Geodesic Embeddings of Path Complexes

David Bremner

UNB

18 January 2011

work with Deza, Hua, Holt, Klee, Schewe

Motivation

• diameter of simple polytopes

- computational/exhaustive approach
- enumerate combinatorial types of paths instead of combinatorial types of polytopes.

Motivation

• diameter of simple polytopes

• computational/exhaustive approach

• enumerate combinatorial types of paths instead of combinatorial types of polytopes.

Motivation

- diameter of simple polytopes
- computational/exhaustive approach
- enumerate combinatorial types of paths instead of combinatorial types of polytopes.

From Simple Polytopes to Simplicial Complexes

Edge paths and Facet Paths

From Simple Polytopes to Simplicial Complexes

Edge paths and Facet Paths

Simplicial complexes

- A *path complex* is a pure simplicial complex whose dual graph (with edges defined by ridges) is a path.
- A path complex is *end disjoint* if the two facets of dual-degree 1 are

Simplicial complexes

- A *path complex* is a pure simplicial complex whose dual graph (with edges defined by ridges) is a path.
- A path complex is *end disjoint* if the two facets of dual-degree 1 are disjoint (complementary, prismatoid).

Directed Path Complexes

- A *directed* path complex is a path complex with distinguished *start facet*
- Every path complex corresponds to at most two non-isomorphic *orientations* (directed path complexes)

Directed Path Complexes

- A *directed* path complex is a path complex with distinguished *start facet*
- Every path complex corresponds to at most two non-isomorphic *orientations* (directed path complexes)

Revisits

Directed Non-Revisiting Paths

- pivots and pivot sequences
 (3,4)(1,5)(4,6)(2,7)(6,8)
- Table representation

• index sequence $\langle 3, 1, 3, 2, 3 \rangle$

Directed Non-Revisiting Paths

- pivots and pivot sequences
 (3,4)(1,5)(4,6)(2,7)(6,8)
- Table representation

• index sequence $\langle 3, 1, 3, 2, 3 \rangle$

Directed Non-Revisiting Paths

- pivots and pivot sequences
 (3,4)(1,5)(4,6)(2,7)(6,8)
- Table representation

 \bullet index sequence $\langle 3,1,3,2,3\rangle$

canonical index seq. indicies in order. $\langle 1,2,1,3,1\rangle$

recursion No index occurs twice in a row

$$t(d, l) = (d - 1)t(d, l - 1) + t(d - 1, l - 1).$$

restricted growth func. indices occur in order

 $\langle 1,1,2,1
angle$

stirling numbers
$$t(d, l) = {\binom{l-1}{d-1}}$$
.

canonical index seq. indicies in order. $\langle 1,2,1,3,1\rangle$

recursion No index occurs twice in a row

$$t(d, l) = (d - 1)t(d, l - 1) + t(d - 1, l - 1).$$

restricted growth func. indices occur in order

 $\langle 1,1,2,1
angle$ tirling numbers $t(d,l)=igl\{ {l-1} \ d-1igr\}.$

canonical index seq. indicies in order. $\langle 1,2,1,3,1\rangle$

recursion No index occurs twice in a row

$$t(d, l) = (d - 1)t(d, l - 1) + t(d - 1, l - 1).$$

restricted growth func. indices occur in order

(1, 1, 2, 1)

stirling numbers $t(d, l) = \begin{cases} l-1 \\ d-1 \end{cases}$.

canonical index seq. indicies in order. $\langle 1,2,1,3,1\rangle$

recursion No index occurs twice in a row

$$t(d, l) = (d - 1)t(d, l - 1) + t(d - 1, l - 1).$$

restricted growth func. indices occur in order

 $\langle 1,1,2,1
angle$

stirling numbers
$$t(d, l) = {l-1 \\ d-1}$$
.

Counting Revisit Free Undirected Paths

A path complex is called *symmetric* if the two possible orientations of it are isomorphic.

Counting Revisit Free Undirected Paths

A path complex is called *symmetric* if the two possible orientations of it are isomorphic.

Geodesic Embeddings of Path Complexes

Counting Revisit Free Undirected Paths

A path complex is called *symmetric* if the two possible orientations of it are isomorphic.

Geodesic Embeddings of Path Complexes

Necessary conditions for revisits

 $\langle 1,2,[1,3,1,2]\rangle$

• No new ridges: 3 distinct symbols in the loop between vertices

• No violation of end disjointness: identification is not on both end facets.

Necessary conditions for revisits

 $\langle 1,2,[1,3,1,2]\rangle$

• No new ridges: 3 distinct symbols in the loop between vertices

• No violation of end disjointness: identification is not on both end facets.

Breaking Symmetry of Path Complexes

Generically Reduction to graph isomorphism, solve with partition backtracking

Vecessary Conditions

 Lexicographic, or
 No revisit on first facet

 $\langle 1, 2, 1, 3 \rangle$ $\langle 1, 2, 3, 2 \rangle$

Breaking Symmetry of Path Complexes

Generically Reduction to graph isomorphism, solve with partition backtracking

Necessary Conditions

- Lexicographic, or
 No revisit on first
 - facet

 $\langle 1, 2, 1, 3 \rangle$ $\langle 1, 2, 3, 2 \rangle$

Breaking Symmetry of Path Complexes

Generically Reduction to graph isomorphism, solve with partition backtracking

Necessary Conditions

Lexicographic, or
No revisit on first facet

 $\begin{array}{c} \langle 1,2,1,3 \rangle \\ \langle 1,2,3,2 \rangle \end{array}$

Breaking Symmetry of Path Complexes

Generically Reduction to graph isomorphism, solve with partition backtracking

Necessary Conditions

- Lexicographic, or
- No revisit on first facet

 $\langle 1, 2, 1, 3 \rangle$ $\langle 1, 2, 3, 2 \rangle$

Images of paths

Lemma

If $\Delta(d-1, n-1) < l-1$, then a canonical index sequence of length l on d symbols in which the symbol 1 appears uniquely at the beginning or in which d appears uniquely at the end cannot correspond to a shortest path.

Images of paths

Lemma

If $\Delta(d-1, n-1) < l-1$, then a canonical index sequence of length l on d symbols in which the symbol 1 appears uniquely at the beginning or in which d appears uniquely at the end cannot correspond to a shortest path.

Shortcut free embedding.

- Q is a *shortcut* for P if it shares end facets with P and has a shorter dual graph.
- A geodesic embedding of a path complex P is a simplicial sphere S containing P as a sub-complex and not containing any shortcut for P as a subcomplex.

Shortcut free embedding.

- Q is a *shortcut* for P if it shares end facets with P and has a shorter dual graph.
- A geodesic embedding of a path complex P is a simplicial sphere S containing P as a sub-complex and not containing any shortcut for P as a subcomplex.

Exhaustive generation of shortcuts.

- Path π = v₀, v₁... v_k is inclusion-minimal if no proper subset of v₀... v_k is a path from v₀ to v_k.
- *Pivot graph* nodes are *d*-sets, edges are pivots.
- All inclusion-minimal paths from s to t in the pivot graph can be generated by backtracking.

Exhaustive generation of shortcuts.

- Path π = v₀, v₁ ... v_k is *inclusion-minimal* if no proper subset of v₀... v_k is a path from v₀ to v_k.
- *Pivot graph* nodes are *d*-sets, edges are pivots.
- All inclusion-minimal paths from s to t in the pivot graph can be generated by backtracking.

Exhaustive generation of shortcuts.

- Path π = v₀, v₁... v_k is inclusion-minimal if no proper subset of v₀... v_k is a path from v₀ to v_k.
- Pivot graph nodes are d-sets, edges are pivots.
- All inclusion-minimal paths from s to t in the pivot graph can be generated by backtracking.

Shortcut free embeddings

Incremental discovery of shortcuts.

Incremental Construction

Find candidate embedding

Pind shortcuts (BFS)

3 Add constraint ¬ (facet(A) ∧ facet(B) ∧ facet(B)

15 / 21

Shortcut free embeddings

Incremental discovery of shortcuts.

Incremental Construction

- Find candidate embedding
- Find shortcuts (BFS)

3 Add constraint ¬ (facet(A) ∧ facet(B) ∧ facet(B)

Shortcut free embeddings

Incremental discovery of shortcuts.

Incremental Construction

- Find candidate embedding
- Find shortcuts (BFS)
- Add constraint ¬ (facet(A) ∧ facet(B) ∧ facet(B))

B

0

Α

Given
$$\{x_1 \dots x_{d-1}, y_1, y_2, y_3, y_4\} \in \mathbb{R}^{d+1}$$

$$0 = \det(x_1 \dots x_{d-1}, y_1, y_2) \cdot \det(x_1 \dots x_{d-1}, y_3, y_4) + \det(x_1 \dots x_{d-1}, y_1, y_4) \cdot \det(x_1 \dots x_{d-1}, y_2, y_3) - \det(x_1 \dots x_{d-1}, y_1, y_3) \cdot \det(x_1 \dots x_{d-1}, y_2, y_4)$$

$$\chi(i_1,\ldots,i_{d+1}) := \text{sign det } x_{i_1},\ldots,x_{i_{d+1}})$$

$$\begin{split} \chi(1,2,3)\chi(1,4,5) &= +1\\ \chi(1,2,4)\chi(1,3,5) &= -1\\ \chi(1,2,5)\chi(1,3,4) &= +1 \end{split}$$

$$\begin{split} \chi(1,2,3) &= -1\\ \chi(1,2,4) &= -1\\ \chi(1,2,5) &= +1\\ \chi(1,3,4) &= +1\\ \chi(1,3,5) &= +1\\ \chi(1,4,5) &= -1 \end{split}$$

Given
$$\{x_1 \dots x_{d-1}, y_1, y_2, y_3, y_4\} \in \mathbb{R}^{d+1}$$

$$0 = \det(x_1 \dots x_{d-1}, y_1, y_2) \cdot \det(x_1 \dots x_{d-1}, y_3, y_4) + \det(x_1 \dots x_{d-1}, y_1, y_4) \cdot \det(x_1 \dots x_{d-1}, y_2, y_3) - \det(x_1 \dots x_{d-1}, y_1, y_3) \cdot \det(x_1 \dots x_{d-1}, y_2, y_4)$$

$$\chi(i_1,\ldots i_{d+1}) := \mathsf{sign} \det x_{i_1},\ldots x_{i_{d+1}})$$

$$\begin{split} \chi(1,2,3)\chi(1,4,5) &= +1\\ \chi(1,2,4)\chi(1,3,5) &= -1\\ \chi(1,2,5)\chi(1,3,4) &= +1 \end{split}$$

$$\begin{split} \chi(1,2,3) &= -1\\ \chi(1,2,4) &= -1\\ \chi(1,2,5) &= +1\\ \chi(1,3,4) &= +1\\ \chi(1,3,5) &= +1\\ \chi(1,4,5) &= -1 \end{split}$$

David Bremner (UNB)

Geodesic Embeddings of Path Complexes

Given
$$\{x_1 \dots x_{d-1}, y_1, y_2, y_3, y_4\} \in \mathbb{R}^{d+1}$$

$$0 = \det(x_1 \dots x_{d-1}, y_1, y_2) \cdot \det(x_1 \dots x_{d-1}, y_3, y_4) + \det(x_1 \dots x_{d-1}, y_1, y_4) \cdot \det(x_1 \dots x_{d-1}, y_2, y_3) - \det(x_1 \dots x_{d-1}, y_1, y_3) \cdot \det(x_1 \dots x_{d-1}, y_2, y_4)$$

$$\chi(i_1,\ldots i_{d+1}) := \operatorname{sign} \det x_{i_1},\ldots x_{i_{d+1}})$$

$$\begin{split} \chi(1,2,3)\chi(1,4,5) &= +1\\ \chi(1,2,4)\chi(1,3,5) &= -1\\ \chi(1,2,5)\chi(1,3,4) &= +1 \end{split}$$

$$\chi(1,2,3) = -1$$

 $\chi(1,2,4) = -1$
 $\chi(1,2,5) = +1$
 $\chi(1,3,4) = +1$
 $\chi(1,3,5) = +1$
 $\chi(1,4,5) = -1$

David Bremner (UNB)

Geodesic Embeddings of Path Complexes

Given
$$\{x_1 \dots x_{d-1}, y_1, y_2, y_3, y_4\} \in \mathbb{R}^{d+1}$$

$$0 = \det(x_1 \dots x_{d-1}, y_1, y_2) \cdot \det(x_1 \dots x_{d-1}, y_3, y_4) + \det(x_1 \dots x_{d-1}, y_1, y_4) \cdot \det(x_1 \dots x_{d-1}, y_2, y_3) - \det(x_1 \dots x_{d-1}, y_1, y_3) \cdot \det(x_1 \dots x_{d-1}, y_2, y_4)$$

$$\begin{split} \chi(i_1, \dots i_{d+1}) &:= \text{sign det } x_{i_1}, \dots x_{i_{d+1}}) & \chi(1, 2, 3) = -1 \\ \chi(1, 2, 3) \chi(1, 4, 5) &= +1 \\ \chi(1, 2, 4) \chi(1, 3, 5) &= -1 \\ \chi(1, 2, 5) \chi(1, 3, 4) &= +1 \end{split} \qquad \begin{aligned} \chi(1, 2, 3) &= -1 \\ \chi(1, 2, 3) &= -1 \\ \chi(1, 2, 5) &= +1 \\ \chi(1, 3, 5) &= +1 \\ \chi(1, 3, 5) &= -1 \\ \chi(1, 4, 5) &= -1 \end{aligned}$$

Determining facets and non-facets

F is a *facet* iff for all $x, y \notin F$

$$\chi(F x) = \chi(F y)$$

• no interior points

- Facet constraints are two variable equations.
- Non-facet constraints are "not-all-equal" constaints.

Determining facets and non-facets

F is a *facet* iff for all $x, y \notin F$

$$\chi(F x) = \chi(F y)$$

- no interior points
- Facet constraints are two variable equations.
- Non-facet constraints are "not-all-equal" constaints.

Determining facets and non-facets

F is a *facet* iff for all $x, y \notin F$

$$\chi(F x) = \chi(F y)$$

- no interior points
- Facet constraints are two variable equations.
- Non-facet constraints are "not-all-equal" constaints.

- Let τ(Y) = (-1)^k where k transpositions are required to sort tuple Y.
 For i > 1, let e_i = F_i \ F_{i-1}, l_i = F_{i-1} \ F_i.
- Let $\sigma_1 = 1$, and for i > 1 let $\sigma_i = \tau(F_{i-1}, e_i)\tau(F_i, l_i)\sigma_{i-1}$. If F_i and F_{i-1} are both facets, then

$$\sigma_i \chi(F_i, x) = \sigma_{i-1} \chi(F_{i-1}, y) \qquad x \notin F_i, y \notin F_{i-1}$$

David Bremner (UNB)

Geodesic Embeddings of Path Complexes

18 January 2011

18 / 21

- Let τ(Y) = (-1)^k where k transpositions are required to sort tuple Y.
 For i > 1, let e_i = F_i \ F_{i-1}, l_i = F_{i-1} \ F_i.
- Let $\sigma_1 = 1$, and for i > 1 let $\sigma_i = \tau(F_{i-1}, e_i)\tau(F_i, l_i)\sigma_{i-1}$. If F_i and F_{i-1} are both facets, then

$$\sigma_i \chi(F_i, x) = \sigma_{i-1} \chi(F_{i-1}, y) \qquad x \notin F_i, y \notin F_{i-1}$$

- Let $\tau(Y) = (-1)^k$ where k transpositions are required to sort tuple Y.
- For i > 1, let $e_i = F_i \setminus F_{i-1}$, $I_i = F_{i-1} \setminus F_i$.
- Let $\sigma_1 = 1$, and for i > 1 let $\sigma_i = \tau(F_{i-1}, e_i)\tau(F_i, l_i)\sigma_{i-1}$. If F_i and F_{i-1} are both facets, then

$$\sigma_i \chi(F_i, x) = \sigma_{i-1} \chi(F_{i-1}, y) \qquad x \notin F_i, y \notin F_{i-1}$$

- Let $\tau(Y) = (-1)^k$ where k transpositions are required to sort tuple Y.
- For i > 1, let $e_i = F_i \setminus F_{i-1}$, $I_i = F_{i-1} \setminus F_i$.
- Let $\sigma_1 = 1$, and for i > 1 let $\sigma_i = \tau(F_{i-1}, e_i)\tau(F_i, l_i)\sigma_{i-1}$. If F_i and F_{i-1} are both facets, then

$$\sigma_i \chi(F_i, x) = \sigma_{i-1} \chi(F_{i-1}, y) \qquad x \notin F_i, y \notin F_{i-1}$$

How many cases?

d	п	length	rev.	drops							
d	п	k	т	Ι	#	,			I	,	<i>1</i> 1
4	11	7	0	0	50	a	n 10			1	#
4	11	7	1	1	200	0	12	1		0	11
4	11	7	2	2	354	6	13	8		0	293
4	11	7	3	3	96	6	13	8	2	T	452
4	12	8	0	0	160						
4	12	8	1	1	1258						
4	12	8	2	2	5172	hard cases					
4	12	0	2	3	7308	u		K		1	#
	12	0	J	5	1350	/	10				0
4	12	8	4	4	1512	4	12	8	0		2
4	12 12 11	8 7	3 4 1	4 0	1512 98	4 5 5	12 12 12		0 1 2	0 0 1	2 15 6
4 5 5	12 12 11 11	8 7 7	4 1 2	4 0 1	1512 98 98	4 5 5	12 12 12		0 1 2	0 0 1	2 15 6
4 5 5 5	12 12 11 11 12	8 7 7 8	4 1 2 1	4 0 1 0	1512 98 98 1079	4 5 6	12 12 12 13		0 1 2 1	0 0 1 0	2 15 6 138
4 5 5 5 5 5	12 11 11 12 12 12	8 7 7 8 8	4 1 2 1 2	4 0 1 0 1	1512 98 98 1079 3184	4 5 6 6	12 12 12 13 13		0 1 2 1 2	0 0 1 0 1	2 15 6 138 63

David Bremner (UNB)

How many cases?

d	п	length	rev.	drops									
d	п	k	m	1	#		,			I	,	<i>1</i> 1	
4	11	7	0	0	50		a	n	K	m	1	#	
4	11	7	1	1	200		6	12	7	1	0	11	
4	11	7	2	2	354		6	13	8		0	293	
4	11	7	3	3	96		6	13	8	2	1	452	
4	12	8	0	0	160								
4	12	8	1	1	1258								
4	12	8	2	2	5172		,	hard cases					
Δ	12	8	3	3	7308	_	d	n	ĸ	т	1	#	
т 4	10	0		1	1510		4	12	8	0	0	2	
	12	ð	4	4	1512		5	12	8	1	0	15	
5	11	7	1	0	98		5	12	8	2	1	6	
5	11	7	2	1	98		6	13	8	1	0	138	
5	12	8	1	0	1079		6	12	0	1 1	1	62	
5	12	8	2	1	3184		U	12	Ó	Ζ	1	03	
5	12	8	3	2	2904								

David Bremner (UNB)

Parallel Backtracking

b, g, d, c, h, e, a, f

$$\underbrace{\begin{matrix} b, g, d, c, h, e, a, f \\ +, -, +, -, -, -, +, - \\ i \end{matrix}}_{i}$$

Updated Bounds

