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Introduction

m A lot of recent work on Polynomial Hirsch
Conjecture has focused on combinatorial
abstractions

m Goal of this talk is to propose an alternative
geometric program for the problem

m Motivated by integral geometry techniques used
by Spielman and me in our polynomial time
simplex method

m Also draws from some ideas from smoothed
analysis literature

m But don’t need to worry about being algorithmic



" A
m Polynomial Hirsch conjecture should be easier for

random polytopes than for general polytopes

Q So should be able to resolve this case if we ever
hope to do general case

m Something stronger should be true
a And pretty approachable

0 In fact, maybe this talk plus one really good
paragraph...

m Will show that if counterexamples to polynomial
Hirsch conjecture exist, they are very fragile
0 But won't quite get a diameter bound

m Alternative titles:

0 An Un-Abstract View on the Polynomial Hirsch
Conjecture

0 How to Almost Prove that the Hirsch Conjecture is
Almost Always Almost True
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Goals for this talk

m Set forth a geometric program for the
polynomial Hirsch Conecture

m Advocate for the following conjecture as a
good next step:

m Smoothed Hirsch Conjecture: Slightly
perturbing any polytope (randomly) results in

one with polynomial diameter
m Show how to almost prove it

a And give a general geometric picture for these
sorts of problems



Notation

m Polytope P = {x | Ax = b}
XER?
bER", positive
A = n x d matrix

m A hasrowsa,,..., a,

m Canrescale s.t. b=1 WLOG



Well-Rounded Polytopes

m Will be useful to have notion of coordinate system in
which a convex body is “round”

m Definition: We say that a convex body is k-well-
rounded if

B(0,1) C P C B(0,k),
where B(0,r)=radius r ball centered at origin

m Fritz John’s Theorem: For any bounded convex body,
exists coordinate system in which it's d-well-rounded
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Our Perturbation Model

m Start with d-well-rounded P = {x | c‘z?w <1}
m Perturb LHS:

Let a, be n-d normal centered at @; with
variance = 1/poly
m Perturb RHS to have entries 1+r;, where r,

are indep. exp. random variables with
expectation A:

Pr(r; > t] = e ¥/*

m Get perturbed polytope
Q) = {a: . V1, a;-raz < 1+7“Z-}



Where do short paths on polytopes come from?

-
(-’

m We'll find paths by looking at 2-d projections

Based on “Shadow vertex pivot rule” for simplex
method



The Shadow Vertex Pivot Rule
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m Project onto 2-d subspace
V (called shadow plane)

Q Projection called shadow -
Q Vertices project to vertices
0 Edges project to edges
m \Walk along edges that
appear in projection

m A vertex appears on
boundary of shadow iff it
maximizes some objective
function ceV

o
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The Shadow Vertex Pivot Rule

m [0 get path between
verts s and t:

o Letc be an obj. fn.
maximized at s

o Letd be an obj. fn.
maximized at t

o Choose shadow plane to
be span(c,d)

m Has well-known
examples when it takes
exponentially many
steps




m Will argue that projection onto uniformly
random subspace won'’t have a lot of
edges
a This will only need perturbation of RHS(!)

m Argument will go through unchanged as
long as subspace has reasonable amount
of randomness

a E.g. span(c,d), where c, d fixed vects plus
1/poly noise
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Getting Randomness in the 2-plane

m If constraints from a,,...,a  tight at s, then s
maximizes any c in pos(a,,...,a,)

m Because of perturbation, cone of such c very
unlikely to be really small
a l.e., will contain ball of radius 1/poly w.h.p.
Q More on this later

m Similarly for d

m S0 can think of ¢, d as being fixed vects plus 1/
poly noise
Q This is only place we use perturbation of the a,



m Theorem: Let V be a random 2-plane and Q k-well-
rounded with RHS perturbation described above. Then

the expectation over V and {r} of the number of edges of
the projection of Q onto V is at most

127k(1 + A n(ne))Vdn

And similar (up to poly factors) for any reasonably
random V

m So:

B/c of RHS perturbation, any reasonably random
projection has polynomially many edges in expectation

B/c of LHS perturbation, vertices tend to optimize a
reasonably large cone of objective functions

m SO given c,d, exist a bunch of planes containing
them, and thus a short path, w.h.p.

m Question: Why doesn’t this give a diameter bound???



Proof of Shadow Bound

m Proof will proceed by analyzing expected lengths of
edges on boundary

m Let r=maxr,.
m Qis k(1+r)-well-rounded

m Implies shadow of Q on V is contained in ball of radius k
(1+r), so perimeter of shadow is at most 2nk(1+r).

m Can show EJ[r]=AIn(ne), so E[perimeter]< 2nk(1+AlIn(ne)).
m So expected total length of edges of shadow is bounded
above

m Get our bound by showing each edge is unlikely to be
very short, so can’t have too many of them
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Proof of Well-Rounded Shadow Bound

(cont.)

m Step 2: Length of a given edge of Q expected
to be long, if it appears

m An edge is determined by the d-1 constraints
that are tight on it

m Foreach | €(;"), let A(l) be event that it
appears on the convex hull of Q.

m [f | appears, let §(l) be its length
m Lemma:
TLE

Pr|o(I) < e|A(1)] < X




" I
Intuition for Proof of Lemma

m Arbitrarily set r, for all i€l \ //
edge

m Consider line L of points L
satisfying a,"x=1+r. for all
icl

m Every other constraint
intersects this line either
positively or negatively

m Edge length is distance \ //
between intersection L
points of max neg.
constraint and min pos. \//(
constraint edge doesn't appear

\




Intuition for Proof of Lemma (cont.)

Intersection point moves
by at least size of
perturbation ‘

m |f perturb RHS, \/\\
AR

m Now consider range of
possible locations of
constraints

m Contingent upon edge
appearing, likely to be
fairly long




"
Proof of Well-Rounded Shadow Bound
(cont.)

m Step 3: Projection is unlikely to decrease
edge length too much.

m Let S5/(V) be event that | appears on shadow

m If | in shadow, let K(I)be its projected length
£(1) = 98(l) cos(6(l)), where 6 is angle | makes with V

m Lemma:

Evir,rn [CDST(V)] 2 6\/3?@




Intuition for Proof of Lemma

m Suppose just projected a unit vector v onto a uniformly
random unit vector u

Dot product probably not too small: Pr[u V< 8] < \/58

m We have to condition on S,(V), but get to project onto a
2-d subspace V

Write V as span(v,w), v objective function optimized by our
edge, w orthogonal to it

For any w, edge will appear in projection, because of v, so
should be almost the same as projecting onto uniformly
random w, which would give us desired bound

Full proof a little harder, needs some Jacobians and such, in
order to actually get probabilities right.
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Putting the Steps Together

27k (1 + Aln(ne)) > Y E[(I)]

1e(,2)
Z E [((D)[St(V)] Pr[Sp(V)]
re(,"))
> 6\?3” Pr[S; (V)]
Ie(y)

J

E [number of edges| = Z Pr[S;(V)] <

re()

12k (1 4+ Mn(ne))Vdn
A




A Polar View

m Can also get results by looking at polar
(a.k.a. dual) polytope

mlf P = {w \ &?m < 1}, polar polytope P*
given by conv(a)

m Vertices become facets, edges become
ridges (=dim d-2 faces), etc.
a Given by conv(obj. fns. they optimize)

m Projection becomes intersection

0O Vertices appear in 2-d projection if plane
intersects corresponding facets

Q Similarly for edges



" J
m Verts give partition (usually
triangulation) of sphere

m 2-planes intersect sphere In
great circles vert

m Perturbation makes it very
unlikely that a facet is ill-
conditioned edge

0 RHS moves points in and
out, which changes pro;j.
onto sphere
m Claim that prob. a vertex appears on random 2-
d proj. is proportional to surface area of corresp.

spherical triangle
Other dims—spherical mixed vols

— vert




m \Well-conditioned triangles: not too much
surface area for given volume

0 And total vol fixed (=vol of sphere)

m Expectation proportional to total surface
area, so isn't too big

m Also, most directions are contained in well-
conditioned triangles

m Pretty robust: works well as long as
everything “reasonably random”



I
What We Can/Can’t Show

m General plan: To get short path from s to t, pick
random 2-plane containing both
a Almost all verts well-cond.

Q So almost always have enough randomness to
show expected short path w.h.p.

m  Which guarantees existence
m Nice trick: Claim that enough to look at 2-
planes span (c,r), where c opt at s, r unif. rand.
a Why?
m SO get that short paths b/w verts optimizing any
given pair of directions w.h.p.

m Only problem: exponentially many verts.,
polynomially small probs., so can’'t union bound



Why Smoothed Diameter Bound
Shouldn’t Need Much More...

m How could this be true, but diameter still large?

a Could have very small cones of directions where need very
long paths

m But can we really?

m Call vertex “good” if can get to vert. optimizing unif. random
obj. fn. in poly steps (in expectation), “bad” otherwise

m A vertex is good if any combinatorially nearby vertices are
good

m May have some vertices where argument fails, can all
nearby vertices fail too?

m Also, note that not really using all of our randomness

QO RHS perturbation b%/ itself enough to get short paths between
almost every pair of directions!

m Suggests approaches to un-smoothed problem
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Conclusions

m Geometry can help

m Shouldn’t hope to do general case if we
can’'t even do random case

m [f we can do random case, can probably
do smoothed case

m [f we can do smoothed case, gives ideas
for general problem

m Can almost do smoothed case



