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o diameter of simple polytopes

e computational/exhaustive approach

@ enumerate combinatorial types of paths instead of combinatorial types
of polytopes.









@ A path complex is a pure simplicial complex whose dual graph (with
edges defined by ridges) is a path.




From Simple Polytopes to Simplicial Complexes

Simplicial complexes

@ A path complex is a pure simplicial complex whose dual graph (with
edges defined by ridges) is a path.

@ A path complex is end disjoint if the two facets of dual-degree 1 are
disjoint (complementary, prismatoid).
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@ A directed path complex is a path complex with distinguished start
facet




From Simple Polytopes to Simplicial Complexes

Directed Path Complexes

@ A directed path complex is a path complex with distinguished start
facet

@ Every path complex corresponds to at most two non-isomorphic
orientations (directed path complexes)
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Enumeration and Generation of Paths

Directed Non-Revisiting Paths

@ pivots and pivot sequences
(3,4)(1,5)(4,6)(2,7)(6,8)

@ Table representation

(SRS RN I
NN NN NN
[co o &+ W

@ index sequence (3,1,3,2,3)
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canonical index seq. indicies in order.
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8
canonical index seq. indicies in order.
4 5 7 (1,2,1,3,1)
recursion No index occurs twice in a row
t(d,)=(d —1)t(d, | — 1)+
, — (d.1) = (d = 1)e(d, 1 = 1)

t(d —1,/1—1).
1 2 3
1 4 23
4 5 3
6 5 3
6 5 7
8 5 7



Enumeration and Generation of Paths

Canonical Index Sequences

8
canonical index seq. indicies in order.
4 5 7 (1,2,1,3,1)
recursion No index occurs twice in a row
t(d,)=(d —1)t(d,] — 1)+
, Y (d.1) = (d = 1)e(d. 1 — 1)
t(d—-1,1-1).
123 restricted growth func. indices occur in order
1 423
4 5 3 (1,1,2,1)
6 5 3
6 b 7
8 5 7
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Enumeration and Generation of Paths

Canonical Index Sequences

8
canonical index seq. indicies in order.
4 5 7 (1,2,1,3,1)
recursion No index occurs twice in a row
t(d,)=(d —1)t(d,] — 1)+
, Y (d.1) = (d = 1)e(d. 1 — 1)
t(d—-1,1-1).
123 restricted growth func. indices occur in order
1 4 23
4 5 3 (1,1,2,1)
6 5 3
6 5 7 stirling numbers t(d,/) = {(11:11}
8 5 7
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Enumeration and Generation of Paths

Counting Revisit Free Undirected Paths

A path complex is called symmetric if the two possible orientations of it are

isomorphic.
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Enumeration and Generation of Paths

Counting Revisit Free Undirected Paths

A path complex is called symmetric if the two possible orientations of it are
isomorphic.

8(1) s(d,l)=(d —1)s(d,/ —2)+
s(d =1,/ —2)+
p s(d—2,1-2)
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Enumeration and Generation of Paths

Counting Revisit Free Undirected Paths

A path complex is called symmetric if the two possible orientations of it are

isomorphic.
8(1) s(d,l)=(d —1)s(d,l —2)+
s(d -1,/ —2)+
/ s(d—2,1-2)
4(6) 5(3) /¢ N\ 7(2)
s(2,/)=s(d,d) =1
2(7) \ x / 305 6(4) 4 if d even
s(d.d+1) = B’J { i
% if d odd.
1(8)
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Enumeration and Generation of Paths

Necessary conditions for revisits

(1,2,]1,3,1,2])

@ No new ridges: 3 distinct symbols in the loop between vertices

@ No violation of end disjointness: identification is not on both end
facets.
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Enumeration and Generation of Paths

Necessary conditions for revisits

(1,2,]1,3,1,2])

@ No new ridges: 3 distinct symbols in the loop between vertices

@ No violation of end disjointness: identification is not on both end
facets.
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Generically Reduction to graph

isomorphism, solve with 23)
partition backtracking 3(1)
3(1)
1(2)
<17 27 17 3>
(1’ 27 37 2>



2(3)

Generically Reduction to graph

isomorphism, solve with 203)
partition backtracking 3(1)
Necessary Conditions
3(1)
1(2)
(1,2,1,3)
(1,2,3,2)



2(3)

Generically Reduction to graph

isomorphism, solve with 203)
partition backtracking 3(1)
Necessary Conditions 30)
o Lexicographic, or 12)
(1, 2,1, 3)
(1,2,3,2)



Enumeration and Generation of Paths

Breaking Symmetry of Path Complexes

Generically Reduction to graph
isomorphism, solve with
partition backtracking

Necessary Conditions
@ Lexicographic, or
@ No revisit on first
facet
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If A(d —1,n—1) <[ —1, then a canonical index sequence of length | on
d symbols in which the symbol 1 appears uniquely at the beginning or in
which d appears uniquely at the end cannot correspond to a shortest path.



If A(d —1,n—1) <[ —1, then a canonical index sequence of length | on
d symbols in which the symbol 1 appears uniquely at the beginning or in
which d appears uniquely at the end cannot correspond to a shortest path.

9
1 1
9
3
1




o @ is a shortcut for P if it shares end
facets with P and has a shorter dual

graph.




e Q is a shortcut for P if it shares end
facets with P and has a shorter dual
graph.

o A geodesic embedding of a path
complex P is a simplicial sphere §
containing P as a sub-complex and not
containing any shortcut for P as a
subcomplex.




e Path m= vy, vy ... vy is
inclusion-minimal if no proper subset of
Vo ... Vg is a path from vy to vg.




Shortcut free embeddings

Exhaustive generation of shortcuts.

@ Path m=wvg, vy ... v is
inclusion-minimal if no proper subset of
Vo ... Vg is a path from vy to vg.

@ Pivot graph nodes are d-sets, edges are
pivots.
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Shortcut free embeddings

Exhaustive generation of shortcuts.

@ Path m=wvg, vy ... v is
inclusion-minimal if no proper subset of
Vo ... Vg is a path from vy to vg.

@ Pivot graph nodes are d-sets, edges are
pivots.
@ All inclusion-minimal paths from s to t

in the pivot graph can be generated by
backtracking.
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@ Find candidate embedding
@ Find shortcuts (BFS)

© Add constraint
— (facet(A) A facet(B) A facet(B))
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@ Find candidate embedding
@ Find shortcuts (BFS)

© Add constraint
- (facet(A) A facet(B) A facet(B))




0= det(x1 . ..xd_l,yl,yz) o det(x1 .. -Xd—1,}’3,y4)
+det(x1 . ..xd_1,}’1,}’4) : de'C(Xl .- -Xd—1,}’2,Y3)
= det(x1 .. xd_l,yl,ya) : det(x1 .- -Xd—1,}’2,}’4)



0= det(x1 . ..xd_l,yl,yz) 0 det(X1 .. -Xd—1,}'3,}’4) 5
+det(xq ... Xq—1,Y1,ya) - det(x1 ... xg—1,¥2,¥3)
—det(xy...xg_1,y1,y3) -det(x1 ... Xd_1,¥2,¥s) O« N\ 9

X(it, - - igy1) := signdet X, ... xi,,,)



Shortcut free embeddings

Grassmann-Plicker Relations

1
Given {x1...Xg-1,y1,¥2, 3, ya } € RIH
0 =det(xy...Xd—1,¥1,¥2) - det(x1 ... Xd—1, 3, Ya) >
+det(xy ... xg—1,y1,ya) - det(x ... xq—1,y2,y3) A
—det(xi ... xg-1,y1,¥3) - det(x1 ... xd-1,y2,ya) 3 2
X(i1, - - igy1) = signdet x;y, . . ‘Xid+1) x(1,2,3) = —1
X(1,2,4) = -1
x(1,2,5) = +1
x(1,3,4) = +1
x(1,3,5) = +1
x(1,4,5) = -1
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Shortcut free embeddings

Grassmann-Plicker Relations

Given {x1...Xg-1,y1,¥2, 3, ya } € RIH

0 =det(xy...xq-1,y1,y2) - det(xy...X4_1,y3,ya) 5

+det(x1 .. ~Xd—1,}/1,}/4) . det(x1 .. -Xd—1,}/27}/3)
—det(xy...xda-1,y1,y3) - det(xy ... xq_1,y2,y4) 3 A 9

X(71, .- ig41) = signdet x;;, ... x;,, ;) x(1,2,3) = -1
x(1,2,4) = -1
x(1,2,5) = +1

x(1,2,3)x(1,4,5) = +1 W(1,3.4) = +1
x(1,2,4)x(1,3,5) = -1 x(1,3,5) = +1
x(1,2,5)x(1,3,4) = +1 X(1,4,5) =-1
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F is a facet iff for all x,y & F

X(F x) = x(F y) .

@ no interior points




Shortcut free embeddings

Determining facets and non-facets

Fisa facet iff for all x,y & F

X(F x) = x(F y) ? ’

@ no interior points

@ Facet constraints are two
variable equations.
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Shortcut free embeddings

Determining facets and non-facets

Fisa facet iff for all x,y & F

X(F x) =x(F y)

@ no interior points

@ Facet constraints are two
variable equations.

e Non-facet constraints are i RN/
“not-all-equal” 2
constaints. F
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o Let 7(Y) = (—1)¥ where k transpositions are required to sort tuple Y.




o Let 7(Y) = (—1)¥ where k transpositions are required to sort tuple Y.
@ Fori>1, leteg =F; \ Fi_1, I = F_4 \ F;.
* y
Fi E;




Shortcut free embeddings

Path Constraints

o Let 7(Y) = (1) where k transpositions are required to sort tuple Y.

@ Fori>1, leteg =F; \ Fi_1, I = F_4 \ F;.

@ Let 01 =1, and for i > 1 let o = 7(Fj_1, &)7(Fi, [;})oj—1. If F; and
F;_1 are both facets, then

oix(Fi,x) =oicix(Fi-1,y)  x € F,y € Fia

Fi F;
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Shortcut free embeddings

Path Constraints

o Let 7(Y) = (1) where k transpositions are required to sort tuple Y.

@ Fori>1, leteg =F; \ Fi_1, I = F_4 \ F;.

@ Let 01 =1, and for i > 1 let o = 7(Fj_1, &)7(Fi, [;})oj—1. If F; and
F;_1 are both facets, then

oix(Fi,x) =oicix(Fi-1,y)  x € F,y € Fia

{oix(Fx)|1<j<mx¢F}={+1-1}
(No-Path)

Fi F;
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Computational Strategies and Results.

How many cases?

d n | length | rev. drops

d n k m / #
4 11 7 0 0 50
4 11 7 1 1 200
4 11 7 2 2 354
4 11 7 3 3 96
4 12 8 0 0 160
4 12 8 1 1 1258
4 12 8 2 2 5172
4 12 8 3 3 7398
4 12 8 4 4 1512
5 11 7 1 0 98
5 11 7 2 1 98
5 12 8 1 0 1079
5 12 8 2 1 3184
5 12 8 3 2 2904

David Bremner (UNB)
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d n m || #
6 12 1 0] 11
6 13 1 0293
6 13 2 11452
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How many cases?
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d n|k|m || #
6 12|71 0] 11
6 13|81 0/293
6 138 |2 1|45
ard cases
d n|k|m || #
4 12180 0] 2
5 12181 0] 15
5 12|82 1] 6
6 13|/8|1 0138
6 13|82 1] 63
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b’g7d7c’h’ e7a’f




b’g7d7c’h’ e7a’f

% a_a+7_v_7_a+a_










b’g7d7c’h5 e7a’f







Computational Strategies and Results.

Parallel Backtracking

b7g,d,C,h, eaavf
i+7_7+7_7_7_7+7_

[+++-————| —++——+—
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