n\xi)}{n^2 a^2}$).

- Temporal sampling assuming compactly supported $\hat{s}(a)$, for any fixed $\xi \in [0, \pi]$, $p(\xi, a) = s(a)\hat{h}(\xi, a)$ is compactly supported too. Standard.
- A simple relationship for spatial sampling: $\hat{p}(\xi', a) = \hat{p}(\xi, a) \frac{\hat{h}(\xi', a)}{\hat{h}(\xi, a)}$. But...
 - $-\hat{s}(a)$ has to be supported on compact sets excluding integers. (Reminder: $\hat{h}(\xi,a) = \frac{2}{\pi} \sum_{n \in \mathbb{Z}} \frac{\cos(n\xi_0)\cos(n\xi)}{n^2 a^2}$).
 - Need to understand when $\hat{h}(x,a)$ can be zero!

- Temporal sampling assuming compactly supported $\hat{s}(a)$, for any fixed $\xi \in [0, \pi]$, $p(\xi, a) = s(a)\hat{h}(\xi, a)$ is compactly supported too. Standard.
- A simple relationship for spatial sampling: $\hat{p}(\xi', a) = \hat{p}(\xi, a) \frac{\hat{h}(\xi', a)}{\hat{h}(\xi, a)}$. But...
 - $\hat{s}(a)$ has to be supported on compact sets excluding integers. (Reminder: $\hat{h}(\xi, a) = \frac{2}{\pi} \sum_{n \in \mathbb{Z}} \frac{\cos(n\xi_O)\cos(n\xi)}{n^2 a^2}$).
 - Need to understand when $\hat{h}(x,a)$ can be zero!

Good news: $\hat{h}(x,a)$ is analytic in both x and a – so, the number of zeros on any compact set is finite.

- Temporal sampling assuming compactly supported $\hat{s}(a)$, for any fixed $\xi \in [0, \pi]$, $p(\xi, a) = s(a)\hat{h}(\xi, a)$ is compactly supported too. Standard.
- A simple relationship for spatial sampling: $\hat{p}(\xi', a) = \hat{p}(\xi, a) \frac{\hat{h}(\xi', a)}{\hat{h}(\xi, a)}$. But...
 - $\hat{s}(a)$ has to be supported on compact sets excluding integers. (Reminder: $\hat{h}(\xi, a) = \frac{2}{\pi} \sum_{n \in \mathbb{Z}} \frac{\cos(n\xi_O)\cos(n\xi)}{n^2 a^2}$).
 - Need to understand when $\hat{h}(x,a)$ can be zero!

Good news: $\hat{h}(x,a)$ is analytic in both x and a – so, the number of zeros on any compact set is finite. Better news: it is **not** straightforward to make sure those zeros do not cause problems...

Example: is there one frequency a_o such that, for all locations $0 \le \xi \le \pi$, $\hat{h}(\xi, a_o) = 0$?

A Sampling Theorem for Spatial Waves

There exist functions $f_k(x, a)$, such that for all $0 \le x \le \pi$ and for all a in the support of \hat{s} ,

$$\hat{p}(x,a) = \sum_{k=1}^{N} f_k(x,a) \hat{p}\left(\frac{k\pi}{N},a\right),$$

provided $N \geq C_o \frac{n_o \log(n_o+1)}{\Delta^2}$, for $a \in I \subset (n_o, n_o+1)$, I compact, $n_o \in \mathbb{Z}$, and Δ is the minimum distance from I to one of the resonant integer frequencies n_o or n_o+1 .

- Key idea: for all a, show there is at least one k such that $p(\frac{k\pi}{N}, a) \neq 0$.
- Significance: interpolation possible through linear filtering.

Scaling Behavior of the Distributed Rate/Distortion Function

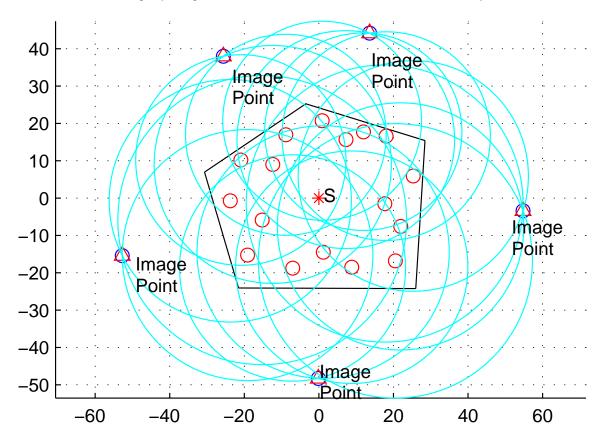
An upper bound under dense sampling:

$$\lim_{N \to \infty} \inf_{(R_1 \dots R_N) \in \mathcal{R}_N(D)} \sum_{k=1}^N R_k \le C < \infty.$$

- Key ideas:
 - At each sampling location, a filtered version of the source is observed.
 - Each sensor encodes only a narrowband segment of the source.
 - Total bitrate \approx bitrate required to encode the source.
- Significance 1: *not* true for processes bandlimited in space.
- ullet Significance 2: Suggests what $\mathcal{R}(D)$ may look like...

A Sampling Theorem for Polyhedra in \mathbb{R}^n

Can reconstruct an arbitrary polyhedron from a set of samples.

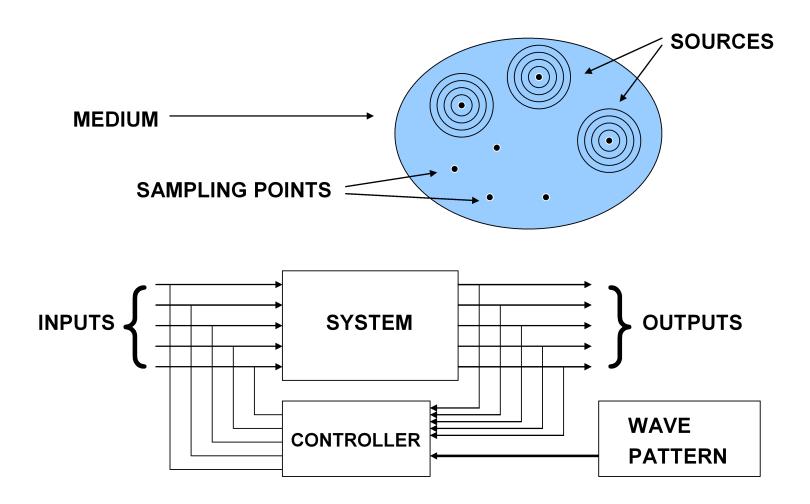


So we can hear the shape of a drum after all! (article) Just have to listen carefully...

Outline

- Waves in Space.
- A New Multiterminal Source Coding Problem.
- Some Results.
- Applications.

The Class of "Network-in-the-Loop" Problems



Problems where communication between plant and controller happens over a network...

Real (??) Network-in-the-Loop Problems

Rendering of virtual acoustic sources, noise cancellation, cancer treatment, electronic countermeasures, distributed transmitters/receivers, imaging of solid state objects, ...

In all cases, need a very large number of nodes to achieve good performance.

Main Corollary...

http://cn.ece.cornell.edu/