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LPs and Simplex algorithm Linear programming

Context

Optimization of a linear objective subject to linear (in)equality
constraints

One of the most important computational problems

Simplex Algorithm introduced by Dantzig in 1947 for solving LPs

Weakly polytime algorithms: Ellipsoid Method by Khachiyan,
Interior Point Method by Karmarkar

No strongly polytime algorithm known
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LPs and Simplex algorithm Linear programming

Linear programming

max cTx

s.t. Ax = b

x ≥ 0

min bT y

s.t. AT y ≥ c

—————————————————————————————

Simplex algorithm (Dantzig 1947)

Ellipsoid algorithm (Khachiyan 1979)

Interior-point algorithm (Karmakar 1984)
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LPs and Simplex algorithm Simplex algorithm

Context

Introduced by Dantzig in 1947 for solving LPs

Fixpoint iteration algorithm

Asymptotic complexity depends on the number of iterations

Parameterized by pivoting rules

Hirsch conjecture
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LPs and Simplex algorithm Simplex algorithm

Simplex algorithm

Dantzig 1947

Move up, along an edge, to a neighboring vertex, until reaching the top
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LPs and Simplex algorithm Pivoting rules

Pivoting rules

Simplex method is parameterized by a pivoting rule.

Pivoting rule = method of chosing adjacent vertices with better
objective

only single-switching

deterministic vs. randomized

memorizing vs. oblivious
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LPs and Simplex algorithm Pivoting rules

Deterministic rules

Dantzig’s rule

Bland’s rule

Lexicographic rule

many more...

—————————————————————————————

Theorem (Klee-Minty (1972) et al. )

All known to require an exponential number of steps in the worst case.
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LPs and Simplex algorithm Pivoting rules

Randomized rules

Random-Facet: recursively find the optimum (see later)
due to Kalai (’92), and Matoušek, Sharir and Welzl (’96)

Random-Edge: choose a random improving edge

—————————————————————————————

Theorem (Friedmann-Hansen-Zwick (SODA’2011,...))

There are (different) explicit LPs on which Random-Facet and
Random-Edge require an expected subexponential number of
iterations.
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LPs and Simplex algorithm Pivoting rules

Memorizing rule

(taken from David Avis’ paper)

—————————————————————————————

Theorem (Friedmann (IPCO’2011))

There are explicit LPs on which Least-Entered requires a
subexponential number of iterations.
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LPs and Simplex algorithm Technique

Technique
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LPs and Simplex algorithm Technique

Lower bound technique

1 Lower bounds for Markov decision process policy iteration

2 Induce linear programs

3 Correspondence of simplex algorithm and policy iteration

—————————————————————————————

originally : lower bounds for parity games first
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MDPs and Policy iteration Markov decision processes

Markov decision processes

Oliver Friedmann (LMU) Subexponential Lower Bounds for the Simplex AlgorithmJanuary 20, 2011 20 / ∞



MDPs and Policy iteration Markov decision processes

Markov decision process

due to Shapley ’53, Bellman ’57, Howard ’60, ...
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Controller (circle) chooses
outgoing action

Randomizer (square)
determines successive state

Objective: maximize
expected total reward

maxE[

∞∑
i=0

r(ai)]
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MDPs and Policy iteration Markov decision processes

Markov decision process

due to Shapley ’53, Bellman ’57, Howard ’60, ...
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Controller (circle) chooses
outgoing action

Randomizer (square)
determines successive state

Objective: maximize
expected total reward

maxE[

∞∑
i=0

r(ai)]

policy σ = choice of an action from each state
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MDPs and Policy iteration Policy iteration

Policy iteration
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MDPs and Policy iteration Policy iteration

Context

Introduced by Howard in 1960 to solve Markov Decision Processes

Transferred to many other areas by several authors

Fixpoint iteration algorithm

Asymptotic complexity depends on the number of iterations

Parameterized by improvement rules
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MDPs and Policy iteration Policy iteration

Policy valuations
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MDPs and Policy iteration Policy iteration

(Improving) Switches

A σ-switch is an edge e ∈ E0 \ σ not chosen by σ.

Facts about switches

Comparability: valσ E valσ[e] or valσ[e] E valσ for every σ-switch.

Easy check: valσ C valσ[(v,w)] iff valσ(σ(v)) < valσ(w) .

Improving switches: I(σ) = {e | valσ C valσ[e]}

Theorem

Switching: ∅ ( J ⊆ I(σ) implies valσ C valσ[J ] .

Optimality: I(σ) = ∅ implies σ is optimal .
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MDPs and Policy iteration Policy iteration

Policy iteration algorithm

Howard (1960), Hoffman-Karp (1966), Puri (1995), Vöge / Jurdziński
(2000)...

Strategy improvement / Policy iteration

1: while σ is not optimal do
2: σ ← σ[J ] for some ∅ ( J ⊆ I(σ)
3: end while

Complexity: depends on the number of iterations .
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MDPs and Policy iteration Policy iteration

Policy iteration
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MDPs and Policy iteration Policy iteration

Policy iteration

a b

c d

e f

1
2

1
2

2

5

6

1
2

1
2

1
2

1
2

0

valσ(a) =
1

2
b+

1

2
c =

valσ(b) = 2 + a =

valσ(c) = 5 + d =

valσ(d) =
1

2
b+

1

2
f =

valσ(e) =
1

2
c+

1

2
f =

valσ(f) =

Oliver Friedmann (LMU) Subexponential Lower Bounds for the Simplex AlgorithmJanuary 20, 2011 27 / ∞



MDPs and Policy iteration Policy iteration

Policy iteration
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MDPs and Policy iteration Policy iteration

Complexity

Policy Iteration is parameterized by an improvement rule.

Improvement Rule = method of chosing improving switches

Single-switching vs. Multi-switching

Deterministic vs. Randomized

Memorizing vs. Oblivious
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MDPs and Policy iteration Policy iteration

Diameter

Question: theoretically possible to have polynomially many iterations?

Let G be a game and n be the number of nodes.

Definition: the diameter of G is the least number of iterations
required to solve G

Diameter Theorem

The diameter of G is less or equal to n .
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MDPs and Policy iteration MDPs as LPs

Dual LP of unichain MDP

(D)
min

∑
i∈V yi

s.t. yi −
∑

j∈V pj,ayj ≥ ra , i ∈ V, a ∈ Ai

V - set of all states

A - set of all actions, Ai - set of actions from state i

ra - reward of action a , pi,a - transition probability from action
a to state i

yi - value of state i
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MDPs and Policy iteration MDPs as LPs

Primal LP of unichain MDP

(P )

max
∑

a∈A raxa

s.t.
∑

a∈Ai xa −
∑

a∈A pi,axa = 1 , i ∈ V
xa ≥ 0 , a ∈ A

xa - expected number of times of taking action a , when starting
from all positions
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MDPs and Policy iteration Summary

Summary
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MDPs and Policy iteration Summary

Pivoting on the induced LP

Theorem

Vertex of bfs in the primal LP corresponds to policy in the MDP .
Improving switches correspond to pivoting steps.

Theorem

Optimal solution of the dual LP corresponds to optimal policies in
the MDP . Policy corresponds to basic solution of the dual.
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MDPs and Policy iteration Summary

Policy iteration vs. Simplex method

Policy iteration Simplex method

Pivoting single- and single-switch
Rules multi-switch only

Diameter linear unknown /
Hirsch conjecture
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Random Edge Random edge rule

Random edge rule
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Random Edge Random edge rule

Random edge rule

Random-Edge rule

Perform single switch arbitrarly at random.

Context

Abstract lower bound: 2Ω( 3√n) (Matoušek, Szabó 2006)
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Random Edge Motivation

Motivation
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Random Edge Motivation

Construction principles

1 Process always reaches the sink (unichain MDPs)

2 Priority rewards on the nodes

5 ⇒

(−n)5

(−n)5

(−n)5(−n)5
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Random Edge Motivation

Cycle gadgets

a b c d
ε

1− ε

valσ(b) ≈ valσ(d)
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Random Edge Motivation

Cycle gadgets

a b c d
ε

1− ε

valσ(b) = valσ(a)
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Random Edge Motivation

Binary Counting - How does it work?

101011

↓
Setting
↓

101111
↓

Resetting
↓

101100
↓

Activating
↓

101100
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Random Edge Motivation

Binary Counters

Binary Counting proceeds in three phases.

1 Set the least unset bit

2 Reset all lower (inactive) bits

3 Activate recently set bit

How to separate active from inactive bits? By access control .

Attach access control structure to every bit

Set bits are activated

Recently set bit is not activated

After resetting lower bits, recently set bit is activated
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Random Edge Construction

Construction
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Random Edge Construction

Full construction
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Random Edge Construction

Cycle Gadget
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Random Edge Construction

Cycle Gadget

Cycles close one edge at a time 
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Random Edge Construction

Cycle Gadget

Cycles close one edge at a time 

Shorter cycles close faster 
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Random Edge Construction

Cycle Gadget
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Random Edge Construction

Cycle Gadget

Cycles open “simultaneously” 
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Random Edge Construction

Increment phases: from 101011 to 101100

1 Setting:

{
Bk counting cycle closes

Ck helper cycle closes

2 Resetting:

{
U lane realigns

Ai and Bi cycles (i < k) open

3 Activating:


Ak access cycle closes

W lane realigns

Ci cycles of unset bits open
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Random Edge Construction

Analysis

Cycles (opening and closing) and lanes compete with each other.

Supposed candidate has to win with high probability .

Solution: increase length of higher cycles, resulting in O(n4) vertices.

Work in progress: improved construction.
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Random Edge Construction

Lower bound

Theorem (F.-Hansen-Zwick (2011))

The number of improving step performed by Random-Edge on the
MDPs (and LPs), which contain O(n4) vertices and edges, is 2Ω(n).
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Random Facet and Least Entered

Random Facet and Least Entered
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Random Facet and Least Entered

Outline

1 LPs and Simplex algorithm

2 MDPs and Policy iteration

3 Random Edge

4 Random Facet and Least Entered
Random Facet on LPs and MDPs
Random Facet construction
Least Entered

5 All is well that ends well?
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Random Facet and Least Entered Random Facet on LPs and MDPs

Random Facet on LPs and MDPs
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Random Facet and Least Entered Random Facet on LPs and MDPs

The algorithm

due to Kalai (’92), and Matoušek, Sharir and Welzl (’96)

procedure Random-Facet(H,B)
if H = B then

return B
else

Choose h ∈ H \ B at random
B′ ← Random-Facet(H \ {h}, B)
if h is violated by B′ then

B′′ ← Basis(B′ ∪ {h})
return Random-Facet(H,B′′)

else
return B′

end if
end if

end procedure

Random Facet for LPs

procedure Random-Facet(G,σ)
if E0 = σ then

return σ
else

Choose e ∈ E0 \ σ at random
σ′ ← Random-Facet(G \ {e}, σ)
if valσ′ C valσ′[e] then

σ′′ ← σ′[e]
return Random-Facet(G, σ′′)

else
return σ′

end if
end if

end procedure

Random Facet for MDPs
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Random Facet and Least Entered Random Facet on LPs and MDPs

Context

Known results

Upper bound: 2O(n) (Kalai 1992)

Abstract lower bound: 2Ω(
√
n) (Matoušek 1994)

Theorem (F.-Hansen-Zwick (2011))

Random-Facet for MDPs and LPs is subexponential.
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Random Facet and Least Entered Random Facet construction

Random Facet construction
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Random Facet and Least Entered Random Facet construction

Randomized counting

0|0|0|0|0

0|0| |0|0

exclude bit 2

1|1| |1|1
count recursively

1|1|1|0|0

set bit 2

1|1|1|1|1
count recursively

Analysis

Counting 0|0| |0|0 equivalent to counting 0|0|0|0

Counting 1|1|1|0|0 equivalent to counting 0|0

Recurrence f(n) = f(n− 1) + 1
n

∑n−1
i=0 f(i)

Complexity f(n) −→ e2·
√
n− 1

2

2·
√
π·n

1
4

for n→∞
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Random Facet and Least Entered Random Facet construction

Simplified construction (for parity games)

d1 : 3

`

a1 : 2

r

a1 : 2

c1 : 4 b1 : 2

`r

b1 : 2

d2 : 3

`

a2 : 2

r

a2 : 2

c2 : 6 b2 : 2

`r

b2 : 2

d3 : 3

`

a3 : 2

r

a3 : 2

c3 : 8 b3 : 2

`r

b3 : 2

t : 1
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Random Facet and Least Entered Random Facet construction

Lower bound

Theorem (F.-Hansen-Zwick (2011))

The number of improving step performed by Random-Facet on the
MDPs (and LPs) is 2Ω(

√
n/ log(n)).
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Random Facet and Least Entered Least Entered

Least Entered
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Random Facet and Least Entered Least Entered

Zadeh’s pivoting rule

Zadeh’s Least-Entered rule

Perform single switch that has been applied least often.
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Random Facet and Least Entered Least Entered

Fair counting

Problem:

Flipping higher bits happens less often than flipping lower bits

Zadeh’s rule switches higher bits before they are supposed to be
switched

Solution:

Represent every bit by two representatives

Only one representative is actively working

Inactive representative switches back and forth to catch up with
the rest

Both representatives change roles after flipping the represented bit
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Random Facet and Least Entered Least Entered

Full construction

s
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Random Facet and Least Entered Least Entered

Lower bound

Theorem (Friedmann (2011))

The number of improving step performed by Least-Entered on the
MDPs, which contain O(n2) vertices and edges, is 2Ω(n).
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All is well that ends well?

All is well that ends well?
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All is well that ends well?

Concluding remarks

Game-theortic perspective helpful for the construction of lower
bounds

Lower bounds transfer to many other classes of determined games

Random-Edge lower bound can be used as lower bound for
Switch-Half
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All is well that ends well?

Relation to other games

Turn-based Stochastic Games (TSG)

2 1
2 players

Discounted Payoff Games (DPG)

2 players

Mean Payoff Games (MPG)

2 players

Parity Games (PG)

2 players

Deterministic Markov Decision Processes (DMDP)

1 player

Markov Decision Processes (MDP)

1 1
2 players

Linear Programming (LP)

LP-type problems (LPtype)

∈ NP ∩ coNP ∈ P
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All is well that ends well?

Open problems

Polytime algorithm for two-player games and the like

Strongly polytime algorithm for LPs (and MDPs)

Resolving the Hirsch conjecture

Find game-theoretic model with unresolved diameter bounds
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All is well that ends well?

The slide usually called “the end”.

Thank you for listening!
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