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From Simple Polytopes to Simplicial Complexes

Motivation

diameter of simple polytopes

computational/exhaustive approach

enumerate combinatorial types of paths instead of combinatorial types
of polytopes.
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From Simple Polytopes to Simplicial Complexes

Edge paths and Facet Paths
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From Simple Polytopes to Simplicial Complexes

Simplicial complexes

A path complex is a pure simplicial complex whose dual graph (with
edges de�ned by ridges) is a path.

A path complex is end disjoint if the two facets of dual-degree 1 are
disjoint (complementary, prismatoid).
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From Simple Polytopes to Simplicial Complexes

Directed Path Complexes

A directed path complex is a path complex with distinguished start

facet

Every path complex corresponds to at most two non-isomorphic
orientations (directed path complexes)

x
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Enumeration and Generation of Paths

Revisits
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Enumeration and Generation of Paths

Directed Non-Revisiting Paths

pivots and pivot sequences
(3, 4)(1, 5)(4, 6)(2, 7)(6, 8)

Table representation

1 2 3
1 2 4
5 2 4
5 2 6
5 7 6
5 7 8

index sequence 〈3, 1, 3, 2, 3〉

1 2

3

4 5

6

7

8
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Enumeration and Generation of Paths

Canonical Index Sequences

2 3

1

4 5

6

7

8

1 2 3
4 2 3
4 5 3
6 5 3
6 5 7
8 5 7

canonical index seq. indicies in order.
〈1, 2, 1, 3, 1〉

recursion No index occurs twice in a row

t(d , l) = (d − 1)t(d , l − 1)+

t(d − 1, l − 1).

restricted growth func. indices occur in order

〈1, 1, 2, 1〉

stirling numbers t(d , l) =
{

l−1
d−1
}
.
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Enumeration and Generation of Paths

Counting Revisit Free Undirected Paths

A path complex is called symmetric if the two possible orientations of it are
isomorphic.

2(7) 3(5)

1(8)

4(6) 5(3)

6(4)

7(2)

8(1)

x

x ′

s(d , l) = (d − 1)s(d , l − 2)+

s(d − 1, l − 2)+

s(d − 2, l − 2)

s(2, l) = s(d , d) = 1

s(d , d + 1) =

⌊
d

2

⌋
=


d
2

if d even

d−1
2

if d odd.
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Enumeration and Generation of Paths

Necessary conditions for revisits

〈1, 2, [1, 3, 1, 2]〉

1

2

3

4:1

5:2

6:1

7:3

8:1

9:2

1

2

3

4,9

5

6

7

8

No new ridges: 3 distinct symbols in the loop between vertices

No violation of end disjointness: identi�cation is not on both end
facets.
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Enumeration and Generation of Paths

Breaking Symmetry of Path Complexes

Generically Reduction to graph
isomorphism, solve with
partition backtracking

Necessary Conditions

Lexicographic, or
No revisit on �rst
facet

1(2)
2(3)

1(2)

2(3)

3(1)

1(2)

3(1)

〈1, 2, 1, 3〉
〈1, 2, 3, 2〉
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Enumeration and Generation of Paths

Images of paths

Lemma

If ∆(d − 1, n − 1) < l − 1, then a canonical index sequence of length l on

d symbols in which the symbol 1 appears uniquely at the beginning or in

which d appears uniquely at the end cannot correspond to a shortest path.

1
2

1

2

3

1

3
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Shortcut free embeddings

Shortcut free embedding.

Q is a shortcut for P if it shares end
facets with P and has a shorter dual
graph.

A geodesic embedding of a path
complex P is a simplicial sphere S

containing P as a sub-complex and not
containing any shortcut for P as a
subcomplex.
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Shortcut free embeddings

Exhaustive generation of shortcuts.

Path π = v0, v1 . . . vk is
inclusion-minimal if no proper subset of
v0 . . . vk is a path from v0 to vk .

Pivot graph nodes are d -sets, edges are
pivots.

All inclusion-minimal paths from s to t

in the pivot graph can be generated by
backtracking.

12

14 23

13

24

34
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Shortcut free embeddings

Incremental discovery of shortcuts.

Incremental Construction

1 Find candidate embedding

2 Find shortcuts (BFS)

3 Add constraint
¬ (facet(A) ∧ facet(B) ∧ facet(B))

A B

C
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Shortcut free embeddings

Grassmann-Plücker Relations

Given { x1 . . . xd−1, y1, y2, y3, y4 } ∈ Rd+1

0 = det(x1 . . . xd−1, y1, y2) · det(x1 . . . xd−1, y3, y4)

+ det(x1 . . . xd−1, y1, y4) · det(x1 . . . xd−1, y2, y3)

− det(x1 . . . xd−1, y1, y3) · det(x1 . . . xd−1, y2, y4)

χ(i1, . . . id+1) := sign det xi1 , . . . xid+1)

χ(1, 2, 3)χ(1, 4, 5) = +1

χ(1, 2, 4)χ(1, 3, 5) = −1
χ(1, 2, 5)χ(1, 3, 4) = +1

1

23

4
5

χ(1, 2, 3) = −1
χ(1, 2, 4) = −1
χ(1, 2, 5) = +1

χ(1, 3, 4) = +1

χ(1, 3, 5) = +1

χ(1, 4, 5) = −1

David Bremner (UNB) Geodesic Embeddings of Path Complexes 18 January 2011 16 / 21



Shortcut free embeddings

Grassmann-Plücker Relations

Given { x1 . . . xd−1, y1, y2, y3, y4 } ∈ Rd+1

0 = det(x1 . . . xd−1, y1, y2) · det(x1 . . . xd−1, y3, y4)

+ det(x1 . . . xd−1, y1, y4) · det(x1 . . . xd−1, y2, y3)

− det(x1 . . . xd−1, y1, y3) · det(x1 . . . xd−1, y2, y4)

χ(i1, . . . id+1) := sign det xi1 , . . . xid+1)

χ(1, 2, 3)χ(1, 4, 5) = +1

χ(1, 2, 4)χ(1, 3, 5) = −1
χ(1, 2, 5)χ(1, 3, 4) = +1

1

23

4
5

χ(1, 2, 3) = −1
χ(1, 2, 4) = −1
χ(1, 2, 5) = +1

χ(1, 3, 4) = +1

χ(1, 3, 5) = +1

χ(1, 4, 5) = −1

David Bremner (UNB) Geodesic Embeddings of Path Complexes 18 January 2011 16 / 21



Shortcut free embeddings

Grassmann-Plücker Relations

Given { x1 . . . xd−1, y1, y2, y3, y4 } ∈ Rd+1

0 = det(x1 . . . xd−1, y1, y2) · det(x1 . . . xd−1, y3, y4)

+ det(x1 . . . xd−1, y1, y4) · det(x1 . . . xd−1, y2, y3)

− det(x1 . . . xd−1, y1, y3) · det(x1 . . . xd−1, y2, y4)

χ(i1, . . . id+1) := sign det xi1 , . . . xid+1)

χ(1, 2, 3)χ(1, 4, 5) = +1

χ(1, 2, 4)χ(1, 3, 5) = −1
χ(1, 2, 5)χ(1, 3, 4) = +1

1

23

4
5

χ(1, 2, 3) = −1
χ(1, 2, 4) = −1
χ(1, 2, 5) = +1

χ(1, 3, 4) = +1

χ(1, 3, 5) = +1

χ(1, 4, 5) = −1

David Bremner (UNB) Geodesic Embeddings of Path Complexes 18 January 2011 16 / 21



Shortcut free embeddings

Grassmann-Plücker Relations

Given { x1 . . . xd−1, y1, y2, y3, y4 } ∈ Rd+1

0 = det(x1 . . . xd−1, y1, y2) · det(x1 . . . xd−1, y3, y4)

+ det(x1 . . . xd−1, y1, y4) · det(x1 . . . xd−1, y2, y3)

− det(x1 . . . xd−1, y1, y3) · det(x1 . . . xd−1, y2, y4)

χ(i1, . . . id+1) := sign det xi1 , . . . xid+1)

χ(1, 2, 3)χ(1, 4, 5) = +1

χ(1, 2, 4)χ(1, 3, 5) = −1
χ(1, 2, 5)χ(1, 3, 4) = +1

1

23

4
5

χ(1, 2, 3) = −1
χ(1, 2, 4) = −1
χ(1, 2, 5) = +1

χ(1, 3, 4) = +1

χ(1, 3, 5) = +1

χ(1, 4, 5) = −1

David Bremner (UNB) Geodesic Embeddings of Path Complexes 18 January 2011 16 / 21



Shortcut free embeddings

Determining facets and non-facets

F is a facet i� for all x , y 6∈ F

χ(F x) = χ(F y)

no interior points

Facet constraints are two
variable equations.

Non-facet constraints are
�not-all-equal�
constaints.

1
2

3

4

5

F

1
2

3

4

5

F
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Shortcut free embeddings

Path Constraints

Let τ(Y ) = (−1)k where k transpositions are required to sort tuple Y .

For i > 1, let ei = Fi \ Fi−1, li = Fi−1 \ Fi .

Let σ1 = 1, and for i > 1 let σi = τ(Fi−1, ei )τ(Fi , li )σi−1. If Fi and
Fi−1 are both facets, then

σiχ(Fi , x) = σi−1χ(Fi−1, y) x 6∈ Fi , y 6∈ Fi−1

Fi�1 Fi

x y

{σjχ(Fj , x) | 1 ≤ j ≤ m, x /∈ Fj } = {+1,−1 }
(No-Path)
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Computational Strategies and Results.

How many cases?

d n length rev. drops
d n k m l #

4 11 7 0 0 50
4 11 7 1 1 200
4 11 7 2 2 354
4 11 7 3 3 96

4 12 8 0 0 160
4 12 8 1 1 1258
4 12 8 2 2 5172
4 12 8 3 3 7398
4 12 8 4 4 1512

5 11 7 1 0 98
5 11 7 2 1 98

5 12 8 1 0 1079
5 12 8 2 1 3184
5 12 8 3 2 2904

d n k m l #
6 12 7 1 0 11

6 13 8 1 0 293
6 13 8 2 1 452

hard cases

d n k m l #

4 12 8 0 0 2
5 12 8 1 0 15
5 12 8 2 1 6
6 13 8 1 0 138
6 13 8 2 1 63
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5 12 8 3 2 2904

d n k m l #
6 12 7 1 0 11

6 13 8 1 0 293
6 13 8 2 1 452

hard cases

d n k m l #

4 12 8 0 0 2
5 12 8 1 0 15
5 12 8 2 1 6
6 13 8 1 0 138
6 13 8 2 1 63
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Computational Strategies and Results.

Parallel Backtracking
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Computational Strategies and Results.

Parallel Backtracking
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Computational Strategies and Results.

Updated Bounds

n − d

d 4 5 6 7 8

4 4 5 5 6 7

5 4 5 6 7
6 4 5 6 7
7 4 5 6 [7, 10]
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