Algorithms and Conjectures for Linear Optimization

Tamás Terlaky

Chair ISE, George N. and Soteria Kledaras '87 Endowed Chair Professor.

Industrial and Systems Engineering January 2011, IPAM, UCLA

Industrial and Systems Engineering

Some Landmarks in LO

1947	simplex method	Dantzig	efficient in practice
1957	Hirsch conjecture	Hirsch	theoretical
1972	exponential example for simplex method	Klee and Minty	theoretical (worst case)
1979	ellipsoid method (polynomial)	Khachiyan	not efficient in practice
1984	projective interior point method	Karmarkar	efficient in practice
1985	analytic center central path	Sonnevend, Megiddo	key setting for modern interior point methods
1989	best complexity for interior point methods	Renegar, Roos/Vial, Gonzaga	<i>O</i> (<i>n</i> ³ <i>L</i>) complexity
1989	primal-dual interior point method	Kojima, Mizuno and Yoshise	dominant since then
2004	Klee-Minty Example for Interior Point Methods	Deza, Nematollahi, Peyghami, Terlaky	dominant since then
2010	Hirsch conjecture false	Santos erlaky, ISE, Lehigh U.	theoretical (worst case)

Linear Optimization: Primal-Dual Pair

Standard form for linear optimization problem:

$$\begin{array}{ccc} \min & c^T x & \max & b^T y \\ \text{subject to} & Ax = b & \text{s.t} & A^T y + s = c \\ & x \ge 0 & & s \ge 0 \\ \end{array}$$

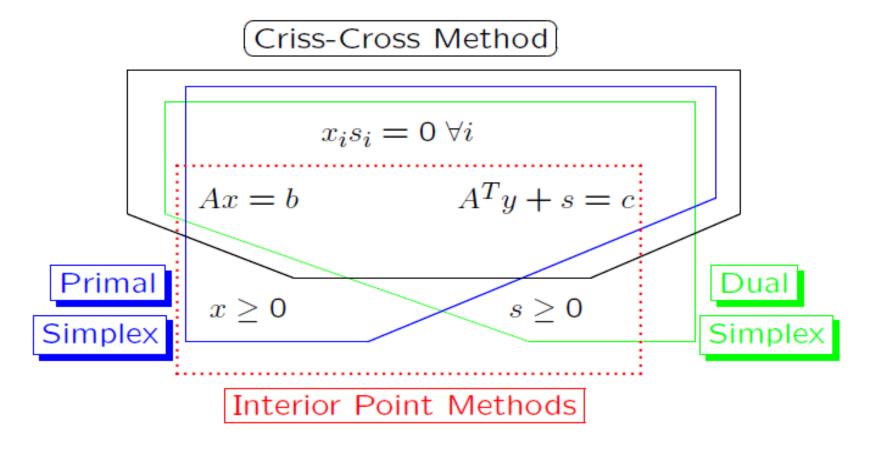
where A:n x m has full row rank. Optimality: $x^{T}s=0$, or $x_{i}s_{i}=0$ for all i, or $c^{T}x=b^{T}y$.

Simplex (criss-cross) Methods

- start from a feasible (any) basis
- use a pivot rule
- find an optimal solution (after finite number of iterations)
- most pivot rules variants are known to be exponential nevertheless very efficient implementations exist.

Linear Optimization: Fundamentals

Standard form LO model: Optimality Conditions



Algorithmic concepts

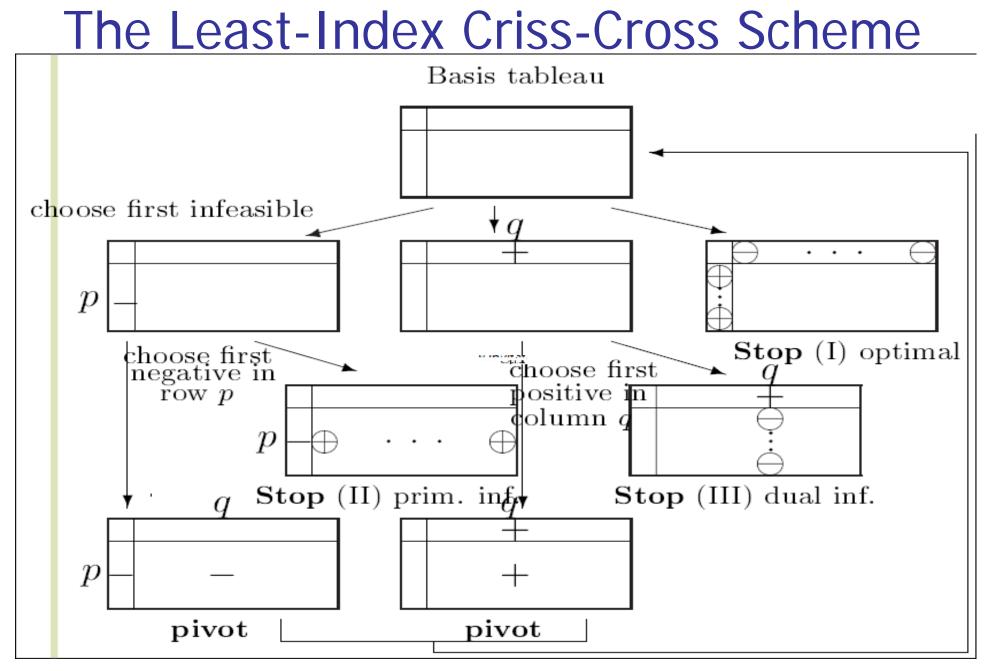
Linear Optimization: Pivot Algorithms

Simplex algorithms

- Primal Simplex
- Dual Simplex (Umbrella)
 == primal simplex for dual LO
- Monotonic-build-up simplex method (MBUSA)
- Rules:
 - Lexicographic
 - Least index
 - Shadow vertex
 - Steepest edge
 - Dantzig's rule
 - Largest descent
 - Harris
 - ZADEH'S RULE (cycles)

<u>Criss-Cross Algorithms</u>

- Dantzig's Parametric
 Self-dual simplex method
- Zionts' criss-cross
- Least-index C-C
 - Explore flexibilities
- Last-In First-Out (LIFO)
- Edmonds-Fukuda Rule
- Todd's primal-dual lexicography
- General recursions



Some open and solved problems

Fact: Polynomial pivot alg. is strongly polynomial.

<u>Solved</u>

 CONSIDER admissible pivots (respecting primal or dual simplex sign restrictions, but no ration test, no feasibility requirement)

<u>From any basis</u> there exists an <u>admissible pivot sequence</u> to an optimal basis with at most *m* pivots <u>Open problems</u>

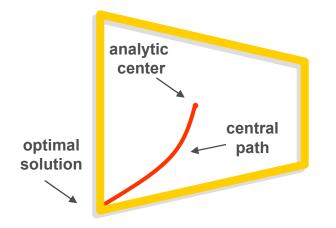
- Is there a strongly polynomial time algorithm to solve LO?
- Is there a s-polynomial pivot algorithm to solve LO?
- Is there a s-polynomial admissible pivot alg. to solve LO?
- From any given feasible basis is there a feasible pivot sequence of polynomial (linear) length to an optimal basis?
- Is there a s-polynomial simplex algorithm to solve LO?
- Polynomial (linear) Hirsch conjecture?

Central Path-Following Interior Point Methods (1985)

Analytic center, central path and complexity

- The central path start from the analytic center
- Central Path-Following IPMs follow the central path
- It converges to a strictly complementary optimal solution
- ▶ IMs are polynomial time algorithms for linear optimization $O(\sqrt{mL})$: number of iterations *m* : number of inequalities
 - L : input-data bit-length

 μ : central path parameter



$$\min c^{\mathrm{T}}x - \mu \sum_{i} \ln(Ax - b)_{i}$$
$$Ax \ge b$$

Notes on Interior Point Methods

Best Complexity Result (1988): Renegar, Gonzaga, Roos-Vial For central path-following interior point methods is $O(\sqrt{mL})$ iterations with total $O(m^3L)$ arithmetic operations **Complexity depends on the number of inequalities** Note: Iteration complexity of the Ellipsoid method depends on "n" the dimension, with separation oracle it is independent of "*m*" the number of inequalities, that might be exponential in the dimension. Complexity of Volumetric Center IPMs (1993): Atkinson, Vaidya $O(\sqrt[4]{mnL})$ iterations Complexity of Volumetric Center Cutting Plane IPMs (1993-99): Anstreicher (improving on Vaidya)

 $O(\sqrt{nL})$ iterations \rightarrow IPMs Fully Outperform Ellipsoid Methods

Linear Programming: Complexity

Linear Feasibility Problem: Polytopes & Arrangements

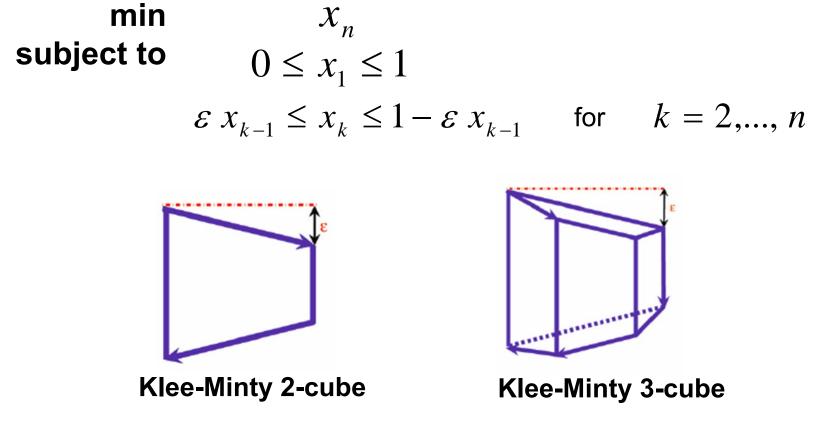
COMPLEXITY	Worst Case	Average Case	Practice
Simplex	No polynomial time variant known	<i>O(m)</i>	$\sim 2(n+m)$
IPMs	$O(\sqrt{m}L)m^3$	High-Prob: $O(m)$	20~60
Ellipsoid	$O(n^2L) m^2$	$O(n^2L)??$	$O(n^2L)$

Average Case: Probabilistic models V/S averaging over arrangements

- Simplex methods follow an edge-path on the polytope of the feasible set
- Interior Point Methods follow the central-path

Klee-Minty worst-case example for simplex methods (1972)

Simplex methods may take 2ⁿ - 1 pivots to reach the optimum on Klee-Minty cubes (the edge-path followed by the simplex method visits all the 2ⁿ vertices) Note: The exponential example is not proved for e.g. Zadeh's rule.

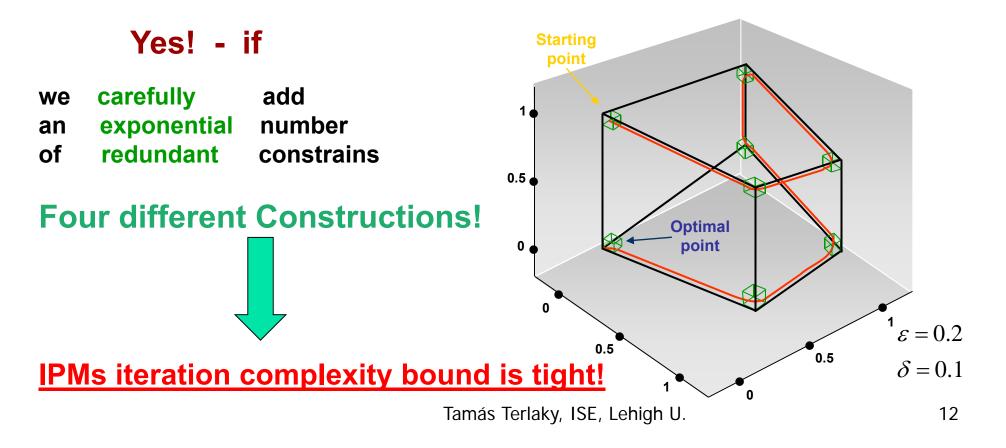


n variables *m=2n* constrains

How curly can the central path be?

Note: The central path depends on the representation of the feasible set; It is an analytic, not a geometric object.

Q: Can the central path be bent along the edge-path followed by the simplex method on the Klee-Minty cube? (can the central path visit an arbitrary small neighborhood of all 2ⁿ vertices?)



Polytopes: Diameter & Curvature

(Motivations and algorithmic issues)

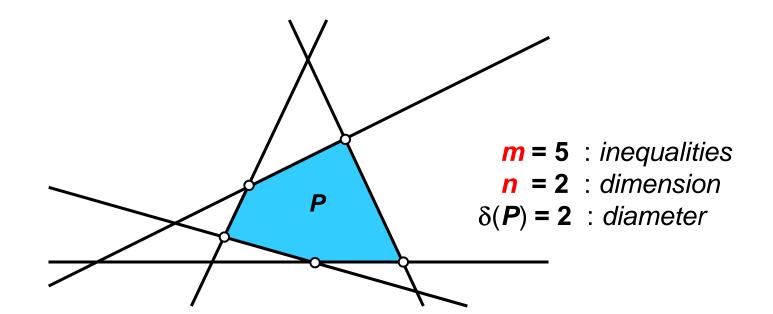
Diameter (of a polytope):

lower bound for the number of iterations for the simplex method (feasible *pivot methods*) (not for criss-cross~admissible pivot methods short admissible pivot paths do exist!)

Curvature (of the central path associated to a polytope):

large curvature indicates large number of iterations for (*central path following*) **interior point methods**

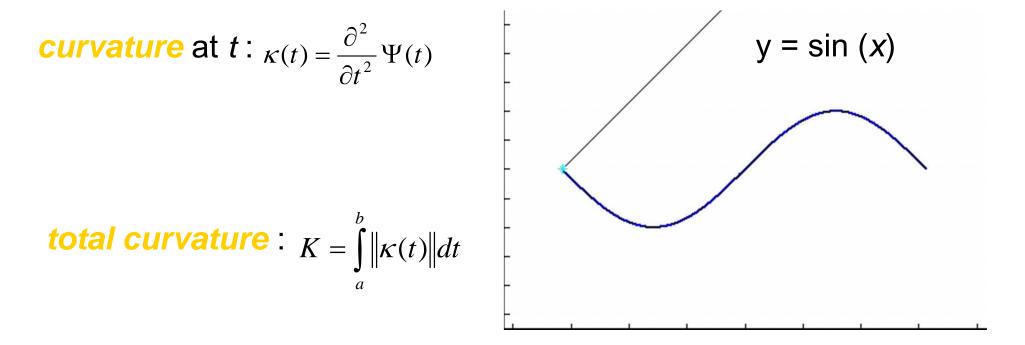
Polytopes & Arrangements : Diameter



Diameter $\delta(P)$: smallest number such that any two vertices can be connected by a path with at most $\delta(P)$ edges **Hirsch Conjecture** (1957): $\delta(P) \leq m - n$ **Counterexample Santos (2010) maybe:** $\delta(P) \leq 2m$

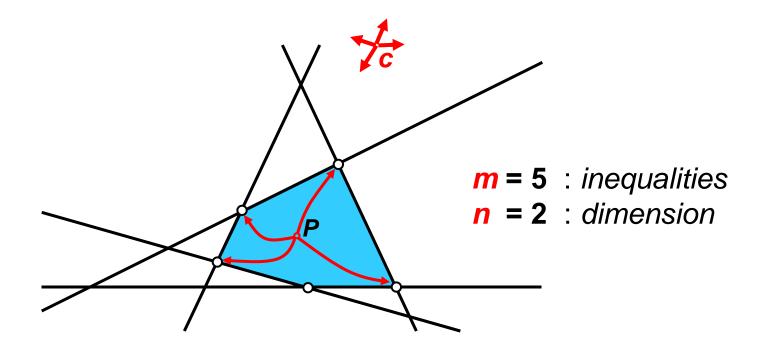
Polytopes & Arrangements : Curvature

C² curve Ψ : [*a*, *b*] → **R**^{*n*} parameterized by its *arc length t* (note: $\|\Psi'(t)\| = 1$)



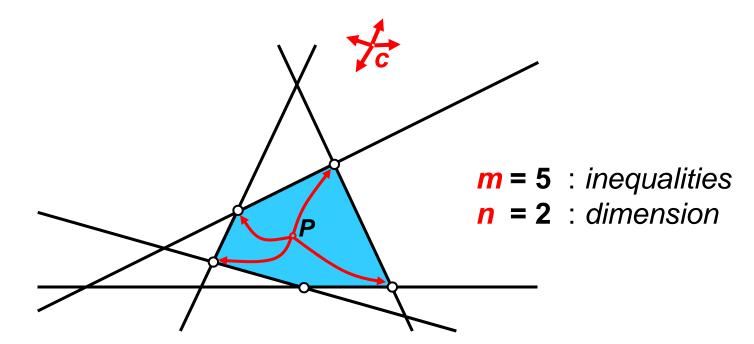
Note: Curvature of Primal/Dual/Primal-dual path's (Sonnevend curvatue)

Polytopes & Arrangements : Curvature



 $\lambda^{c}(\mathbf{P})$: total curvature of the primal central path of min{ $\mathbf{c}^{\mathsf{T}} x : x \in \mathbf{P}$ }

λ(**P**): largest total curvature λ^c(**P**) over of all possible c The Curvature of the Polytope



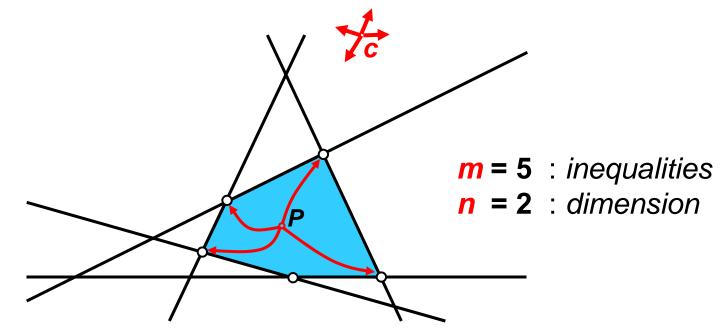
 $\lambda^{c}(\mathbf{P})$: total curvature of the primal central path of m

of min{ $\boldsymbol{c}^{\mathrm{T}}x : x \in \boldsymbol{P}$ }

The Curvature of the Polytope

 $\lambda(\mathbf{P})$: *largest* total curvature $\lambda^{\mathbf{c}}(\mathbf{P})$ over of all possible \mathbf{c} Continuous analogue of Hirsch Conjecture:

The curvature of the polytope $\lambda(P) = O(m)$

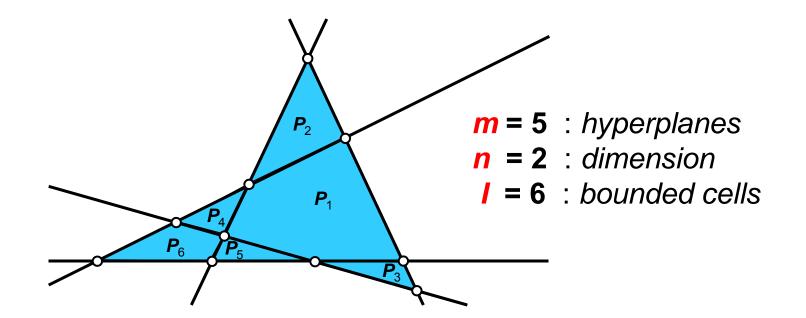


 $\lambda^{c}(\mathbf{P})$: total curvature of the primal central path of min{ $\mathbf{c}^{\mathsf{T}}x : x \in \mathbf{P}$ } $\lambda(\mathbf{P})$: *largest* total curvature $\lambda^{c}(\mathbf{P})$ over of all possible \mathbf{c}

Continuous analogue of Hirsch Conjecture: $\lambda(P) = O(m)$

★ Dedieu-Shub hypothesis (2005): λ(P) = O(n)
★ D.-T.-Z. (2006) ∃ polytope P such that: λ(P) ≥ (1.5)ⁿ

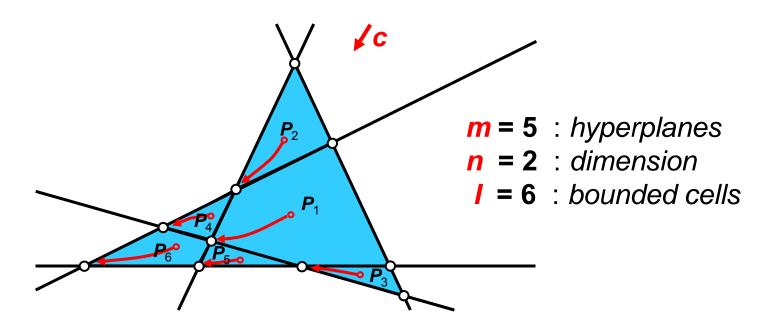
Arrangements : Diameter & Curvature



Simple arrangement:

m > *n* & any *n* hyperplanes intersect at a unique distinct point

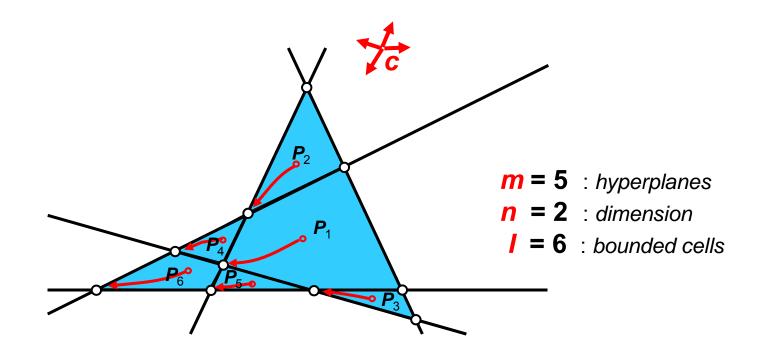
For a simple arrangement,
the number of **bounded cells is**
$$I = \begin{pmatrix} m - 1 \\ n \end{pmatrix}$$



 $\lambda^{c}(A)$: average value of $\lambda^{c}(P_{i})$ over the bounded cells P_{i} of A:

$$\lambda^{c}(\mathbf{A}) = \frac{\sum_{i=1}^{i=I} \lambda^{c}(P_{i})}{I} \quad \text{with } I = \binom{m-1}{n}$$

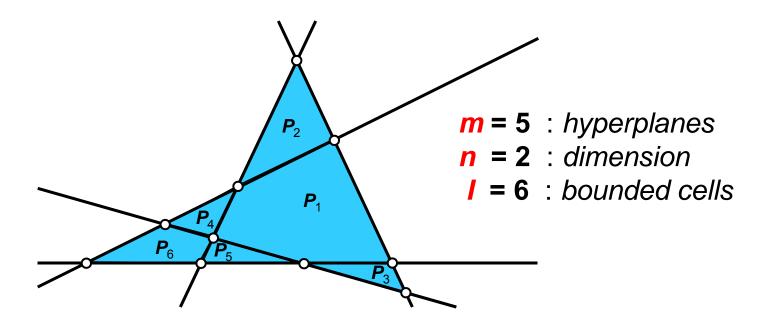
* λ^c(*P_i*): *redundant* inequalities count



 $\lambda^{c}(A)$: average value of $\lambda^{c}(P_{i})$ over the bounded cells P_{i} of A:

 $\lambda(\mathbf{A})$: largest value of $\lambda^{\mathbf{c}}(\mathbf{A})$ over all possible **c**

Dedieu-Malajovich-Shub (2005): $\lambda(\mathbf{A}) \leq 2\mathbf{n}\mathcal{T}$

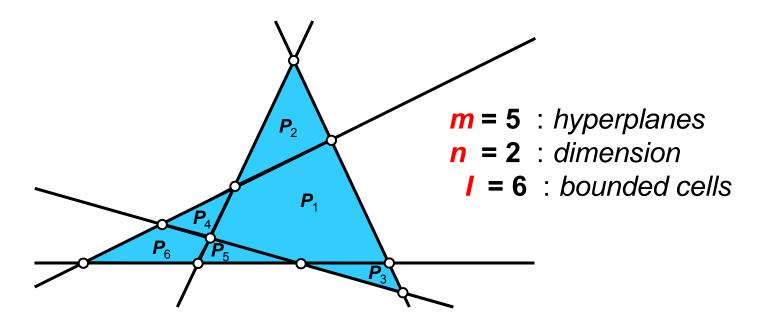


 $\delta(\mathbf{A})$: average diameter over all bounded cells of \mathbf{A} :

$$\delta(\boldsymbol{A}) = \frac{\sum_{i=1}^{i=\boldsymbol{I}} \delta(P_i)}{\boldsymbol{I}}$$

with
$$I = \binom{m-1}{n}$$

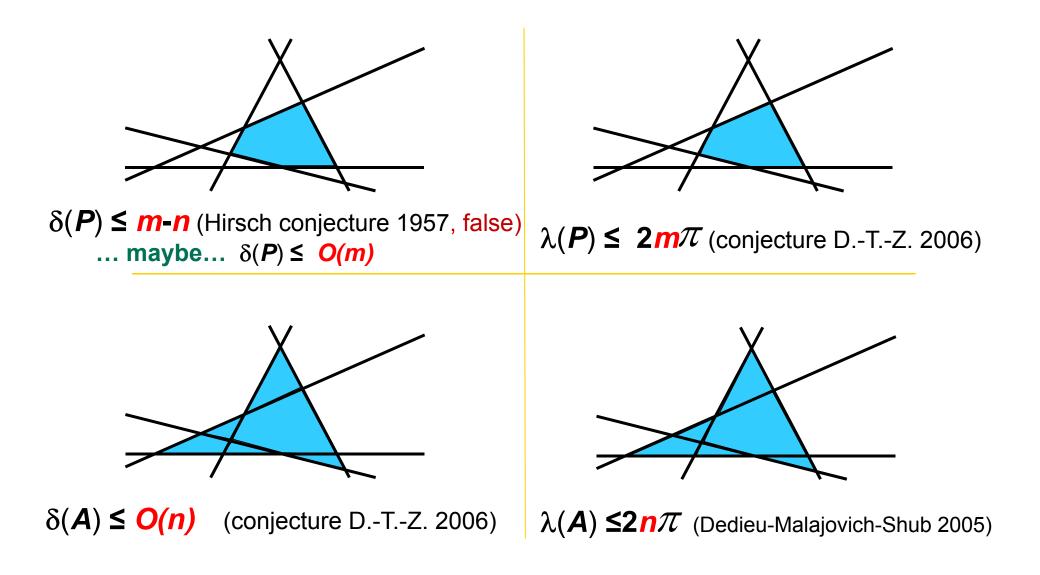
♦ $\delta(A)$: average diameter ≠ diameter of A ex: $\delta(A)$ = 1.333...

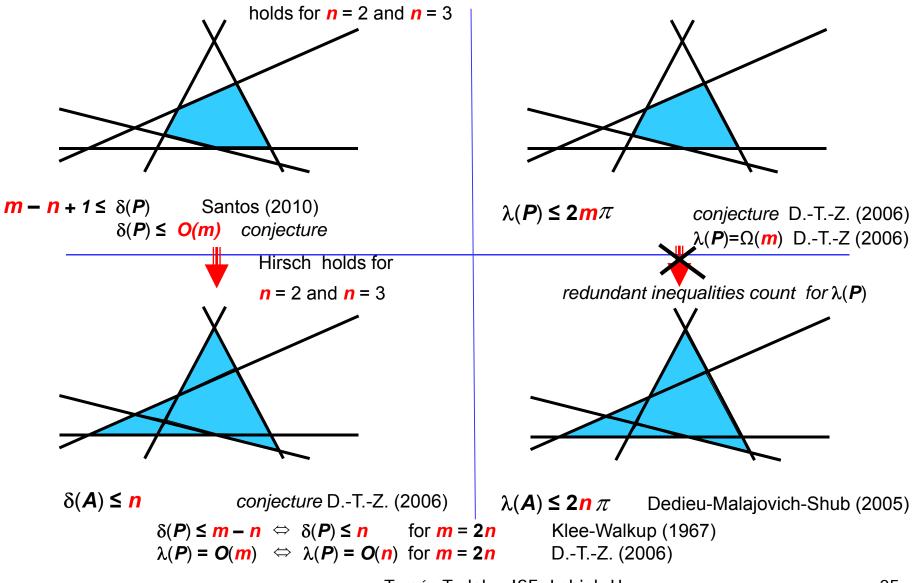


 $\delta(\mathbf{A})$: average diameter of the bounded cells of \mathbf{A} :

Conjecture: $\delta(A) \leq O(n)$

(discrete analogue of Dedieu-Malajovich-Shub result)





Open Problems, Conjectures:

Strong analogies between diameter and curvature

- Is the linear/polynomial Hirsch (*d*-step) conjecture true?
- Is the average Hirsch conjecture true?
- What about "smoothed" Hirsch conjecture?
- Is there a strongly polynomial (maybe admissible) pivot algorithm to solve LO?
- From a given feasible basis is there a feasible pivot sequence with at most *m* (polynomial) pivots to an optimal basis?
- Is the $\lambda(\mathbf{P}) \leq 2m\pi$ bound for the curvature of the central path true?
- What is the worst case total curvature of the Volumetric Path?
- What is the worst case total curvature of the Universal Barrier Path?

Is there a strongly polynomial time algorithm to solve LO?

<u>*Algorithms & Conjectures for Linear Optimization*</u> <u>*Pivot, Ellipsoid, Interior Point Methods*</u> *The Hirsch conjecture and its relatives*

What about other 'old/new' algorithms, such as Perceptron (rescaling) algorithms? Von Neumann Algorithm? Randomized/smooth(rescaling)/sequential projection?

Thinking parallel?!

How to utilize available/coming massively multi-core computers – how to design parallel algorithms?

Thank you! – Questions?