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Linear Optimization. Primal-Dual Pair

Standard form for linear optimization problem:

min. c' x max p'y
subject to Ax = b st AT y+S=cC
x>0 s=0

where A:n x m has full row rank. Optimality: x's=0, or x;5;=0 for all i, or c' x= bTy.

Simplex (criss-cross) Methods

» start from a feasible (any) basis

» use a pivot rule

» find an optimal solution (after finite number of iterations)

» most pivot rules variants are known to be exponential
nevertheless very efficient implementations exist.
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Linear Optimization: Fundamentals

Standard form LO model: Optimality Conditions

(Criss-Cross Method|

| Az =b ATy+s=ci

Primal | — :
\‘4: T :} O / .;:} O . -
‘Simplexlg _ 5

Simplex

Interior Point Methods

Algorithmic concepts
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Linear Optimization. Pivot Algorithms

Simplex alqgorithms
= Primal Simplex

= Dual Simplex (Umbrella)
== primal simplex for dual LO

= Monotonic-build-up = Zionts’ criss-cross

simplex method (MBUSA}===) = Least-index C-C
= EXxplore flexibilities

Criss-Cross Algorithms

= Dantzig’s Parametric
Self-dual simplex method

Largest descent
Harris

ZADEH’s RULE (cycies)
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s General recursions

= Rules: |
= Lexicographic = Last-In First-Out (LIFO)
= Least index = Edmonds-Fukuda Rule
= Shadow vertex L
. Steepest edge = Todd’s primal-dual
= Dantzig's rule lexicography




The Least-Index Criss-Cross Scheme

Basis tableau

i
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pivot

pivot |
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Some open and solved problems

Fact: Polynomial pivot alq. is strongly polynomial.
Solved

Consider admissible pivots (respecting primal or dual simplex
sign restrictions, but no ration test, no feasibility requirement)

From any basis there exists an admissible pivot sequence
to an optimal basis with at most /7 pivots

Open problems
Is there a strongly polynomial time algorithm to solve LO?
Is there a s-polynomial pivot algorithm to solve LO?
Is there a s-polynomial admissible pivot alg. to solve LO?

From any given feasible basis is there a feasible pivot
sequence of polynomial (linear) length to an optimal basis?

Is there a s-polynomial simplex algorithm to solve LO?

Polynomial (linear) Hirsch conjecture?
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Central Path-Following Interior Point Methods (1985)

Analytic center, central path and complexity

» The central path start from the analytic center

» Central Path-Following IPMs follow the central path
» It converges to a strictly complementary optimal solution

» IMs are polynomial time algorithms for linear optimization
O(v/mL) : number of iterations
m : number of inequalities
L : input-data bit-length
u - central path parameter

analytic - T
ot min c'x— ﬂZ'”(AX_b)i

central

optimal th
solution o AX Z b
\
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Notes on Interior Point Methods

Best Complexity Result (1988): Rrenegar, Gonzaga, Roos-Vial
For central path-following interior point methods is
O(v/mL) iterations with total O(M°L) arithmetic operations

Note: Iteration complexity of the Ellipsoid method depends on 7" the
dimension, with separation oracle it is independent of " 7" the number
of inequalities, that might be exponential in the dimension.

Complexity of Volumetric Center IPMs (1993): Atkinson, Vaidya

O(&/mnL) iterations
Complexity of Volumetric Center Cutting Plane IPMs (1993-99):
Anstreicher (improving on Vaidya)

O(«/nL) iterations = 1PMs Fully Outperform Ellipsoid Methods
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Linear Programming: Complexity

Linear Feasibility Problem: Polytopes & Arrangements

COMPLEXITY |Worst Case |Average Case |Practice

Simplex No polynomial time O(m) ~2(n+m)
variant known

IPMs O(\/EL)m?’ High-Prob: O(m) 20~60

Ellipsoid |  OMAL)m?| O(MA)?? | O(ML)

Average Case: Probabilistic models V/S
averaging over arrangements

« SImplex methods follow an edge-path on the
polytope of the feasible set
* Interior Point Methods follow the central-path
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Klee-Minty worst-case example for simplex methods (1972)

Simplex methods may take 2" - 1 pivots to reach the optimum on Klee-Minty cubes

(the edge-path followed by the simplex method visits all the 2" vertices)
Note: The exponential example is not proved for e.g. Zadeh’s rule.

min X,
subject to
J 0<x <
EXp X < =2, N
Klee-Minty 2-cube Klee-Minty 3-cube

n variables
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How curly can the central path be?

Note: The central path depends on the representation of the feasible set;
It is an analytic, not a geometric object.

Q: Can the central path be bent along the edge-path followed
by the simplex method on the Klee-Minty cube?

(can the central path visit an arbitrary small neighborhood of all 2" vertices?)

Yes! - if

we carefully add 1l
an exponential number

of redundant constrains
05¢

Four different Constructions!

0.5

IPMs iteration complexity bound is tight!l
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Polytopes: Diameter & Curvature
(Motivations and algorithmic issues)

(of a polytope):

lower bound for the number of iterations

for the simplex method (feasible pivot methods)

(not for criss-cross~admissible pivot methods
short admissible pivot paths do exist!)

(of the central path associated to a polytope):

large curvature indicates large number of iterations
for (central path following) interior point methods
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& Arrangements :

m =35 :inequalities
n =2 :dimension
O(P) =2 : diameter

Diameter 6(P): smallest number such that
any two vertices can be connected
by a path with at most §(P) edges
(1957): d(P)sm —n
Counterexample Santos (2010) maybe: 6(P) £ 2m

Tamas Terlaky, ISE, Lehigh U. 14



& Arrangements :

C? curve ¥ : [a, b] — R" parameterized by its arc length t
(note: [|[¥'(t)| =1)

att: () ngzzxp(t) y = sin (X)

'K = j |x()]|ot

Note: Curvature of Primal/ /Primal-dual path’s (Sonnevend curvatue)
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& Arrangements :

yis

m =95 :inequalities
n =2 :dimension

A¢(P): total curvature of the primal central path of min{c™x : xeP}

A(P): largest total curvature A°(P) over of all possible c
The Curvature of the Polytope
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& Arrangements:

yis

m =95 :inequalities
n =2 :dimension

AC(P): total curvature of the primal central path
of min{c™ : xeP}
The Curvature of the Polytope
A(P): largest total curvature A°(P) over of all possible c
Continuous analogue of Hirsch Conjecture:
The curvature of the polytope A(P) = O(m)
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& Arrangements: Diameter &

yis

m =95 :inequalities
n =2 :dimension

A¢(P): total curvature of the primal central path of min{c™x : xeP}
A(P): largest total curvature A°(P) over of all possible c

< Dedieu-Shub hypothesis (2005): A(P) = O(n)
% D.-T.-Z. (2006) H polytope P such that: A(P) 2 (1.5)"
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- Diameter & Curvature

. hyperplanes
- dimension
: bounded cells

m >n & any n hyperplanes intersect at a unique distinct point

the number of bounded cells is | =

For a simple arrangement, (m _1j
n
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Polytopes& . Diameter & Curvature

. hyperplanes
- dimension
: bounded cells

Ac(A) :average value of A°(P;) over the bounded cells P; of A:

WRG -1
A(A)= with | = [ n )

% A°(P;): redundant inequalities count
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Polytopes & . Diameter &

M =5 : hyperplanes
n =2 :dimension
|

= 6 : bounded cells

A¢(A) :average value of A°(P;) over the bounded cells P; of A:
A(A) :largest value of A°(A) over all possible c

(2005): A(A)<2n7T
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Polytopes & & Curvature

. hyperplanes
- dimension
: bounded cells

O(A) : average diameter over all bounded cells of A:

S 5(P)

5(A) = - with | = (mn_ 1]

* 0(A): average diameter # diameter of A
ex: o(A)=1.333...
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Polytopes & & Curvature

m =5 : hyperplanes
n =2 :dimension
| =6 : bounded cells

O(A) : average diameter of the bounded cells of A:
O0(A) = O(n)

(discrete analogue of Dedieu-Malajovich-Shub result)
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Polytopes & Arrangements . Diameter & Curvature

A A

) € m=n (Hirsch conjecture 1957, false)
.. maybe... 3(P)< O(m)

% >

(A)=O(n) (conjecture D.-T.-Z.2006)  A(A) £2NJT (Dedieu-Malajovich-Shub 2005)

) £ 2mM7T (conjecture D.-T.-Z. 2006)
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Polytopes & Arrangements . Diameter & Curvature

holdsforn =2 and n =3
/ /
m-=n+1s3(P) Santos (2010) AMP) < 2m7 conjecture D.-T.-Z. (2006)
o6(P) < O(m) conjecture A(P)=Q(m) D.-T.-Z (2006)
w Hirsch holds for
n=2andn=3 redundant inequalities count for A(P)

3(A)=n conjecture D.-T.-Z. (2006) MA)S2n 77 Dedieu-Malajovich-Shub (2005)

d(P)sm-n < 3(P)=sn form =2n Klee-Walkup (1967)

A(P)=0O(m) < AP)=0(n) form =2n D.-T.-Z. (2006)
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Open Problems, Conjectures:

Strong analogies between diameter and curvature

Is the linear/polynomial Hirsch (d-step) conjecture true?
Is the average Hirsch conjecture true?
What about “"smoothed™ Hirsch conjecture?

Is there a strongly polynomial pivot
algorithm to solve LO?

From a given feasible basis is there a feasible pivot sequence
with at most m (polynomial) pivots to an optimal basis?

Is the A(P) = 2mJT bound for the curvature of the central path true?
What is the worst case total curvature of the Volumetric Path?

What is the worst case total curvature of the Universal Barrier
Path?

Is there a strongly polynomial time algorithm to solve LO?
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U gavithms & Cenfectuves for Linear Optimization

Pivot, Ellipsoid, Interior Point Methods
The Hirsch conjecture and its relatives

What about other ‘old/new’ algorithms, such as
Perceptron (rescaling) algorithms?

Von Neumann Algorithm?
Randomized/smooth(rescaling)/sequential projection?

Thinking parallel?!

How to utilize available/coming massively multi-core
computers — how to design parallel algorithms?

Thank you! — Questions?
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