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Some Landmarks in LO
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1972 exponential example for 
simplex method Klee and Minty

theoretical
(worst case)

1979
ellipsoid method

(polynomial)
Khachiyan

not efficient 
in practice

1984
projective interior

point method
Karmarkar

efficient 
in practice

1989
primal-dual interior

point method
Kojima, Mizuno

and Yoshise
dominant since then

1989 best complexity for 
interior point methods

Renegar, Roos/Vial, 
Gonzaga O(n3L) complexity

1985
analytic center 

central path
Sonnevend, Megiddo key setting for modern 

interior point methods

1947 simplex method Dantzig efficient in practice

2004 Klee-Minty Example for 
Interior Point Methods

Deza, Nematollahi, 
Peyghami, Terlaky dominant since then

2010
Hirsch conjecture 

false
Santos

theoretical
(worst case)

1957 Hirsch conjecture Hirsch theoretical



Linear Optimization: Primal-Dual Pair
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Standard form for linear optimization problem:

min max 
subject to s.t

where A:n x m has full row rank. Optimality: xTs=0, or xisi=0 for all i, or =       .

xcT

bAx 
0x

Simplex (criss-cross) Methods

start from a feasible (any) basis
use a pivot rule
find an optimal solution (after finite number of iterations)
most pivot rules variants are known to be exponential
nevertheless very efficient implementations exist.

ybT

csyAT 
0s

xcT ybT



Tamás Terlaky, ISE, Lehigh U. 4



Linear Optimization: Pivot Algorithms 
Simplex algorithms
 Primal Simplex 
 Dual Simplex (Umbrella)

== primal simplex for dual LO

 Monotonic-build-up 
simplex method (MBUSA)

 Rules:
 Lexicographic
 Least index
 Shadow vertex
 Steepest edge
 Dantzig’s rule
 Largest descent
 Harris
 ZADEH’s RULE (cycles)

Criss-Cross Algorithms
 Dantzig’s Parametric     

Self-dual simplex method
 Zionts’ criss-cross
 Least-index C-C

 Explore flexibilities

 Last-In First-Out (LIFO)
 Edmonds-Fukuda Rule
 Todd’s primal-dual 

lexicography
 General recursions
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The Least-Index Criss-Cross Scheme
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Some open and solved problems
Fact: Polynomial pivot alg. is strongly polynomial.

Solved
 Consider admissible pivots (respecting primal or dual simplex 

sign restrictions, but no ration test, no feasibility requirement)

From any basis there exists an admissible pivot sequence 
to an optimal basis with at most m pivots 

Open problems
 Is there a strongly polynomial time algorithm to solve LO?
 Is there a s-polynomial pivot algorithm to solve LO?
 Is there a s-polynomial admissible pivot alg. to solve LO?
 From any given feasible basis is there a feasible pivot 

sequence of polynomial (linear) length to an optimal basis?
 Is there a s-polynomial simplex algorithm to solve LO?
 Polynomial (linear) Hirsch conjecture?

Tamás Terlaky, ISE, Lehigh U. 7



Tamás Terlaky, ISE, Lehigh U. 8

The central path start from the analytic center
Central Path-Following IPMs follow the central path
It converges to a strictly complementary optimal solution
IMs are polynomial time algorithms for linear optimization

: number of iterations
m : number of inequalities
L  : input-data bit-length

 : central path parameter

)( LmO

bAx

bAxxc
i

i



  )ln(min

Central Path-Following Interior Point Methods (1985)

analytic 
center

central
pathoptimal

solution

Analytic center, central path and complexity



Notes on Interior Point Methods
Best Complexity Result (1988): Renegar, Gonzaga, Roos-Vial

For central path-following interior point methods is
iterations with total               arithmetic operations

Complexity depends on the number of inequalities
Note: Iteration complexity of the Ellipsoid method depends on “n” the   

dimension, with separation oracle it is independent of “m” the number 
of inequalities, that might  be exponential in the dimension.  

Complexity of Volumetric Center IPMs (1993): Atkinson, Vaidya

iterations
Complexity of Volumetric Center Cutting Plane IPMs (1993-99): 

Anstreicher (improving on Vaidya)

iterations  IPMs Fully Outperform Ellipsoid Methods  
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Linear Programming: Complexity
Linear Feasibility Problem: Polytopes & Arrangements

• Simplex methods follow an edge-path on the 
polytope of the feasible set

• Interior Point Methods follow the central-path

COMPLEXITY Worst Case Average Case Practice
Simplex No polynomial time

variant known
O(m) ~2(n+m)

IPMs High-Prob: O(m) 20~60 

Average Case: Probabilistic models     v/s
averaging over arrangements

---------------------------------------------------------------------------------

3)( mLmO

Ellipsoid O(n2L) m2 O(n2L)?? O(n2L)
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Klee-Minty worst-case example for simplex methods (1972)
Simplex methods may take 2n - 1 pivots to reach the optimum on Klee-Minty cubes

(the edge-path followed by the simplex method visits all the 2n vertices)
Note: The exponential example is not proved for e.g. Zadeh’s rule.

Klee-Minty 2-cube Klee-Minty 3-cube

n variables
m=2n constrains

min
subject to

nx
10 1  x

nkxxx kkk ,...,21 11    for
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1.0
2.0







How curly can the central path be?
Note: The central path depends on the representation of the feasible set;

It is an analytic, not a geometric object.

Q: Can the central path be bent along the edge-path followed 
by the simplex method on the Klee-Minty cube?

(can the central path visit an arbitrary small neighborhood of all 2n vertices?)

Yes!  - if
we    carefully add
an     exponential number
of      redundant constrains

Four different Constructions!

1

0.5

0

0

0

0.5 0.5

1

1

Starting
point

Optimal
point

IPMs iteration complexity bound is tight!
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Polytopes: Diameter & Curvature
(Motivations and algorithmic issues)

________________________________________________________________________________________________________________________________

Diameter (of a polytope):

lower bound for the number of iterations
for the simplex method (feasible pivot methods)
(not for criss-cross~admissible pivot methods

short admissible pivot paths do exist!)

Curvature (of the central path associated to a polytope):

large curvature indicates large number of iterations
for (central path following) interior point methods
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Polytopes & Arrangements : Diameter

Diameter (P): smallest number such that 
any two vertices can be connected 
by a path with at most (P) edges

Hirsch Conjecture (1957): (P) ≤ m – n
Counterexample Santos (2010) maybe: (P) ≤ 2m

P

m = 5  : inequalities
n  = 2  : dimension

(P) = 2  : diameter
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total curvature
C2 curve  : [a, b]  Rn parameterized by its arc length t

(note: ║(t)║ = 1)

curvature at t :

total curvature :

Note: Curvature of Primal/Dual/Primal-dual path’s (Sonnevend curvatue) 

)()( 2

2

t
t

t 






b

a

dttK )(

y = sin (x)

total curvature Polytopes & Arrangements : Curvature
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Polytopes & Arrangements : Curvature

c(P): total curvature of the primal central path of min{cTx : xP}

(P): largest total curvature c(P) over of all possible c
The Curvature of the Polytope

c

P

m = 5  : inequalities
n  = 2  : dimension
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Polytopes & Arrangements: Diameter  & Curvature

c(P): total curvature of the primal central path 
of min{cTx : xP}

The Curvature of the Polytope
(P): largest total curvature c(P) over of all possible c
Continuous analogue of Hirsch Conjecture:

The curvature of the polytope (P) =  O(m)

c

P

m = 5  : inequalities
n  = 2  : dimension
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Polytopes & Arrangements: Diameter & Curvature

c(P): total curvature of the primal central path of min{cTx : xP}
(P): largest total curvature c(P) over of all possible c

Continuous analogue of Hirsch Conjecture: (P) =  O(m)

c

P

m = 5  : inequalities
n  = 2  : dimension

 Dedieu-Shub hypothesis (2005): (P) = O(n)
 D.-T.-Z. (2006)      polytope P such that:  (P) ≥ (1.5)n
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Arrangements : Diameter & Curvature

For a simple arrangement, 
the number of bounded cells is I =

1 
 
 

m
n

m = 5  : hyperplanes
n  = 2  : dimension
I  = 6  : bounded cellsP1

P2

P3

P4

P6 P5

Simple arrangement:
m  n &  any n hyperplanes intersect at a unique distinct point
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Polytopes& Arrangements: Diameter & Curvature

c(A) : average value of c(Pi) over the bounded cells Pi of A:

c(A) =                                   with  I =1
( )

i

i
i

P





I
c

I

1 
 
 

m
n

c

P1

P3

P2

P6

m = 5  : hyperplanes
n  = 2  : dimension
I  = 6  : bounded cells

 c(Pi): redundant inequalities count

P5

P4
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Polytopes & Arrangements : Diameter & Curvature

c(A) : average value of c(Pi) over the bounded cells Pi  of A:

(A) : largest value of c(A) over all possible c

Dedieu-Malajovich-Shub (2005):    (A) ≤ 2n

P1

P3

P2

P6

c

m = 5  : hyperplanes
n  = 2  : dimension
I  = 6 : bounded cells



P5

P4
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Polytopes & Arrangements : Diameter & Curvature

(A) : average diameter over all bounded cells of  A:

(A) =                                   with  I =1
( )

i

i
i

P





I

I

P1

P3

P2

P6

1 
 
 

m
n

P4

P5

m = 5  : hyperplanes
n  = 2  : dimension
I  = 6  : bounded cells

 (A): average diameter ≠ diameter of A
ex: (A)= 1.333…
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Polytopes & Arrangements : Diameter & Curvature

P1

P3

P2

P6

P4

P5

m = 5  : hyperplanes
n  = 2  : dimension

I  = 6  : bounded cells

(A) : average diameter of the bounded cells of A:

Conjecture: (A) ≤ O(n)

(discrete analogue of Dedieu-Malajovich-Shub result)
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Polytopes & Arrangements : Diameter & Curvature

(P) ≤ m-n (Hirsch conjecture 1957, false)
… maybe… (P) ≤ O(m)

(A) ≤ O(n) (conjecture D.-T.-Z. 2006) (A) ≤2n (Dedieu-Malajovich-Shub 2005)

(P) ≤  2m (conjecture D.-T.-Z. 2006)
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Polytopes & Arrangements : Diameter & Curvature

m – n + 1 ≤ (P) Santos (2010)
(P) ≤ O(m)    conjecture

(A) ≤ n conjecture D.-T.-Z. (2006) (A) ≤ 2n Dedieu-Malajovich-Shub (2005)

(P) ≤ 2m conjecture  D.-T.-Z. (2006)
(P)=Ω(m)  D.-T.-Z (2006)     







Hirsch  holds for 
n = 2 and n = 3

holds for n = 2 and n = 3

(P) ≤ m – n      (P) ≤ n for m = 2n           Klee-Walkup (1967)
(P) = O(m) (P) = O(n)  for m = 2n           D.-T.-Z. (2006)

redundant inequalities count  for (P) 



Open Problems, Conjectures:
Strong analogies between diameter and curvature
 Is the linear/polynomial Hirsch (d-step) conjecture true?
 Is the average Hirsch conjecture true?
 What about “smoothed“ Hirsch conjecture?
 Is there a strongly polynomial (maybe admissible) pivot 

algorithm to solve LO?
 From a given feasible basis is there a feasible pivot sequence 

with at most m (polynomial) pivots to an optimal basis?

 Is the (P) ≤ 2m bound for the curvature of the central path true?
 What is the worst case total curvature of the Volumetric Path?
 What is the worst case total curvature of the Universal Barrier 

Path?

Is there a strongly polynomial time algorithm to solve LO?
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Algorithms & Conjectures for Linear Optimization
Pivot, Ellipsoid, Interior Point Methods 
The Hirsch conjecture and its relatives

What about other ‘old/new’ algorithms, such as
Perceptron (rescaling) algorithms?

Von Neumann Algorithm?   
Randomized/smooth(rescaling)/sequential projection?

Thinking parallel?!
How to utilize available/coming massively multi-core 

computers – how to design parallel algorithms?

Thank you! – Questions?


