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Linear programming



LPs and Simplex algorithm Linear programming

Context

m Optimization of a linear objective subject to linear (in)equality
constraints

m One of the most important computational problems

Simplex Algorithm introduced by Dantzig in 1947 for solving LPs

Weakly polytime algorithms: Ellipsoid Method by Khachiyan,
Interior Point Method by Karmarkar

No strongly polytime algorithm known
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LPs and Simplex algorithm Linear programming

Linear programming

max ¢z min bTy
st. Az =0b s.t. ATy >c
x>0

m Simplex algorithm (Dantzig 1947)
m Ellipsoid algorithm (Khachiyan 1979)

m Interior-point algorithm (Karmakar 1984)
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Simplex algorithm



m Introduced by Dantzig in 1947 for solving LPs

Fixpoint iteration algorithm

Asymptotic complexity depends on the number of iterations

Parameterized by pivoting rules

m Hirsch conjecture



LPs and Simplex algorithm  Simplex algorithm

Simplex algorithm

Dantzig 1947

Move up, along an edge, to a neighboring vertex, until reaching the top
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Pivoting rules



Simplex method is parameterized by a pivoting rule.

Pivoting rule = method of chosing adjacent vertices with better
objective

m only single-switching
m deterministic vs. randomized

m memorizing vs. oblivious



m Dantzig’s rule

m Bland’s rule

Lexicographic rule

H Inany maore...

All known to require an exponential number of steps in the worst case. I




LPs and Simplex algorithm Pivoting rules

Randomized rules

m RANDOM-FACET: recursively find the optimum (see later)
due to Kalai (’92), and Matousek, Sharir and Welzl (’96)

m RANDOM-EDGE: choose a random improving edge

Theorem (Friedmann-Hansen-Zwick (SODA’2011,...))

There are (different) explicit LPs on which RANDOM-FACET and
RANDOM-EDGE require an expected subexponential number of
iterations.
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There are explicit LPs on which LEAST-ENTERED requires a
subexponential number of iterations.




Technique



LPs and Simplex algorithm Technique

Lower bound technique

Lower bounds for Markov decision process policy iteration
Induce linear programs

Correspondence of simplex algorithm and policy iteration

originally : lower bounds for parity games first
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MDPs and Policy iteration

MDPs and Policy iteration
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Markov decision processes



MDPs and Policy iteration = Markov decision processes

Markov decision process

due to Shapley 53, Bellman ’57, Howard ’60, ...

"2

a
]

m Controller (circle) chooses
outgoing action

m Randomizer (square)

determines successive state

m Objective: maximize
expected total reward
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MDPs and Policy iteration = Markov decision processes

Markov decision process

due to Shapley ’53, Bellman 57, Howard ’60, ...
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policy o = choice of an action from each state
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Policy iteration



MDPs and Policy iteration  Policy iteration

Context

m Introduced by Howard in 1960 to solve Markov Decision Processes

Transferred to many other areas by several authors
m Fixpoint iteration algorithm

Asymptotic complexity depends on the number of iterations

m Parameterized by improvement rules
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MDPs and Policy iteration  Policy iteration

Policy valuations
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A o-switch is an edge e € Ep \ ¢ not chosen by o.

m Comparability: val, Qval,) or val,j <Jval, for every o-switch.

m Easy check: val, <valy( .y iff valy(o(v)) < vals(w) .

Improving switches: I(o) = {e | valy < val,¢}

m Switching: () € J C I(o) implies val, < val,[j -

m Optimality: I(0) =0 implies o is optimal .




Howard (1960), Hoffman-Karp (1966), Puri (1995), Vége / Jurdzinski
(2000)...

1: while ¢ is not optimal do
2. o< o|J] for some ) C J C I(0)
3: end while

Complexity: depends on the number of iterations .
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MDPs and Policy iteration

Policy iteration

Policy iteration
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Policy Iteration is parameterized by an improvement rule.

Improvement Rule = method of chosing improving switches

m Single-switching vs. Multi-switching
m Deterministic vs. Randomized

m Memorizing vs. Oblivious



Question: theoretically possible to have polynomially many iterations?
Let GG be a game and n be the number of nodes.

Definition: the diameter of G is the least number of iterations
required to solve G

The diameter of G is less or equal to n .




MDPs as LPs



MDPs and Policy iteration = MDPs as LPs

Dual LP of unichain MDP

min Ziev Yi

(D) .
s.t. yi*Zjevpj,ayj >re,1€V,a€A;

m V' - set of all states
m A - set of all actions, A; - set of actions from state i

m 7, - reward of action a, p;, - transition probability from action
a to state 1

m y; - value of state ¢
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max Y .c4Ta%a
(P) St Daca, Ta = DgeaPiaTa=1,i€V
re >0 , a€A

m 1, - expected number of times of taking action a , when starting
from all positions



Summary



Vertex of bfs in the primal LP corresponds to policy in the MDP .
Improving switches correspond to pivoting steps.

Optimal solution of the dual LP corresponds to optimal policies in
the MDP . Policy corresponds to basic solution of the dual.




MDPs and Policy iteration

Summary

Policy iteration vs. Simplex method

H Policy iteration ‘ Simplex method

Pivoting single- and single-switch
Rules multi-switch only
Diameter linear unknown /
Hirsch conjecture
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Random edge rule



Perform single switch arbitrarly at random. l

m Abstract lower bound: 2(V7) (Matousek, Szabé 2006)




Motivation



Process always reaches the sink (unichain MDPs)

Priority rewards on the nodes
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Random Edge  Motivation

Binary Counters

Binary Counting proceeds in three phases.
Set the least unset bit
Reset all lower (inactive) bits

Activate recently set bit

How to separate active from inactive bits? By access control .
m Attach access control structure to every bit
m Set bits are activated
m Recently set bit is not activated

m After resetting lower bits, recently set bit is activated
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Construction









Cycles close one edge at a time




Cycles close one edge at a time




Cycles close one edge at a time




Cycles close one edge at a time




Cycles close one edge at a time




Cycles close one edge at a time




Cycles close one edge at a time




Cycles close one edge at a time
Shorter cycles close faster







Cycles open “simultaneously”




Cycles open “simultaneously”




Cycles open “simultaneously”




Cycles open “simultaneously”




Cycles open “simultaneously”




Random Edge Construction

Increment phases: from 101011 to 101100

) By, counting cycle closes
Setting:
C helper cycle closes

. U lane realigns
Resetting;: )
A; and B; cycles (i < k) open

Ay, access cycle closes
Activating: < W lane realigns

C; cycles of unset bits open
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Random Edge Construction

Analysis

Cycles (opening and closing) and lanes compete with each other.
Supposed candidate has to win with high probability .
Solution: increase length of higher cycles, resulting in O(n?) vertices.

Work in progress: improved construction.
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The number of improving step performed by RANDOM-EDGE on the
MDPs (and LPs), which contain O(n*) vertices and edges, is 2(").




Random Facet and Least Entered

Random Facet and Least Entered
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All is well that ends well?



Random Facet and Least Entered Random Facet on LPs and MDPs

Random Facet on LPs and MDPs
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Random Facet and Least Entered

The algorithm

Random Facet on LPs and MDPs

due to Kalai (’92), and Matousek, Sharir and Welzl (’96)

procedure RANDOM-FACET(H,B)
if H = B then
return B
else
Choose h € H \ B at random
B’ + RaNpOM-Facer(H \ {h}, B)
if h is violated by B’ then
B’ « Basis(B’ U {h})
return RanpoM-FaceT(H, B'')
else
return B’
end if
end if
end procedure

Random Facet for LPs

procedure RANDOM-FACET(G,0)
if Eg = o then
return o
else
Choose e € Eg \ o at random
o’ < RANDOM-FACET(G \ {e}, o)
if val_, < valg/[e] then
o’ o'[e]
return RANDOM-FACET(G, o)
else
return o’
end if
end if
end procedure

Random Facet for MDPs
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m Upper bound: 290" (Kalai 1992)

m Abstract lower bound: 2?0V (Matousek 1994)

RANDOM-FACET for MDPs and LPs is subexponential. I




Random Facet construction
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0[0]0[0[0

exclude bit 2 .
set bit 2
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count recursively count recursively

m Counting 0]0|_|0|0 equivalent to counting 0]|0|0[0

m Counting 1[1]1|0|0 equivalent to counting 0[0

m Recurrence f(n) = f(n—1) + 2 307" f(4)




0[0]0[0[0

exclude bit 2 .
set bit 2

/\
0/0/-J0]0 11 1/1]1j0[0 11111

count recursively count recursively

Counting 0]0|_|0|0 equivalent to counting 0]|0]0[0

Counting 1|1]1|0|0 equivalent to counting 0[0
Recurrence f(n) = f(n— 1)+ L 3771 (i)

-l
m Complexity f(n) — ﬁf— for n — oo
2./mnd




Random Facet and Least Entered Random Facet construction

Simplified construction (for parity games)
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The number of improving step performed by RANDOM-FACET on the
MDPs (and LPs) is 22(/n/1og(n))




Least Entered



Perform single switch that has been applied least often. l




Random Facet and Least Entered Least Entered

Fair counting

Problem:
m Flipping higher bits happens less often than flipping lower bits

m Zadeh’s rule switches higher bits before they are supposed to be
switched

Solution:

m Represent every bit by two representatives
m Only one representative is actively working

m Inactive representative switches back and forth to catch up with
the rest

m Both representatives change roles after flipping the represented bit
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I




The number of improving step performed by LEAST-ENTERED on the
MDPs, which contain O(n?) vertices and edges, is 22"




All is well that ends well?

All is well that ends well?
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All is well that ends well?

Concluding remarks

m Game-theortic perspective helpful for the construction of lower
bounds

m Lower bounds transfer to many other classes of determined games

m RANDOM-EDGE lower bound can be used as lower bound for
SWITCH-HALF
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LP-type problems (LPtype)
.

iseGunted Payoff Games (DPG)
2 players

Mean Payoff Games (MPG,
2 players

Parity Games (PG)
2 players

€ NP NcoNP eP




All is well that ends well?

Open problems

Polytime algorithm for two-player games and the like

Strongly polytime algorithm for LPs (and MDPs)

m Resolving the Hirsch conjecture

Find game-theoretic model with unresolved diameter bounds
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Thank you for listening!
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