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Outline

✤ Introduction to Support Vector Machines, and their interpretation as 
parametric quadratic programs

✤ Statement of the main result: disproof of a conjecture by Hastie et al. 
concerning the solution path complexity of support vector machines 

✤ Parametric linear programs, the shadow vertex pivot rule, and the 
Goldfarb cubes

✤ Putting it together: constructing exponentially long solution paths for 
support vector machines, using Goldfarb cubes (sketch)
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Support Vector Machines (SVM)

✤ Suppose an optical character recognition needs to distinguish 
between the letters ‘A’ and ‘B’
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Support Vector Machines

✤ Suppose an optical character recognition needs to distinguish 
between the letters ‘A’ and ‘B’

✤ Training phase: the system gets to see letters ‘A’ and ‘B’ plus the 
information whether it’s an ‘A’ or a ‘B’
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Support Vector Machines

✤ Suppose an optical character recognition needs to distinguish 
between the letters ‘A’ and ‘B’

✤ Training phase: the system gets to see letters ‘A’ and ‘B’ plus the 
information whether it’s an ‘A’ or a ‘B’

✤ After the training phase, the system is supposed to decide on its own 
which letter it sees.
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Support Vector Machines

✤ Solution: map training letters to points in some high-dimensional 
space, with label ’A’ (blue) or ‘B’ (red),  based e.g. on a pixel-based 
representation
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Support Vector Machines

✤ Solution: map training letters to points in some high-dimensional 
space, with label ’A’ (blue) or ‘B’ (red),  based e.g. on a pixel-based 
representation

✤ Separate the ‘A’s from the ‘B’s by a simple shape, for example the 
maximum-margin hyperplane (separating hyperplane of maximum 
distance to any point).
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Support Vector Machines

✤ Solution: map training letters to points in some high-dimensional 
space, with label ’A’ (blue) or ‘B’ (red),  based e.g. on a pixel-based 
representation

✤ Separate the ‘A’s from the ‘B’s by a simple shape, for example the 
maximum-margin hyperplane (separating hyperplane of maximum 
distance to any point). 

✤ Classify an unknown letter according to this hyperplane (     = ‘B’)
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Support Vector Machines
The primal program
✤ Computation of Maximum-Margin Hyperplane is a convex quadratic 

program:
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A

wT x = b

minw,b
1
2w

T w
subject to wT pi − b ≥ 1, pi ∈ A

wT pi − b ≤ 1, pi ∈ B

p1,p2, . . . ,pn
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Support Vector Machines
The primal program, class labels
✤ Computation of Maximum-Margin Hyperplane is a convex quadratic 

program:

B

B

B

A

A

A

wT x = b

p1,p2, . . . ,pn

minw,b
1
2w

T w
subject to yi(wT pi − b) ≥ 1, i = 1, 2, . . . , n

yi =
{

+1, pi ∈ A
−1, pi ∈ B
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Support Vector Machines
Dual program
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minλi ‖p− q‖2
subject to

∑
pi∈A λipi = p∑
pi∈B λipi = q∑
pi∈A λi = 1∑
pi∈B λi = 1

λi ≥ 0 i = 1, 2, . . . , n

p

q
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Support Vector Machines
Dual program
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AGeometrically, this is the problem of
finding the distance between the two

polytopes conv(A) and conv(B)

minλi ‖p− q‖2
subject to

∑
pi∈A λipi = p∑
pi∈B λipi = q∑
pi∈A λi = 1∑
pi∈B λi = 1

λi ≥ 0 i = 1, 2, . . . , n
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Support Vector Machines
Dual program

B

B

B

A

A

AGeometrically, this is the problem of
finding the distance between the two

polytopes conv(A) and conv(B)

The points with 
positive        are the      

support vectors

minλi ‖p− q‖2
subject to

∑
pi∈A λipi = p∑
pi∈B λipi = q∑
pi∈A λi = 1∑
pi∈B λi = 1

λi ≥ 0 i = 1, 2, . . . , n

p

q
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Support Vector Machines
Dual program, class labels
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p

q

minλi

∑
i,j λiλjyiyjpT

i pj

subject to
∑

pi∈A λi = 1∑
pi∈B λi = 1

λi ≥ 0 i = 1, 2, . . . , n
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Support Vector Machines
Dual program, class labels

B

B

B

A

A

A

p

q

minλi

∑
i,j λiλjyiyjpT

i pj

subject to
∑

pi∈A λi = 1∑
pi∈B λi = 1

λi ≥ 0 i = 1, 2, . . . , n

The dual program does not need to 
know the points, just their pairwise 

scalar products!
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Support Vector Machines
Nonlinear separators
✤ Other separating shapes (e.g. spheres) may be the “right” shapes for 

the given problem
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Support Vector Machines
Nonlinear separators
✤ Other separating shapes (e.g. spheres) may be the “right” shapes for 

the given problem

✤ Apply lifting to reduce to separating hyperplane in higher dimension!
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Support Vector Machines
Circular Separators 
✤ Apply lifting map 

! : (x, y) !→ (x, y, x2 + y2)
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Support Vector Machines
Circular Separators 
✤ Apply lifting map

✤ Use preimage of  maximum-margin hyperplane in lifted space

! : (x, y) !→ (x, y, x2 + y2)

p
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Support Vector Machines
Circular Separators 
✤ Apply lifting map

✤ Dual quadratic program becomes

! : (x, y) !→ (x, y, x2 + y2)

minλi

∑
i,j λiλjyiyjk(pi,pj)

subject to
∑

pi∈A λi = 1∑
pi∈B λi = 1

λi ≥ 0 i = 1, 2, . . . , n

k(p,q) = pxqx + pyqy + (p2
x + p2

y)(q2
x + qy)2
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Support Vector Machines
Circular Separators 
✤ Apply lifting map

✤ Dual quadratic program becomes

! : (x, y) !→ (x, y, x2 + y2)

minλi

∑
i,j λiλjyiyjk(pi,pj)

subject to
∑

pi∈A λi = 1∑
pi∈B λi = 1

λi ≥ 0 i = 1, 2, . . . , n

k(p,q) = pxqx + pyqy + (p2
x + p2

y)(q2
x + qy)2

Kernel 
function
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Support Vector Machines
Kernel Trick
✤ Let                                          be symmetric and positive semidefinite, 

meaning that  
k : Rd ×Rd → R

∑

i,j

λiλjk(pi,pj) ≥ 0, ∀p1,p2, . . . ,pn, λ1, λ2, . . . ,λn
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Support Vector Machines
Kernel Trick
✤ Let                                          be symmetric and positive semidefinite, 

meaning that

✤ Then the kernel k  is a scalar product in some (possibly infinite 
dimensional) space H (Mercer’s Theorem)

k : Rd ×Rd → R
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Support Vector Machines
Kernel Trick
✤ Let                                          be symmetric and positive semidefinite, 

meaning that

✤ Then the kernel k  is a scalar product in some (possibly infinite 
dimensional) space H (Mercer’s Theorem)

k : Rd ×Rd → R

∑

i,j

λiλjk(pi,pj) ≥ 0, ∀p1,p2, . . . ,pn, λ1, λ2, . . . ,λn

minλi

∑
i,j λiλjyiyjk(pi,pj)

subject to
∑

pi∈A λi = 1∑
pi∈B λi = 1

λi ≥ 0 i = 1, 2, . . . , n

The quadratic program 
implicitly computes 

the maximum-margin 
hyperplane in H 
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Support Vector Machines
Kernel Trick
✤ Then the kernel k  is a scalar product in some (possibly infinite 

dimensional) space H (Mercer’s Theorem)

✤ Separating shape in the original space may be “weird” and hard to 
compute, but we can still classify unknown points based on it!

minλi

∑
i,j λiλjyiyjk(pi,pj)

subject to
∑

pi∈A λi = 1∑
pi∈B λi = 1

λi ≥ 0 i = 1, 2, . . . , n

The quadratic program 
implicitly computes 

the maximum-margin 
hyperplane in H 
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Support Vector Machines
Kernel Trick
✤ Then the kernel k  is a scalar product in some (possibly infinite 

dimensional) space H (Mercer’s Theorem)

✤ Separating shape in the original space may be “weird” and hard to 
compute, but we can still classify unknown points based on it!

✤ Compute                     , where   

minλi

∑
i,j λiλjyiyjk(pi,pj)

subject to
∑

pi∈A λi = 1∑
pi∈B λi = 1

λi ≥ 0 i = 1, 2, . . . , n

The quadratic program 
implicitly computes 

the maximum-margin 
hyperplane in H 

wT x− b

b =
∑

i

λiyik(pi,pj)− yj

support
vectorwT x =

∑

i

λiyik(pi,x)
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Support Vector Machines
Kernel Trick
✤ Visualization of nonlinear separator in original space 

k(p,q) = e−µ‖p−q‖

“Radial Basis Function” 
(RBF)
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Support Vector Machines
Soft Margin
✤ In many cases, a proper separation cannot be expected, due to noise 

and outliers
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Support Vector Machines
Soft Margin
✤ In many cases, a proper separation cannot be expected, due to noise 

and outliers

✤ Allow misclassifications of training points, but penalize them!
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Support Vector Machines
Soft Margin
✤ In many cases, a proper separation cannot be expected, due to noise 

and outliers

✤ Allow misclassifications of training points, but penalize them!

✤ ν-SVM, where ν is a fixed parameter

minw,b,ρ,ξi
1
2w

T w − νρ + 1
n

∑n
i=1 ξi

subject to yi(wT pi − b) ≥ ρ− ξi, i = 1, 2, . . . , n
ξi ≥ 0, i = 1, 2, . . . , n
ρ ≥ 0

previously, 
we had 1 here
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Support Vector Machines
Soft Margin
✤ In many cases, a proper separation cannot be expected, due to noise 

and outliers

✤ Allow misclassifications of training points, but penalize them!

✤ dual ν-SVM (with                   ):  µ :=
2
nν

minλi

∑
i,j λiλjyiyjpT

i pj

subject to
∑

pi∈A λi = 1∑
pi∈B λi = 1

λi ≥ 0 i = 1, 2, . . . , n
λi ≤ µ i = 1, 2, . . . , nnew
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Support Vector Machines
Soft Margin: The Geometric View
✤ The dual ν-SVM is the problem of finding the distance between two 

reduced convex hulls

p

q
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Support Vector Machines
Soft Margin: The Geometric View
✤ The dual ν-SVM is the problem of finding the distance between two 

reduced convex hulls

✤ μ = 1: no reduction                              μ = 1/2: edges start to disappear 

p

q
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Support Vector Machines
Soft Margin: Parameter Choice
✤ How does ν (or μ in the dual) influence the separator? 
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Support Vector Machines
Soft Margin: Parameter Choice
✤ How does ν (or μ in the dual) influence the separator? 

✤ Small ν: small margin (overfitting)

✤ Large v: large margin (underfitting) 
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Support Vector Machines
Soft Margin: Parameter Choice
✤ How to choose the parameter in a given application?
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Support Vector Machines
Soft Margin: Parameter Choice
✤ How to choose the parameter in a given application?

✤ Standard method: grid search (discretize the relevant parameter 
range and try all values in the discretized range; one QP per value)
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Support Vector Machines
Soft Margin: Parameter Choice
✤ How to choose the parameter in a given application?

✤ Standard method: grid search (discretize the relevant parameter 
range and try all values in the discretized range; one QP per value)

✤ Solution path method: compute the solution of the dual SVM as a 
piecewise linear function in μ, then grid search (one lookup per value)

minλi

∑
i,j λiλjyiyjpT

i pj

subject to
∑

pi∈A λi = 1∑
pi∈B λi = 1

λi ≥ 0 i = 1, 2, . . . , n
λi ≤ µ i = 1, 2, . . . , n

µ = 1

µ = 0.88

µ = 0.84
µ = 076
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Support Vector Machines
Soft Margin: Parameter Choice
✤ How to choose the parameter in a given application?

✤ Standard method: grid search (discretize the relevant parameter 
range and try all values in the discretized range; one QP per value)

✤ Solution path method: compute the solution of the dual SVM as a 
piecewise linear function in μ, then grid search (one lookup per value)

✤ Performance depends on the number of bends in the solution path

minλi

∑
i,j λiλjyiyjpT

i pj

subject to
∑

pi∈A λi = 1∑
pi∈B λi = 1

λi ≥ 0 i = 1, 2, . . . , n
λi ≤ µ i = 1, 2, . . . , n

µ = 1

µ = 0.88

µ = 0.84
µ = 076

bend
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Support Vector Machines
The Hastie et al. Conjecture
✤ Hastie et al. 2004: The entire regularization path for the support vector 

machine
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Support Vector Machines
The Hastie et al. Conjecture
✤ Hastie et al. 2004: The entire regularization path for the support vector 

machine

✤ Conjecture: The number of bends is O (min (|A|, |B|) = O(n)
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Support Vector Machines
The Hastie et al. Conjecture
✤ Hastie et al. 2004: The entire regularization path for the support vector 

machine

✤ Conjecture: The number of bends is O (min (|A|, |B|) = O(n)

✤ Conjecture was repeatedly stated in other articles, and it was 
experimentally “confirmed” in a large number of applications
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Support Vector Machines
The Conjecture is False
✤ Hastie et al. 2004: The entire regularization path for the support vector 

machine

✤ Conjecture: The number of bends is O (min (|A|, |B|) = O(n)

✤ Conjecture was repeatedly stated in other articles, and it was 
experimentally “confirmed” in a large number of applications

✤ Theorem (G., Jaggi, Maria 2010) : There are point sets A and B in d-
dimensional space with |A|= 2d, |B| = 2, for which the solution 
path of the dual ν-SVM has an exponential number of at least 2d / 4 
many bends.
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Parametric Linear Programs

✤ Recall: primal ν-SVM is a parametric quadratic program (parameter 
in the objective function):

minw,b,ρ,ξi
1
2w

T w − νρ + 1
n

∑n
i=1 ξi

subject to yi(wT pi − b) ≥ ρ− ξi, i = 1, 2, . . . , n
ξi ≥ 0, i = 1, 2, . . . , n
ρ ≥ 0
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Parametric Linear Programs

✤ Recall: primal ν-SVM is a parametric quadratic program (parameter 
in the objective function):

✤ Parametric linear program: 

minw,b,ρ,ξi
1
2w

T w − νρ + 1
n

∑n
i=1 ξi

subject to yi(wT pi − b) ≥ ρ− ξi, i = 1, 2, . . . , n
ξi ≥ 0, i = 1, 2, . . . , n
ρ ≥ 0

min (cT + νd)T x
subject to Ax = b

x ≥ 0
0 ≤ ν ≤ ∞
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Parametric Linear Programs
The Solution Path
✤ Start with                    (d rules) c

d

ν =∞

min (cT + νd)T x

= opt
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Parametric Linear Programs
The Solution Path
✤ Start with                    (d rules)

✤ Decrease ν...

c

d

ν =∞

min (cT + νd)T x

= opt
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Parametric Linear Programs
The Solution Path
✤ Start with                    (d rules)

✤ Decrease ν...

c

d

ν =∞

min (cT + νd)T x

= opt
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Parametric Linear Programs
The Solution Path
✤ Start with                    (d rules)

✤ Decrease ν...

✤ until  

c

d

ν =∞

min (cT + νd)T x

= opt

ν = 0
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Parametric Linear Programs
The Solution Path
✤ Start with                    (d rules)

✤ Decrease ν...

✤ until  

c

d

ν =∞

min (cT + νd)T x

= opt

ν = 0

solution path
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Parametric Linear Programs
The Solution Path
✤ Start with                    (d rules)

✤ Decrease ν...

✤ until 

✤ Same picture in higher d, with blue polygon the shadow of the LP

c

d

ν =∞

min (cT + νd)T x

= opt

ν = 0

solution path

Wednesday, January 19, 2011



The Shadow Vertex / Parametric 
Objective Simplex Algorithm
✤ Start with                    

(and artificial d 
such that start 
vertex      is 
optimal)

✤ Decrease ν...

✤ until 

✤ Vertex     obtained is 
optimal under 

c

d

ν =∞

= opt

ν = 0

solution path

min cT x

c
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The Goldfarb Cubes

✤ Worst case inputs for the shadow vertex simplex algorithm

✤ The d-dimensional Goldfarb cube is a deformed unit cube with all its 
2d vertices appearing on a 2-dimensional shadow

Wednesday, January 19, 2011



The Goldfarb Cubes

✤ Worst case inputs for the shadow vertex simplex algorithm

✤ The d-dimensional Goldfarb cube is a deformed unit cube with all its 
2d vertices appearing on a 2-dimensional shadow
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✤ can be exponentially long in the worst case

✤ It is not implausible that a similar result holds for the solution path of 
SVM (specific parametric quadratic programs) 

Solution Paths of Parametric 
Linear Programs...
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✤ can be exponentially long in the worst case

✤ It is not implausible that a similar result holds for the solution path of 
SVM (specific parametric quadratic programs) 

✤ Obstacles:

✤ SVM are very special parametric quadratic programs

✤ Goldfarb cube is not an instance of an SVM

✤ we want a nondegenerate SVM with a long solution path

Solution Paths of Parametric 
Linear Programs...
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An SVM with an Exponentially 
Long Solution Path
✤ Outline:

✤ Work in the dual (μ-SVM: distance between reduced convex hulls)
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An SVM with an Exponentially 
Long Solution Path
✤ Outline:

✤ Work in the dual (μ-SVM: distance between reduced convex hulls)

✤ First convex hull: dual Goldfarb cube (2d points); there exists a 2d 
plane S such that the dual Goldfarb cube intersects S in a polygon 
with 2d edges

w(3,−1)

w(3,1)

w(2,1)

w(2,−1)

w(1,−1)

w(1,1)

3d
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An SVM with an Exponentially 
Long Solution Path
✤ Outline:

✤ Work in the dual (μ-SVM: distance between reduced convex hulls)

✤ First convex hull: dual Goldfarb cube (2d points); there exists a 2d 
plane S such that the dual Goldfarb cube intersects S in a polygon 
with 2d edges

w(3,−1)

w(3,1)

w(2,1)

w(2,−1)

w(1,−1)

w(1,1)

1

2

5

7

8

16

157

158

246

251

253255

3d 8d
Wednesday, January 19, 2011



An SVM with an Exponentially 
Long Solution Path
✤ Outline:

✤ Work in the dual (μ-SVM: distance between reduced convex hulls)

✤ First convex hull: dual Goldfarb cube (2d points); there exists a 2d 
plane S such that the dual Goldfarb cube intersects S in a polygon 
with 2d edges

✤ Second convex hull: line segment in S

w(3,−1)

w(3,1)

w(2,1)

w(2,−1)

w(1,−1)

w(1,1)
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An SVM with an Exponentially 
Long Solution Path
✤ Outline:

✤ While μ decreases, the left segment endpoint moves to the right 
(reduction!). The shortest distance vector traverses 2d / 4 many 
edges of the dual Goldfarb cube intersection with S

(µ = 0.8)

(µ = 0.81)

bends

w

w
µ = 1 µ = 0.8

µ = 0.6

µ = 0.5
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✤ Outline:

✤ While μ decreases, the left segment endpoint moves to the right 
(reduction!). The shortest distance vector traverses 2d / 4 many 
edges of the dual Goldfarb cube intersection with S
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(µ = 0.81)
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✤ Outline:

✤ While μ decreases, the left segment endpoint moves to the right 
(reduction!). The shortest distance vector traverses 2d / 4 many 
edges of the dual Goldfarb cube intersection with S

An SVM with an Exponentially 
Long Solution Path

(µ = 0.8)

(µ = 0.81)

bends

w

w
µ = 1 µ = 0.8

µ = 0.6

µ = 0.5
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✤ Outline:

✤ While μ decreases, the left segment endpoint moves to the right 
(reduction!). The shortest distance vector traverses 2d / 4 many 
edges of the dual Goldfarb cube intersection with S

An SVM with an Exponentially 
Long Solution Path

(µ = 0.8)

(µ = 0.81)

bends

w

w
µ = 1 µ = 0.8

µ = 0.6

µ = 0.5
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✤ Outline:

✤ While μ decreases, the left segment endpoint moves to the right 
(reduction!). The shortest distance vector traverses 2d / 4 many 
edges of the dual Goldfarb cube intersection with S
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✤ Outline:

✤ While μ decreases, the left segment endpoint moves to the right 
(reduction!). The shortest distance vector traverses 2d / 4 many 
edges of the dual Goldfarb cube intersection with S

An SVM with an Exponentially 
Long Solution Path

(µ = 0.8)

(µ = 0.81)

bends

w

w
µ = 1 µ = 0.8

µ = 0.6

µ = 0.5
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✤ Outline:

✤ While μ decreases, the left segment endpoint moves to the right 
(reduction!). The shortest distance vector traverses 2d / 4 many 
edges of the dual Goldfarb cube intersection with  S

An SVM with an Exponentially 
Long Solution Path

(µ = 0.8)

(µ = 0.81)

bends

w

w
µ = 1 µ = 0.8

µ = 0.6

µ = 0.5
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An SVM with an Exponentially 
Long Solution Path
✤ Technical difficulties:

✤ Point of optimal distance in the dual Goldfarb cube may be far 
away from S and does not “walk along” S

S

dual Goldfarb
cube
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✤ Technical difficulties:

✤ Point of optimal distance in the dual Goldfarb cube may be far 
away from S and does not “walk along” S

✤ Solution: stretching!

An SVM with an Exponentially 
Long Solution Path

S

stretched dual 
Goldfarb

cube

almost walks on 
intersection with S, 

same number of bends
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An SVM with an Exponentially 
Long Solution Path
✤ Technical difficulties:

✤ Reduction of stretched dual Goldfarb cube may affect the 
intersection with S

?
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An SVM with an Exponentially 
Long Solution Path
✤ Technical difficulties:

✤ Reduction of stretched dual Goldfarb cube may affect the 
intersection with S

✤ Solution: make line segment                                                so long that 
everything happens for μ very close to 1 

!
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Summary

✤ The solution path of a support vector machine may be exponentially 
long in the number of training points; the linear-length conjecture of 
Hastie et al. fails dramatically

✤ For “us” polytope people, this result is what we would expect, 
knowing the exponential lower bounds for solution paths of 
parametric linear programs  (Goldfarb cubes)

✤ Approximate solution paths are always short (Giesen, Jaggi, Laue) 

✤ The machine learning community is proficient in statistics, but not in 
geometry; it can be beneficial to look at some of their problems from a 
geometric viewpoint

Wednesday, January 19, 2011


