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Introduction 
n  A lot of recent work on Polynomial Hirsch 

Conjecture has focused on combinatorial 
abstractions 

n  Goal of this talk is to propose an alternative 
geometric program for the problem 

n  Motivated by integral geometry techniques used 
by Spielman and me in our polynomial time 
simplex method 

n  Also draws from some ideas from smoothed 
analysis literature 

n  But don’t need to worry about being algorithmic 



n  Polynomial Hirsch conjecture should be easier for 
random polytopes than for general polytopes 
q  So should be able to resolve this case if we ever 

hope to do general case 
n  Something stronger should be true 

q  And pretty approachable 
q  In fact, maybe this talk plus one really good 

paragraph…  
n  Will show that if counterexamples to polynomial 

Hirsch conjecture exist, they are very fragile 
q  But won’t quite get a diameter bound 

n  Alternative titles: 
q  An Un-Abstract View on the Polynomial Hirsch 

Conjecture 
q  How to Almost Prove that the Hirsch Conjecture is 

Almost Always Almost True 



Goals for this talk 
n  Set forth a geometric program for the 

polynomial Hirsch Conecture 
n  Advocate for the following conjecture as a 

good next step: 
n  Smoothed Hirsch Conjecture: Slightly 

perturbing any polytope (randomly) results in 
one with polynomial diameter 

n  Show how to almost prove it 
q  And give a general geometric picture for these 

sorts of problems 



Notation 
n Polytope P = {x | Ax ≤ b} 

¨  x∈Rd 
¨  b∈Rn, positive 
¨  A = n x d matrix 

n A has rows a1,…, an 
n Can rescale s.t. b = 1 WLOG 



Well-Rounded Polytopes 

n  Will be useful to have notion of coordinate system in 
which a convex body is “round” 

n  Definition: We say that a convex body is k-well-
rounded if   

   where B(0,r)=radius r ball centered at origin 
n  Fritz John’s Theorem: For any bounded convex body, 

exists coordinate system in which it’s d-well-rounded 
 
 
 



Our Perturbation Model 
n Start with d-well-rounded 
n Perturb LHS: 

¨ Let ai be n-d normal centered at      with 
variance = 1/poly 

n Perturb RHS to have entries 1+ri, where ri 
are indep. exp. random variables with 
expectation λ:  

n Get perturbed polytope 
    
 
 

P = {x | āT
i x ≤ 1}

āi



Where do short paths on polytopes come from?   

n  We’ll find paths by looking at 2-d projections 
¨ Based on “Shadow vertex pivot rule” for simplex 

method 



The Shadow Vertex Pivot Rule 

n  Project onto 2-d subspace 
V (called shadow plane) 
q  Projection called shadow 
q  Vertices project to vertices 
q  Edges project to edges 

n  Walk along edges that 
appear in projection 

n  A vertex appears on 
boundary of shadow iff it 
maximizes some objective 
function c∈V 



The Shadow Vertex Pivot Rule 
n  To get path between 

verts s and t: 
o  Let c be an obj. fn. 

maximized at s 
o  Let d be an obj. fn. 

maximized at t 
o  Choose shadow plane to 

be span(c,d) 
n  Has well-known 

examples when it takes 
exponentially many 
steps 



n Will argue that projection onto uniformly 
random subspace won’t have a lot of 
edges 
q  This will only need perturbation of RHS(!) 

n Argument will go through unchanged as 
long as subspace has reasonable amount 
of randomness 
q  E.g. span(c,d), where c, d fixed vects plus     

1/poly noise 



Getting Randomness in the 2-plane 

n  If constraints from a1,…,ad tight at s, then s 
maximizes any c in pos(a1,…,ad) 

n  Because of perturbation, cone of such c very 
unlikely to be really small 
q  I.e., will contain ball of radius 1/poly w.h.p. 
q  More on this later 

n  Similarly for d 
n  So can think of c, d as being fixed vects plus 1/

poly noise 
q  This is only place we use perturbation of the ai   



n  Theorem: Let V be a random 2-plane and Q k-well-
rounded with RHS perturbation described above.  Then 
the expectation over V and {ri} of the number of edges of 
the projection of Q onto V is at most 

 
¨ And similar (up to poly factors) for any reasonably 

random V 
n  So: 

¨ B/c of RHS perturbation, any reasonably random 
projection has polynomially many edges in expectation 

¨ B/c of LHS perturbation, vertices tend to optimize a 
reasonably large cone of objective functions  
n So given c,d, exist a bunch of planes containing 

them, and thus a short path, w.h.p. 
n  Question: Why doesn’t this give a diameter bound??? 



Proof of Shadow Bound 

n  Proof will proceed by analyzing expected lengths of 
edges on boundary 

n  Let r=maxi ri. 
n  Q is k(1+r)-well-rounded 
n  Implies shadow of Q on V is contained in ball of radius k

(1+r), so perimeter of shadow is at most 2πk(1+r). 
n  Can show E[r]≤λln(ne), so E[perimeter]≤ 2πk(1+λln(ne)). 
n  So expected total length of edges of shadow is bounded 

above 
n  Get our bound by showing each edge is unlikely to be 

very short, so can’t have too many of them 



Proof of Well-Rounded Shadow Bound 
(cont.) 
n  Step 2: Length of a given edge of Q expected 

to be long, if it appears 
n  An edge is determined by the d-1 constraints 

that are tight on it 
n  For each I ∈        , let A(I) be event that it 

appears on the convex hull of Q. 
n  If I appears, let  δ(I) be its length 
n  Lemma: 



Intuition for Proof of Lemma 

n  Arbitrarily set ri for all i∈I 
n  Consider line L of points 

satisfying ai
Tx=1+ri for all 

i∈I 
n  Every other constraint 

intersects this line either 
positively or negatively 

n  Edge length is distance 
between intersection 
points of max neg. 
constraint and min pos. 
constraint 



Intuition for Proof of Lemma (cont.) 

n  If perturb RHS, 
intersection point moves 
by at least size of 
perturbation 

n  Now consider range of 
possible locations of 
constraints 

n  Contingent upon edge 
appearing, likely to be 
fairly long 



Proof of Well-Rounded Shadow Bound 
(cont.) 

n  Step 3: Projection is unlikely to decrease 
edge length too much. 

n  Let SI(V) be event that I appears on shadow 
n  If I in shadow, let         be its projected length 

¨      (I) =  δ(I) cos(θ(I)), where θ is angle I makes with V 

n  Lemma:  


( )I



Intuition for Proof of Lemma 

n  Suppose just projected a unit vector v onto a uniformly 
random unit vector u  

 

¨   Dot product probably not too small: 
 

n  We have to condition on SI(V), but get to project onto a 
2-d subspace V 
¨  Write V as span(v,w), v objective function optimized by our 

edge, w orthogonal to it 
¨  For any w, edge will appear in projection, because of v, so 

should be almost the same as projecting onto uniformly 
random w, which would give us desired bound 

¨  Full proof a little harder, needs some Jacobians and such, in 
order to actually get probabilities right. 

[ ] εε dvu ≤≤⋅Pr



Putting the Steps Together 

⇓ 



A Polar View 

n  If                                  , polar polytope P* 
given by conv(ai) 

n  Vertices become facets, edges become 
ridges (=dim d-2 faces), etc. 
q  Given by conv(obj. fns. they optimize) 

n  Projection becomes intersection 
q  Vertices appear in 2-d projection if plane 

intersects corresponding facets 
q  Similarly for edges 

 

P = {x | aT
i x ≤ 1}

n Can also get results by looking at polar 
(a.k.a. dual) polytope 



n  Verts give partition (usually 
triangulation) of sphere 

n  2-planes intersect sphere in 
great circles 

n  Perturbation makes it very 
unlikely that a facet is ill-
conditioned 
q  RHS moves points in and 

out, which changes proj. 
onto sphere 

vert
vert

edge

n  Claim that prob. a vertex appears on random 2-
d proj. is proportional to surface area of corresp. 
spherical triangle 
¨ Other dims—spherical mixed vols 



n Well-conditioned triangles: not too much 
surface area for given volume 
q  And total vol fixed (=vol of sphere) 

n Expectation proportional to total surface 
area, so isn’t too big 

n Also, most directions are contained in well-
conditioned triangles 

n Pretty robust: works well as long as 
everything “reasonably random” 



What We Can/Can’t Show 
n  General plan: To get short path from s to t, pick 

random 2-plane containing both 
q  Almost all verts well-cond. 
q  So almost always have enough randomness to 

show expected short path w.h.p. 
n  Which guarantees existence 

n  Nice trick: Claim that enough to look at 2-
planes span (c,r), where c opt at s, r unif. rand. 
q  Why? 

n  So get that short paths b/w verts optimizing any 
given pair of directions w.h.p. 

n  Only problem: exponentially many verts., 
polynomially small probs., so can’t union bound 



Why Smoothed Diameter Bound 
Shouldn’t Need Much More… 

n  How could this be true, but diameter still large? 
q  Could have very small cones of directions where need very 

long paths 
n  But can we really? 
n  Call vertex “good” if can get to vert. optimizing unif. random 

obj. fn. in poly steps (in expectation), “bad” otherwise 
n  A vertex is good if any combinatorially nearby vertices are 

good 
n  May have some vertices where argument fails, can all 

nearby vertices fail too? 
n  Also, note that not really using all of our randomness 

q  RHS perturbation by itself enough to get short paths between 
almost every pair of directions! 

n  Suggests approaches to un-smoothed problem 



Conclusions 
n Geometry can help 
n Shouldn’t hope to do general case if we 

can’t even do random case 
n  If we can do random case, can probably 

do smoothed case 
n  If we can do smoothed case, gives ideas 

for general problem 
n Can almost do smoothed case 


