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The quasi-polynomial upper bound

∆(d ,n) = max. diameter of a d-dim. polyhedron with n facets

Theorem (Kalai & Kleitman)
∆(d ,n) ≤ n1+log d



The Base Abstraction
I undirected graph G = (V ,E)

I vertices are d-subsets of [n]

I Connectivity: for all f ⊆ [n], the subgraph induced by the
vertices that are supersets of f is connected
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Connected Layer Families
I Sequence S1, . . . ,St of disjoint non-empty families of

d-subsets of [n]
I Connectivity: for i < j < k : if f is covered in Si and Sk , then

f is covered in Sj
I f ⊆ [n] is covered in Sj if Sj contains a superset of f
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Connected Layer Families: Useful Properties

Lemma (Equivalence of Base Abstraction and CLF)
For every (d ,n)-base abstraction with diameter δ, there exists a
(d ,n)-connected layer family of length δ + 1, and vice versa.

Lemma
Every subsequence of a (d ,n)-CLF is a (d ,n)-CLF.

Lemma (Dimension reduction)
Let f ⊆ [n] be covered in a (d ,n)-CLF S1, . . . ,St .
Let Sa, . . . ,Sb be the sequence of families that cover f .
Then S′a, . . . ,S′b is a (d − 1,n − 1)-CLF, where

S′j := {a \ f | f ⊂ a ∈ Sj}.

Theorem
The length of a (d ,n)-CLF is bounded by n1+log d .
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Another Example

I sequence of disjoint non-empty families of d-subsets of [n]

I Connectivity: for all f ⊆ [n], the families that cover f form
an interval
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An Almost Quadratic Lower Bound

Theorem (Eisenbrand, H., Razborov, Rothvoß)
There exist (n/4,n)-connected layer families of length
Ω(n2/ log n).

I Problem: How to keep subsets “alive” for long intervals
I Solution: Use covering designs!



Families of Disjoint Coverings

I An (n, k , r)-covering of a set X of n elements is a collection
of k -subsets of X that covers each r -subset of X at least
once.

I DC(n, k , r) is the size of a largest family of pairwise disjoint
(n, k , r)-coverings.

Example of Disjoint (9,3,1)-Coverings



Families of Disjoint Coverings

I An (n, k , r)-covering of a set X of n elements is a collection
of k -subsets of X that covers each r -subset of X at least
once.

I DC(n, k , r) is the size of a largest family of pairwise disjoint
(n, k , r)-coverings.

Theorem (Eisenbrand, H., Razborov, Rothvoß)
DC(n, r + 1, r) ≥ (n − r)/(3 ln n)

Note: DC(n, r + 1, r) ≤ n − r



Large families of disjoint coverings

Theorem (Eisenbrand, H., Razborov, Rothvoß)
DC(n, r + 1, r) ≥ (n − r)/(3 ln n)

Proof sketch.
I Color (r + 1)-subsets randomly using (n− r)/(3 ln n) colors
I Each color class will be one of the coverings

I coverings are disjoint
I Bad events: an r -subset not covered in one color class
I Use Lovász Local Lemma



First Attempt: Disjoint Coverings

I Recall: DC(n, r + 1, r) ≥ (n − r)/(3 ln n)

I Take a family of disjoint
(n,d ,d − 1)-coverings L1, . . . ,L(n−r)/(3 ln n).

I This is a connected layer family of length
(n − d)/(3 ln n).

I No improved lower bound yet.

DCs of [n]



Second Attempt with Split Set of Symbol

I Instead of [n], use two disjoint sets of
symbols S1 and S2, |S1| = |S2| = m.

I Take separate families of disjoint
(m,d ,d − 1)-coverings and concatenate
them.

I Get a connected layer family of length
2(m − d)/(3 ln m).

I Length is still sublinear, but now there are
many unused potential vertices.

DCs of S1

DCs of S2



Mixing Sets of Symbols

I Add intermediate blocks for all i , j > 0 with
i + j = d as follows:

I Disjoint (m, i , i − 1)-coverings A0, . . .Ak−1
of S1

I Disjoint (m, j , j − 1)-coverings B0, . . .Bk−1
of S2

I Form the q-th layer by combining sets
from Aa with sets from Bb whenever
a + b = q mod k .

I Length is now (d + 1) · (m − d)/(3 ln m).
I Yields lower bound Ω(n2/ ln n) for d = n/4.

DCs of S1

i = d − 1, j = 1

i = d − 2, j = 2

i = 1, j = d − 1

DCs of S2
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Abstract Polyhedra

I Stronger properties can be added onto the Base
Abstraction:

I uv an edge iff |u ∩ v | = d − 1 [Adler & Dantzig, Kalai]
I Every existing (d − 1)-set appears in exactly two vertices

[Adler & Dantzig]
I Best lower bounds are linear
I Open problem: Find a separation from Connected Layer

Families
I e.g. every abstract polyhedron yields a strictly larger CLF
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1-shadows cast by the Polymath Project

Definition (Volvovskiy)
A sequence S1, . . . ,St of subsets of X is a valid sequence of
1-shadows if

I ∅ appears at most once
I Convexity: Si ∩ Sk ⊆ Sj for all i < j < k
I Restriction: For any x ∈ X , let Sa, . . . ,Sb be the subinterval

on which x appears. Then there must exist a valid
sequence Ta, . . . ,Tb ⊆ X \ {x} with Tj ⊆ Sj for all j

Some valid sequences:
I ∅
I ∅, {1}
I {1,2}, {1,2}, ∅

Not valid:
I {1}, {1}
I {1,2}, ∅, {1,2}



1-shadows: Useful properties

Lemma
Every subsequence of a valid 1-shadow is a valid 1-shadow.

Theorem
The length of a 1-shadow on n elements is bounded by n1+log n.

Proof.
y(n) ≤ 2y(n/2) + y(n − 1)

Lemma
The sequence of 1-shadows (supports) of families of a CLF is a
valid sequence of 1-shadows.
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1-shadow of a Connected Layer Family
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Restriction to 3: {1,2}, {6}, {4}, {5}
Restriction to 1: ∅
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Quasi-polynomial Lower Bound

y(n) = max. length of 1-shadow sequence on n elements

Theorem (Santos)
y(4n) ≥ ny(n)

Lemma
The sequence of y(n) copies of [n + 1] is valid.

Proof.
I ∅ does not appear
I Convexity
I Restriction on x ∈ [n + 1]:

Let T1, . . . ,Ty(n) be a max. length sequence on n elements
Map its elements to [n + 1] \ {x} arbitrarily
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Quasi-polynomial Lower Bound (cont’d)

Definition (Sequence Sn,k )
Let A and B be disjoint sets of n + k elements each.
The sequence Sn,k is defined as

I one block of y(n) copies of A,
I followed by (k − 2) blocks of y(n) copies of A ∪ B,
I followed by one block of y(n) copies of B

Total length of ky(n) on 2(n + k) elements.

(A,A ∪ B, . . . ,A ∪ B,B)︸ ︷︷ ︸
k blocks



Quasi-polynomial Lower Bound (cont’d)

Lemma
Sn,k is valid for all n ≥ 1, k ≥ 2.

Proof.
k = 2: Sn,2 = (A,B)

I Restriction to a ∈ A: (A,B)→ (A′), A′ = A \ {a}
I y(n) copies of A′ are valid by previous Lemma
I Restriction to b ∈ B analogous

k ≥ 3: Sn,k = (A,A ∪ B, . . . ,A ∪ B,A ∪ B,B)

I Restriction to a ∈ A:

( A, A ∪ B , . . . , A ∪ B ,A ∪ B,B)

→(A′,A′ ∪ B′, . . . ,A′ ∪ B′,B′) ∼= Sn,k−1,

where A′ = A \ {a}, B′ = B \ {b}, b ∈ B arbitrary



Quasi-polynomial Lower Bound (cont’d)
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Quasi-polynomial Lower Bound (cont’d)

Lemma
y(4n) ≥ ny(n)

Proof.
Sn,n is a sequence of length ny(n) on 2(n + n) = 4n
elements.

Theorem
y(n) ≥ nΩ(log n)



Quasi-polynomial Lower Bound (cont’d)

Lemma
y(4n) ≥ ny(n)

Proof.
Sn,n is a sequence of length ny(n) on 2(n + n) = 4n
elements.

Theorem
y(n) ≥ nΩ(log n)



The Magic Trick

I The sequence of blocks Sn,k is similar to the quadratic
construction for CLF.

I Is there a corresponding quasi-polynomial CLF?

I Stylize Sn,k as {1}, {1,2}, {1,2}, {2}
I For the recursion, we construct the uniform sequence
{1,2,3}, {1,2,3}, {1,2,3}, {1,2,3}

I Restriction to 3: {1}, {1,2}, {1,2}, {2}
I Restriction to 1: {3}, {2,3}, {2,3}, {2}
I Restriction to 2: {1}, {1,3}, {1,3}, {3}

I Inconsistency in the first set: we get 1 when restricting on
2, but we do not get 2 when restricting on 1

I This kind of inconsistency does not occur with 1-shadows
that are derived from CLFs.
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Commutativity

Definition (Commutativity)
A valid 1-shadow sequence is commutative if restrictions can
be done in any order without changing the result.

Lemma
A commutative valid 1-shadow sequence is the 1-shadow of a
CLF consisting of arbitrary-size subsets.



m-shadows

I Generalize 1-shadows to m-shadows
I Quasi-polynomial lower bound also for 2-shadows [H.]

I Slightly worse constant in the exponent
I Open problems:

I Understand possible constructions for 2-, 3-, m-shadows
I Probably quasi-polynomial for all constant m
I Better upper bound for 2-shadows, leading to separation

statements?
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And now for something different
I Consider CLF, but with d-multisets instead of d-sets
I In a sense, the max. diameter of set-CLF and multiset-CLF

are almost equal (generalization of our construction)
I Two very simple constructions give length d(n − 1) + 1

1 . . . 111
1 . . . 112
1 . . . 122

...
2 . . . 222
2 . . . 223

...
n . . . nnn

I X = {0,1, . . . ,n − 1}
I φ(a) =

∑
j∈a j for a a d-multiset of X

I Sj = φ−1(j), j = 0 . . . d(n − 1)

I S0, . . . ,Sd(n−1) is a CLF



And now for something different
I Consider CLF, but with d-multisets instead of d-sets
I In a sense, the max. diameter of set-CLF and multiset-CLF

are almost equal (generalization of our construction)
I Two very simple constructions give length d(n − 1) + 1

Conjecture
These constructions are best possible, i.e. the max. length of
multiset-CLFs is d(n − 1) + 1.



“Evidence”

I The conjecture holds when each family is a singleton
(by a potential function proof)

I The conjecture holds when the multiset-CLF contains all
possible d-multisets (by induction on d)

I Computational checks for small cases

d = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n = 1

√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

2
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

3
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

4
√ √

+ + + + + + + + + + +
5
√ √

+ + + + +
6
√ √

+ + +
7
√ √

+ +
8
√ √

+
9
√ √



Summary

I Main results:
I Use abstractions to understand the gap between linear

constructions of polytopes and quasi-polynomial upper
bound

I Quadratic lower bound for Connected Layer Families using
Lovász Local Lemma

I Quasi-polynomial lower bound for 1-shadows
I Open problems:

I Close the gap between 3n and 4n for CLF with d = 3
I Constructions of long m-shadow sequences

I see the Polymath 3 threads on Gil Kalai’s blog
I Separation between Abstract Polyhedra and CLF
I Separation between 1-shadow and m-shadow
I Resolve the multiset-CLF conjecture
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