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The Markov Decision Process

� Markov decision processes (MDPs), named after Andrey
Markov, provide a mathematical framework for modeling
sequential decision-making in situations where outcomes are
partly random and partly under the control of a decision
maker.
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sequential decision-making in situations where outcomes are
partly random and partly under the control of a decision
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� MDPs are useful for studying a wide range of optimization
problems solved via dynamic programming, where it was
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The Markov Decision Process

� Markov decision processes (MDPs), named after Andrey
Markov, provide a mathematical framework for modeling
sequential decision-making in situations where outcomes are
partly random and partly under the control of a decision
maker.

� MDPs are useful for studying a wide range of optimization
problems solved via dynamic programming, where it was
known at least as early as the 1950s (cf. Shapley 1953,
Bellman 1957).

� At each time step, the process is in some state i , and the
decision maker choose an action j ∈ Ai that is available in
state i . The process responds at the next time step by
randomly moving into a new state i ′, and giving the decision
maker a corresponding reward or cost c j(i , i ′).
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The Markov Decision Process continued

� The probability that the process enters i ′ as its new state is
influenced by the chosen state-action. Specifically, it is given
by the state transition function P j(i , i ′). Thus, the next state
i ′ depends on the current state i and the decision maker’s
action j .
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The Markov Decision Process continued

� The probability that the process enters i ′ as its new state is
influenced by the chosen state-action. Specifically, it is given
by the state transition function P j(i , i ′). Thus, the next state
i ′ depends on the current state i and the decision maker’s
action j .

� But given i and j , it is conditionally independent of all
previous states and actions; in other words, the state
transitions of an MDP possess the Markov property.
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The Markov Decision Process continued

� A stationary policy for the decision maker is a set function
π = {π1, π2, · · · , πm} that specifies the state-action πi that
the decision maker will choose when in state i . The MDP is
to find a stationary policy to minimize the expected
discounted sum over an infinite horizon:

∞∑
t=0

γtcπi t (i t , i t+1),

where 0 ≤ γ < 1 is the so-called discount rate.
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The Markov Decision Process continued

� A stationary policy for the decision maker is a set function
π = {π1, π2, · · · , πm} that specifies the state-action πi that
the decision maker will choose when in state i . The MDP is
to find a stationary policy to minimize the expected
discounted sum over an infinite horizon:

∞∑
t=0

γtcπi t (i t , i t+1),

where 0 ≤ γ < 1 is the so-called discount rate.

� Each state (or agent) is myopic and can be selfish. But when
every state chooses an optimal action among its available
ones, the process reaches optimality and they form an optimal
stationary policy.
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A Markov Decision Process Example
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by Melekopoglou and Condon 1990; actions in red are taken

Yinyu Ye http://www.stanford.edu/˜yyye IPAM, Jan 18-21, 2011



Applications of The Markov Decision Process

MDP is one of the most fundamental dynamic decision models in

� Mathematical science

� Physical science

� Management science

� Social Science

Modern applications include dynamic planning, reinforcement
learning, social networking, and almost all other
dynamic/sequential decision making problems.
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The LP Form of The Discounted MDP

minimize cT1 x1 ... +cTmxm
subject to (E1 − γP1)x1 ... +(Em − γPm)xm = e,

x1, ... xm, ≥ 0.

Ei is the m × ki = |Ai | matrix where the ith row are all ones and
everywhere else are zeros, Pi is an m× ki column stochastic matrix
where each column is the state transition probabilities P j(i , i ′),
i = 1, · · · ,m.
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The LP Form of The Discounted MDP

minimize cT1 x1 ... +cTmxm
subject to (E1 − γP1)x1 ... +(Em − γPm)xm = e,

x1, ... xm, ≥ 0.

Ei is the m × ki = |Ai | matrix where the ith row are all ones and
everywhere else are zeros, Pi is an m× ki column stochastic matrix
where each column is the state transition probabilities P j(i , i ′),
i = 1, · · · ,m.

eTPi = eT and Pi ≥ 0, i = 1, . . . ,m,

and e is the vector of all ones.
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The MDP Example in LP form

a: (01) (02) (11) (12) (21) (22) (31) (32) (41) (4′1)
c: 0 0 0 0 0 0 0 0 1 0
(0) 1 1 0 0 0 0 0 0 0 0
(1) −γ 0 1 1 0 0 0 0 0 0
(2) 0 −γ/2 −γ 0 1 1 0 0 0 0
(3) 0 −γ/4 0 −γ/2 −γ 0 1 1 0 0
(4) 0 −γ/8 0 −γ/4 0 −γ/2 −γ 0 1− γ 0
(4′) 0 −γ/8 0 −γ/4 0 −γ/2 0 −γ 0 1− γ
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The Discounted MDP Dual Problem

maximize eT y
subject to (E1 − γP1)

T y + s1 = c1,
. . . . . . . . .

(Ei − γPi )
T y + si = ci ,

. . . . . . . . .
(Em − γPm)

T y + sm = cm,
(s1, · · · , sm) ≥ 0.

The elements in si are called the slack variables.
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The Interpretations of the Primal and Dual

� Decision xi ∈ Rk is the state-action frequency for all actions
j ∈ Ai , or the expected present value of the number of times
in which an individual is in state i and takes state-action j for
all j ∈ Ai . Thus, solving the discounted MDP primal entails
choosing state-action frequencies that minimize the expected
present value sum, cT x, of total costs.
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The Interpretations of the Primal and Dual

� Decision xi ∈ Rk is the state-action frequency for all actions
j ∈ Ai , or the expected present value of the number of times
in which an individual is in state i and takes state-action j for
all j ∈ Ai . Thus, solving the discounted MDP primal entails
choosing state-action frequencies that minimize the expected
present value sum, cT x, of total costs.

� The discounted MDP dual variables y ∈ Rm represent the
expected present cost-to-go values of the m states. Solving
the dual entails choosing dual variables y, one for each state i ,
that maximizes eT y. It is well known that there exist unique
optimal (y∗, s∗) where, for each state i , y∗i is the minimum
expected present cost that an individual in state i and its
progeny can incur.
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Pricing: the Values of the States
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Values on each state; actions in red are taken

Yinyu Ye http://www.stanford.edu/˜yyye IPAM, Jan 18-21, 2011



The Discounted MDP Primal Properties

Lemma
The discounted MDP primal linear programming formulation has
the following properties:

1. The feasible set of the primal is bounded. More precisely, for
every feasible x ≥ 0, eT x = m

1−γ .
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The Discounted MDP Primal Properties

Lemma
The discounted MDP primal linear programming formulation has
the following properties:

1. The feasible set of the primal is bounded. More precisely, for
every feasible x ≥ 0, eT x = m

1−γ .

2. There is a one-to-one correspondence between a (stationary)
policy of the original discounted MDP and a basic feasible
solution (BFS) of the primal.
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The Discounted MDP Primal Properties

Lemma
The discounted MDP primal linear programming formulation has
the following properties:

1. The feasible set of the primal is bounded. More precisely, for
every feasible x ≥ 0, eT x = m

1−γ .

2. There is a one-to-one correspondence between a (stationary)
policy of the original discounted MDP and a basic feasible
solution (BFS) of the primal.

3. Every policy or BFS basis has the Leontief substitution form
Aπ = I − γPπ.
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The Discounted MDP Primal Properties

Lemma
The discounted MDP primal linear programming formulation has
the following properties:

1. The feasible set of the primal is bounded. More precisely, for
every feasible x ≥ 0, eT x = m

1−γ .

2. There is a one-to-one correspondence between a (stationary)
policy of the original discounted MDP and a basic feasible
solution (BFS) of the primal.

3. Every policy or BFS basis has the Leontief substitution form
Aπ = I − γPπ.

4. Let xπ be a basic feasible solution of the primal. Then any
basic variable, say xπi , has its value 1 ≤ xπi ≤ m

1−γ .
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Historical Events of the MDP Methods I

� Shapley (1953) and Bellman (1957) developed a method
called the value-iteration method to approximate the optimal
state values.
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Historical Events of the MDP Methods I

� Shapley (1953) and Bellman (1957) developed a method
called the value-iteration method to approximate the optimal
state values.

� Another best known method is due to Howard (1960) and is
known as the policy-iteration method, which generate an
optimal policy in finite number of iterations in a distributed
and decentralized way.
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Historical Events of the MDP Methods I

� Shapley (1953) and Bellman (1957) developed a method
called the value-iteration method to approximate the optimal
state values.

� Another best known method is due to Howard (1960) and is
known as the policy-iteration method, which generate an
optimal policy in finite number of iterations in a distributed
and decentralized way.

� de Ghellinck (1960), D’Epenoux (1960) and Manne (1960)
showed that the MDP has an LP representation, so that it
can be solved by the simplex method of Dantzig (1947) in
finite number of steps, and the Ellipsoid method of Kachiyan
(1979) in polynomial time.
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Pricing: the Values of the States
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The Policy Iteration
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The Simplex or Simple Policy Iteration: index rule
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The Simplex or Simple Policy Iteration: greedy rule
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Historical Events of the MDP Methods II

� Papadimitriou and Tsitsiclis (1987) gave a theoretical
complexity analysis of the MDP and showed that if Pi is
deterministic, then the MDP can be solved in strongly
polynomial time.
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Historical Events of the MDP Methods II

� Papadimitriou and Tsitsiclis (1987) gave a theoretical
complexity analysis of the MDP and showed that if Pi is
deterministic, then the MDP can be solved in strongly
polynomial time.

� Erickson in 1988 showed that successive approximations
suffice to produce: (1) an optimal stationary halting policy, or
(2) show that no such policy exists in strongly polynomial
time algorithm, based on the work of Eaves and Veinott and
Rothblum.
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Historical Events of the MDP Methods II

� Papadimitriou and Tsitsiclis (1987) gave a theoretical
complexity analysis of the MDP and showed that if Pi is
deterministic, then the MDP can be solved in strongly
polynomial time.

� Erickson in 1988 showed that successive approximations
suffice to produce: (1) an optimal stationary halting policy, or
(2) show that no such policy exists in strongly polynomial
time algorithm, based on the work of Eaves and Veinott and
Rothblum.

� Mansour and Singh in 1994 also gave an upper bound on the
number of iterations, km

m , for the policy-iteration method
when each state has k actions.
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Historical Events of the MDP Methods III

For the discounted MDP:

� Bertsekas in 1987 showed that the value-iteration method
converges to the optimal policy in a finite number of
iterations.
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Historical Events of the MDP Methods III

For the discounted MDP:

� Bertsekas in 1987 showed that the value-iteration method
converges to the optimal policy in a finite number of
iterations.

� Tseng (1990) showed that the value iteration method
generates an optimal policy in polynomial time when the
discount γ is fixed.
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Historical Events of the MDP Methods III

For the discounted MDP:

� Bertsekas in 1987 showed that the value-iteration method
converges to the optimal policy in a finite number of
iterations.

� Tseng (1990) showed that the value iteration method
generates an optimal policy in polynomial time when the
discount γ is fixed.

� Puterman in 1994 showed that the policy-iteration method
converges no more slowly than the value iteration method, so
that it is also a polynomial-time algorithm.
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Historical Events of the MDP Methods III

For the discounted MDP:

� Bertsekas in 1987 showed that the value-iteration method
converges to the optimal policy in a finite number of
iterations.

� Tseng (1990) showed that the value iteration method
generates an optimal policy in polynomial time when the
discount γ is fixed.

� Puterman in 1994 showed that the policy-iteration method
converges no more slowly than the value iteration method, so
that it is also a polynomial-time algorithm.

� Y (2005) showed that the discounted MDP with fixed
discount γ can be solved in strongly polynomial time by a
combinatorial interior-point method (CIPM).
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Polynomial vs Strongly Polynomial

� If the computation time of an algorithm, the total number of
basic arithmetic operations needed, of solving the problem
with rational data is bounded by a polynomial in m, n, and
the total bits, L, of the encoded problem data, then the
algorithm is called polynomial-time algorithms.
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Polynomial vs Strongly Polynomial

� If the computation time of an algorithm, the total number of
basic arithmetic operations needed, of solving the problem
with rational data is bounded by a polynomial in m, n, and
the total bits, L, of the encoded problem data, then the
algorithm is called polynomial-time algorithms.

� The proof of polynomial-time for the value and
policy-iteration methods is essentially due to the argument
that, when the gap between the objective value of the current
policy (or BFS) and the optimal one is small than 2−L, the
current policy must be optimal.
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Polynomial vs Strongly Polynomial continued

� If the computation time of an algorithm, the total number of
basic arithmetic operations needed, of solving the problem is
bounded by a polynomial in m and n, then the algorithm is
called strongly polynomial-time algorithms.
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Polynomial vs Strongly Polynomial continued

� If the computation time of an algorithm, the total number of
basic arithmetic operations needed, of solving the problem is
bounded by a polynomial in m and n, then the algorithm is
called strongly polynomial-time algorithms.

� The proof of a strongly polynomial-time algorithm cannot rely
on that gap argument, since the problem data may have
irrational entries so that the bit-size of the data can be ∞.
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Facts of the Policy Iteration and Simplex Methods

� In practice, the policy-iteration method, including the simple
policy-iteration or Simplex method, has been remarkably
successful and shown to be most effective and widely used.
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Facts of the Policy Iteration and Simplex Methods

� In practice, the policy-iteration method, including the simple
policy-iteration or Simplex method, has been remarkably
successful and shown to be most effective and widely used.

� In the past 50 years, many efforts have been made to resolve
the worst-case complexity issue of the policy-iteration method
or the Simplex method, and to answer the question: is the
policy-iteration a strongly polynomial-time algorithm?
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Facts of the Policy Iteration and Simplex Methods

� In practice, the policy-iteration method, including the simple
policy-iteration or Simplex method, has been remarkably
successful and shown to be most effective and widely used.

� In the past 50 years, many efforts have been made to resolve
the worst-case complexity issue of the policy-iteration method
or the Simplex method, and to answer the question: is the
policy-iteration a strongly polynomial-time algorithm?

� In theory, Klee and Minty (1972) have showed that the
simplex method, with the greedy (most-negative-reduced-cost)
pivoting rule, necessarily takes an exponential number of
iterations to solve a carefully designed LP problem.
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The Klee and Minty Example I
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More Negative Results for the Policy-Iteration Method

� A similar negative result of Melekopoglou and Condon (1990)
showed that a simple policy-iteration method, where in each
iteration only the action for the state with the smallest index
is updated, needs an exponential number of iterations to
compute an optimal policy for a specific MDP problem
regardless of discount rates.
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More Negative Results for the Policy-Iteration Method

� A similar negative result of Melekopoglou and Condon (1990)
showed that a simple policy-iteration method, where in each
iteration only the action for the state with the smallest index
is updated, needs an exponential number of iterations to
compute an optimal policy for a specific MDP problem
regardless of discount rates.

� Most recently, Fearnley (2010) showed that the
policy-iteration method needs an exponential number of
iterations for a undiscounted finite-horizon MDP.
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The Simplex or Simple Policy Iteration: index rule II
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New values on each state; actions in red are taken
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The Simplex or Simple Policy Iteration: index rule III
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Prior Best Results of the Discount MDP Methods

Value-Iter Policy-Iter LP-Alg Comb IP

m2kL
1−γ min

{
m3km

m , m
3kL

1−γ

}
m3k2L m4k4 · log m

1−γ

where L is a total bits to encode the problem data (Pi , ci , γ),
i = 1, . . . ,m, and each state has k actions.
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Prior Best Results of the Discount MDP Methods

Value-Iter Policy-Iter LP-Alg Comb IP

m2kL
1−γ min

{
m3km

m , m
3kL

1−γ

}
m3k2L m4k4 · log m

1−γ

where L is a total bits to encode the problem data (Pi , ci , γ),
i = 1, . . . ,m, and each state has k actions.

Can we prove the simplex and policy-iteration methods strongly
polynomial for the discounted MDP with a fixed rate γ?
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Our Result

� The classic simplex method, or the simple policy-iteration
method, with the greedy pivoting rule, is a strongly
polynomial-time algorithm for MDP with fixed discount rate:

m2(k − 1)

1− γ
· log

(
m2

1− γ

)
,

and each iteration uses at most m2k arithmetic operations.
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Our Result

� The classic simplex method, or the simple policy-iteration
method, with the greedy pivoting rule, is a strongly
polynomial-time algorithm for MDP with fixed discount rate:

m2(k − 1)

1− γ
· log

(
m2

1− γ

)
,

and each iteration uses at most m2k arithmetic operations.

� In general the number of iterations is bounded by
m(n−m)
1−γ · log

(
m2

1−γ

)
, and each iteration uses at most O(mn)

arithmetic operations, where n is the total number of actions.
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Our Result

� The classic simplex method, or the simple policy-iteration
method, with the greedy pivoting rule, is a strongly
polynomial-time algorithm for MDP with fixed discount rate:

m2(k − 1)

1− γ
· log

(
m2

1− γ

)
,

and each iteration uses at most m2k arithmetic operations.

� In general the number of iterations is bounded by
m(n−m)
1−γ · log

(
m2

1−γ

)
, and each iteration uses at most O(mn)

arithmetic operations, where n is the total number of actions.

� The policy-iteration method with the all-negative-reduced-cost
pivoting rule is at least as good as the simple policy-iteration
method, it is also a strongly polynomial-time algorithm with
the same iteration complexity bound.
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Optimal and Non-Optimal State-Actions

Lemma
There is a unique partition P ⊆ {1, 2, · · · , n} and
O ⊆ {1, 2, · · · , n} such that for all optimal solution pair (x∗, s∗),

x∗j = 0, ∀j ∈ O, and s∗j = 0, ∀j ∈ P,

and there is at least one optimal solution pair (x∗, s∗) that is
strictly complementary,

x∗j > 0,∀j ∈ P, and s∗j > 0, ∀j ∈ O,

for the DMDP linear program. In particular, every optimal policy
π∗ ⊆ P so that |P| ≥ m and |O| ≤ n −m.
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Optimal and Non-Optimal State-Actions continued

The interpretation of Lemma 2 is as follows: since there may exist
multiple optimal policies π∗, P contains those state-actions each
of which appears in at least one optimal policy, and O contains the
rest state-actions neither of which appears in any optimal policy.
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Optimal and Non-Optimal State-Actions continued

The interpretation of Lemma 2 is as follows: since there may exist
multiple optimal policies π∗, P contains those state-actions each
of which appears in at least one optimal policy, and O contains the
rest state-actions neither of which appears in any optimal policy.

Each state-action in O is labeled as a non-optimal state-action or
simply non-optimal action. Then, any MDP should have no more
than n −m non-optimal actions.
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High Level Ideas of the Proof

� Create a combinatorial event similar to the one in Vavasis and
Y (1994) developed for general LP and Y (2005) for MDP.
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High Level Ideas of the Proof

� Create a combinatorial event similar to the one in Vavasis and
Y (1994) developed for general LP and Y (2005) for MDP.

� The event will happen in at most a strongly polynomial
number of iterations.
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High Level Ideas of the Proof

� Create a combinatorial event similar to the one in Vavasis and
Y (1994) developed for general LP and Y (2005) for MDP.

� The event will happen in at most a strongly polynomial
number of iterations.

� In particular, after a polynomial number of iterations, a new
non-optimal state-action would be eliminated from
appearance in any future policies generated by the simplex or
policy-iteration method.
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High Level Ideas of the Proof

� Create a combinatorial event similar to the one in Vavasis and
Y (1994) developed for general LP and Y (2005) for MDP.

� The event will happen in at most a strongly polynomial
number of iterations.

� In particular, after a polynomial number of iterations, a new
non-optimal state-action would be eliminated from
appearance in any future policies generated by the simplex or
policy-iteration method.

� The event then repeats for another non-optimal state-action.
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Geometric Interpretation in the Dual

π0

πT

π*
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The Simplex and Policy-Iteration Methods I

Let π be a policy and ν contain the remaining indexes of the
non-basic variables.

minimize cTπ xπ +cTν xν
subject to Aπxπ +Aνxν = e,

x = (xπ; xν) ≥ 0,
(1)
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The Simplex and Policy-Iteration Methods I

Let π be a policy and ν contain the remaining indexes of the
non-basic variables.

minimize cTπ xπ +cTν xν
subject to Aπxπ +Aνxν = e,

x = (xπ; xν) ≥ 0,
(1)

The (primal) Simplex method rewrites (1) into an equivalent
problem

minimize (c̄ν)
T xν +cTπ (Aπ)

−1e
subject to Aπxπ +Aνxν = e,

x = (xπ; xν) ≥ 0;
(2)

where c̄ is called the reduced cost vector:

c̄π = 0 and c̄ν = cν − AT
ν y

π,

and
yπ = (AT

π )
−1cπ.
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The Simplex Method, Dantzig 1947

�

0 < Δ = −min(c̄) with j+ = argmin(c̄).
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The Simplex Method, Dantzig 1947

�

0 < Δ = −min(c̄) with j+ = argmin(c̄).

� Let j+ ∈ Ai , that is, let j
+ be a state-action controlled by

state i , and takes xj+ as the incoming basic variable to replace
the old one xπi .
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The Simplex Method, Dantzig 1947
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0 < Δ = −min(c̄) with j+ = argmin(c̄).

� Let j+ ∈ Ai , that is, let j
+ be a state-action controlled by

state i , and takes xj+ as the incoming basic variable to replace
the old one xπi .

� The method will break a tie arbitrarily, and it updates exactly
one state-action in one iteration.
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The Simplex Method, Dantzig 1947

�

0 < Δ = −min(c̄) with j+ = argmin(c̄).

� Let j+ ∈ Ai , that is, let j
+ be a state-action controlled by

state i , and takes xj+ as the incoming basic variable to replace
the old one xπi .

� The method will break a tie arbitrarily, and it updates exactly
one state-action in one iteration.

� The method repeats with the new policy denoted by π+

where πi ∈ Ai is replaced by j+ ∈ Ai .
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The Policy-Iteration Method, Howard 1960

� Update every state that has a negative reduced cost. For each
state i , let

Δi = −min
j∈Ai

(c̄) with j+i = arg min
j∈Ai

(c̄).
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The Policy-Iteration Method, Howard 1960

� Update every state that has a negative reduced cost. For each
state i , let

Δi = −min
j∈Ai

(c̄) with j+i = arg min
j∈Ai

(c̄).

� Then for every state i such that Δi > 0, let j+i ∈ Ai replace
πi ∈ Ai already in the current policy π.
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The Policy-Iteration Method, Howard 1960

� Update every state that has a negative reduced cost. For each
state i , let

Δi = −min
j∈Ai

(c̄) with j+i = arg min
j∈Ai

(c̄).

� Then for every state i such that Δi > 0, let j+i ∈ Ai replace
πi ∈ Ai already in the current policy π.

� The method repeats with the new policy denoted by π+.

Therefore, both methods would generate a sequence of polices
denoted by π0, π1, . . . , πt , . . ., starting from any policy π0.
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The Simplex and Policy-Iteration Methods II

yπ = (0; 0; 0; 0; −1).

a: (01) (02) (11) (12) (21) (22) (31) (32)
c: 0 −1/8 0 −1/4 0 −1/2 0 −1
(0) 1 1 0 0 0 0 0 0
(1) −1 0 1 1 0 0 0 0
(2) 0 −1/2 −1 0 1 1 0 0
(3) 0 −1/4 0 −1/2 −1 0 1 1
(4) 0 −1/8 0 −1/4 0 −1/2 −1 −1
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Reduced Cost at the Current Policy

2 31 4
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New values on each state; actions in red are taken
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Proof of Strong Polynomiality I

Lemma
Let z∗ be the optimal objective value of (1) . Then, in any iteration
of the Simplex method from current policy π to new policy π+

z∗ ≥ cTxπ − m

1− γ
·Δ.
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Proof of Strong Polynomiality I

Lemma
Let z∗ be the optimal objective value of (1) . Then, in any iteration
of the Simplex method from current policy π to new policy π+

z∗ ≥ cTxπ − m

1− γ
·Δ.

Moreover,

cTxπ
+ − z∗ ≤

(
1− 1− γ

m

)(
cT xπ − z∗

)
.
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Proof of Strong Polynomiality I

Lemma
Let z∗ be the optimal objective value of (1) . Then, in any iteration
of the Simplex method from current policy π to new policy π+

z∗ ≥ cTxπ − m

1− γ
·Δ.

Moreover,

cTxπ
+ − z∗ ≤

(
1− 1− γ

m

)(
cT xπ − z∗

)
.

Therefore, the Simplex method generates a sequence of polices
π0, π1, . . . , πt , . . . such that

cTxπ
t − z∗ ≤

(
1− 1− γ

m

)t (
cTxπ

0 − z∗
)
.
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Proof Sketch of the Lemma

The minimal objective value of problem (2) is bounded from below
by

cTxπ − m

1− γ
·Δ.
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Proof Sketch of the Lemma

The minimal objective value of problem (2) is bounded from below
by

cTxπ − m

1− γ
·Δ.

Problems (1) and (2) share the same objective value.
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Proof Sketch of the Lemma

The minimal objective value of problem (2) is bounded from below
by

cTxπ − m

1− γ
·Δ.

Problems (1) and (2) share the same objective value.

Since at the new policy π+, the incoming basic variable value is
greater than or equal to 1 from Lemma 1, the objective value of
the new policy is decreased by at least Δ. Thus,

cT xπ − cT xπ
+ ≥ Δ ≥ 1− γ

m

(
cTxπ − z∗

)
.
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Proof of Strong Polynomiality II

Lemma

1. If a policy π is not optimal, then there is a state-action
j ∈ π ∩ O (i.e., a non-optimal state-action j in the current
policy) such that

s∗j ≥ 1− γ

m2

(
cTxπ − z∗

)
.
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Proof of Strong Polynomiality II

Lemma

1. If a policy π is not optimal, then there is a state-action
j ∈ π ∩ O (i.e., a non-optimal state-action j in the current
policy) such that

s∗j ≥ 1− γ

m2

(
cTxπ − z∗

)
.

2. For any sequence of polices π0, π1, . . . , πt , . . . generated by
the Simplex method where π0 is not optimal, let j0 ∈ π0 ∩ O
be the state-action index identified above in the initial policy
π0. Then, if j0 ∈ πt , we must have

xπ
t

j0 ≤ m2

1− γ
· c

Txπ
t − z∗

cTxπ0 − z∗
, ∀t ≥ 1.

Yinyu Ye http://www.stanford.edu/˜yyye IPAM, Jan 18-21, 2011



Proof Sketch of the Lemma

Since all non-basic variable of xπ have zero values,

cT xπ − z∗ = cT xπ − eTy∗ = (s∗)Txπ =
∑
j∈π

s∗j x
π
j .

There must be a state-action j ∈ π such that

s∗j x
π
j ≥ 1

m

(
cT xπ − z∗

)
.
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Proof Sketch of the Lemma

Since all non-basic variable of xπ have zero values,

cT xπ − z∗ = cT xπ − eTy∗ = (s∗)Txπ =
∑
j∈π

s∗j x
π
j .

There must be a state-action j ∈ π such that

s∗j x
π
j ≥ 1

m

(
cT xπ − z∗

)
.

Then,

s∗j ≥ 1− γ

m2

(
cT xπ − z∗

)
> 0,

which also implies j ∈ O.
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Proof Sketch of the Lemma

Since all non-basic variable of xπ have zero values,

cT xπ − z∗ = cT xπ − eTy∗ = (s∗)Txπ =
∑
j∈π

s∗j x
π
j .

There must be a state-action j ∈ π such that

s∗j x
π
j ≥ 1

m

(
cT xπ − z∗

)
.

Then,

s∗j ≥ 1− γ

m2

(
cT xπ − z∗

)
> 0,

which also implies j ∈ O.

Let j0 ∈ π0 ∩ O be the index identified at policy π0. Then, for any
policy πt generated by the Simplex method, if j0 ∈ πt ,

cTxπ
t − z∗ = (s∗)T xπ

t ≥ s∗j0x
πt

j0 .
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Proof of Strong Polynomiality III

Theorem
There is a non-optimal state-action in the initial policy π0 of any
policy sequence generated by the Simplex method (with the
most-negative-reduced-cost pivoting rule) that would never be in

any policy of the sequence after T := 	 m
1−γ · log

(
m2

1−γ

)

 iterations,

that is
j0 ∈ π0 ∩ O, but j0 �∈ πt ∀t ≥ T + 1.
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Proof Sketch of the Theorem

From Lemma 3, after t iterations of the Simplex method, we have

cTxπ
t − z∗

cT xπ0 − z∗
≤

(
1− 1− γ

m

)t

.

Therefore, after t ≥ T + 1 iterations from the initial policy π0,
j0 ∈ πt implies, by Lemma 4,

xπ
t

j0 ≤ m2

1− γ
· c

Txπ
t − z∗

cTxπ0 − z∗
≤ m2

1− γ
·
(
1− 1− γ

m

)t

< 1.
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Proof Sketch of the Theorem

From Lemma 3, after t iterations of the Simplex method, we have

cTxπ
t − z∗

cT xπ0 − z∗
≤

(
1− 1− γ

m

)t

.

Therefore, after t ≥ T + 1 iterations from the initial policy π0,
j0 ∈ πt implies, by Lemma 4,

xπ
t

j0 ≤ m2

1− γ
· c

Txπ
t − z∗

cTxπ0 − z∗
≤ m2

1− γ
·
(
1− 1− γ

m

)t

< 1.

But xπ
t

j0 < 1 is a contradiction to Lemma 1, which states that
every basic variable value must be greater or equal to 1. Thus,
j0 �∈ πt for all t ≥ T + 1.
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Proof Sketch of the Main Result

We now repeat the same proof for policy πT+1, if it is not optimal
yet, in the policy sequence generated by the Simplex method.
Since policy πT+1 is not optimal, there must be a non-optimal
state-action, j1 ∈ πT+1 ∩ O and j1 �= j0 (because of Theorem 5),
that would never stay in or return to the policies generated by the
Simplex method after 2T iterations starting from π0.
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Proof Sketch of the Main Result

We now repeat the same proof for policy πT+1, if it is not optimal
yet, in the policy sequence generated by the Simplex method.
Since policy πT+1 is not optimal, there must be a non-optimal
state-action, j1 ∈ πT+1 ∩ O and j1 �= j0 (because of Theorem 5),
that would never stay in or return to the policies generated by the
Simplex method after 2T iterations starting from π0.

In each of these cycles of T Simplex iterations, at least one new
non-optimal state-action is eliminated from appearance in any of
the future policy cycles generated by the Simplex method.
However, we have at most |O| many such non-optimal
state-actions to eliminate.
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Strong Polynomiality of the Simplex Method

Theorem
The simplex, or simple policy-iteration, method with the
most-negative-reduced-cost pivoting rule of Dantzig for solving the
discounted Markov decision problem with a fixed discount rate is a
strongly polynomial-time algorithm. Starting from any policy, the

method terminates in at most m(n−m)
1−γ · log

(
m2

1−γ

)
iterations, where

each iteration uses O(mn) arithmetic operations.
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Strong Polynomiality of the Policy Iteration Method

Corollary

The original policy-iteration method of Howard for solving the
discounted Markov decision problem with a fixed discount rate is a
strongly polynomial-time algorithm. Starting from any policy, it

terminates in at most m(n−m)
1−γ · log

(
m2

1−γ

)
iterations.
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Strong Polynomiality of the Policy Iteration Method

Corollary

The original policy-iteration method of Howard for solving the
discounted Markov decision problem with a fixed discount rate is a
strongly polynomial-time algorithm. Starting from any policy, it

terminates in at most m(n−m)
1−γ · log

(
m2

1−γ

)
iterations.

The key is that the state-action with the
most-negative-reduced-cost is included in the next policy for the
policy-iteration method.
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Extensions to other MDPs

Every policy or BFS basis of the undiscounted MDP has the
Leontief substitution form:

Aπ = I − Pπ,

where Pπ ≥ 0 and the spectral radius of Pπ is bounded by γ < 1.
Then, eT (I − Pπ)

−1e ≤ m
1−γ .
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Extensions to other MDPs

Every policy or BFS basis of the undiscounted MDP has the
Leontief substitution form:

Aπ = I − Pπ,

where Pπ ≥ 0 and the spectral radius of Pπ is bounded by γ < 1.
Then, eT (I − Pπ)

−1e ≤ m
1−γ .

Corollary

Let every basis of policy π an MDP have the form I − Pπ where
Pπ ≥ 0, with a spectral radius less than or equal to a fixed γ < 1.
Then, the Simplex and policy-iteration methods are strongly
polynomial-time algorithms. Starting from any policy, each of

them terminates in at most m(n−m)
1−γ · log

(
m2

1−γ

)
iterations.
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Remarks and Open Questions I

� The performance of the simplex method is very sensitive to
the pivoting rule.
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� Tatonnement and decentralized process works under the
Markov property.
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� Greedy or Steepest Descent works when there is a discount!

� Multi-updates or pivots work better than a single-update

does; policy iteration vs. simplex iteration:

Yinyu Ye http://www.stanford.edu/˜yyye IPAM, Jan 18-21, 2011



Remarks and Open Questions I

� The performance of the simplex method is very sensitive to
the pivoting rule.

� Tatonnement and decentralized process works under the
Markov property.

� Greedy or Steepest Descent works when there is a discount!

� Multi-updates or pivots work better than a single-update

does; policy iteration vs. simplex iteration: n
1−γ · log

(
m

1−γ

)
(only for the policy iteration method) by Hansen, Miltersen,
and Zwick (2010).

� The proof techniques are generalized to certain Stochastic
Games with fixed discount by Hansen et al. (2010), and
certain linear programs by Kitahara and Mizuno (2010).
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Remarks and Open Questions II

� What about the value-iteration method?
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Remarks and Open Questions II

� What about the value-iteration method?

� Can the iteration bound for the simplex method be reduced to
linear in the number of states?
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Remarks and Open Questions II

� What about the value-iteration method?

� Can the iteration bound for the simplex method be reduced to
linear in the number of states?

� Is the policy iteration method polynomial for the MDP
regardless of discount rate γ or input data?
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Remarks and Open Questions II

� What about the value-iteration method?

� Can the iteration bound for the simplex method be reduced to
linear in the number of states?

� Is the policy iteration method polynomial for the MDP
regardless of discount rate γ or input data?

� Is there an MDP algorithm at all whose running time is
strongly polynomial regardless of discount rate γ?
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Remarks and Open Questions II

� What about the value-iteration method?

� Can the iteration bound for the simplex method be reduced to
linear in the number of states?

� Is the policy iteration method polynomial for the MDP
regardless of discount rate γ or input data?

� Is there an MDP algorithm at all whose running time is
strongly polynomial regardless of discount rate γ?

� Is there a strongly polynomial-time algorithm for LP?
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