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Warning !

This problem may be addictive ...



Works for low dimensions ...
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Let's try d = 10




Starting point

(Courtesy: G. Ziegler)
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Reward claimed!

e Thursday, 10:30am
Subexponential Lower Bounds for the Simplex Algorithm
Oliver Friedmann
"... We also give a subexponential lower bound for Zadehs
pivoting rule which among all improving pivoting steps enters
the variable that has been entered least often. "



Reward claimed!

e Thursday, 10:30am
Subexponential Lower Bounds for the Simplex Algorithm
Oliver Friedmann
"... We also give a subexponential lower bound for Zadehs
pivoting rule which among all improving pivoting steps enters
the variable that has been entered least often. "

e Norman Zadeh will come tomorrow ....



Long unpublished gem

e N. Zadeh, "What is the worst case behavior of the simplex
algorithm,” Technical Report 27, Dept. Operations Research,
Stanford University, 1980.



Long unpublished gem

e N. Zadeh, "What is the worst case behavior of the simplex
algorithm,” Technical Report 27, Dept. Operations Research,
Stanford University, 1980.

e Now published with postscript in:
Polyhedral Computation, CRM-AMS Proceedings vol 48, eds.
D.A., D. Bremner and A. Deza, 2009.



Polyhedral Computation

Polyhedral Computation: Amazon.ca: David Avis, David Bremner, An... http://www.amazon.ca/Polyhedral-Computation-David-Avis/dp/08...
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Victor Klee (1925-2007)

Vic Klee at Oberwolfach in 1981
(photo: L. Danzer)



Klee-Minty paper (1970)

How Good Is the Simplex Algorithm?

Victor Kree*
Department of Mathematics, University of Washington, Seattle, Washington
AND
GEORGE J. MiNTY'

Department of Mathematics, Indiana University, Blooming ton, Indiana

1. INTRODUCTION

By constructing long “increasing™ paths on appropriate convex polytopes,
we show that the simplex algorithm for linear programs (at least with its
most commonly used pivot rule, Dantzig [/]) is not a “good algorithm” in the
sense of Jack Edmonds. That is, the number of pivots or iterations that may be
required is not majorized by any polynomial function of the two parameters
that specify the size of the program. In particular, 2¢ — 1 iterations may be
required in solving a linear program whose feasible region, defined by d
linear inequality constraints in  nonnegative variables or by d linear equality
constraints in 2d nonnegative variables, is projectively equivalent to a
d-dimensional cube. Further, for each d there are positive constants «; and

The start of Polyhedral Computation?



Norm Zadeh

Norm Zadeh creator of Perfect Ten Magazine at his Beverly Hills
Mansion November 2001 with his perfect 10 models
(photo:Jonas Mohr)



For Sale!

Hot Property: Norm Zada - Hot Property: Norm Zada - Los Angeles Times  http://www.latime: lassified/real intedition/hm-h
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106 NextPhoor  Hot property: Norm Zada, publisher of
Perfect 10 magazine has listed his
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Sold!

72 BEVERLY PARK Dr, Beverly Hills, CA 90210 | MLS# 09-352603 http://www.redfin.com/CA/Beverly-Hills/72-Beverly-Park-90210...

Sold on 11/16/2010

$16,500,000

72 BEVERLY PARK Dr
Beverly Hills, CA90210

BEDS: 11
BATHS: 18
SQ. FT.: 20,000
$/SQ. FT.: $825
LOT SIZE: 6.79 Acres
PROPERTY TYPE: Residential, Single Family
STYLE: Architectural
VIEW: Canyon, City Lights,
Mountain, Yes
YEAR BUILT: 2000
COMMUNITY: Beverly Hills Post Office
COUNTY: Los Angeles
MLS#: 09-352603
SOURCE: TheMLS
STATUS: Closed

The absolute best opportunity to purchase a
pristine almost new Beverly Park compound in
years. Trophy contemporary estate by the Landry
Design Group sited on the highest elevation in
Beverly Park. The free-flowing approx 20,000 sq. ft.
estate includes a new 6,100 sq. ft. guest house +




LP-digraphs

The Simplex Method and LP digraphs
f=1

f=3
Linear Programming (LP) A:
min f =2+ 2y +42z 5 ‘

The Simplex Method: =3
Algorithm of searching a sink ;
of LP digraphs by some LP digraph for A
pivotting rules.

Good characterizations for
P digraphs?

Strongly polynomial-time
algorithms for LP?




Basic problem

Can we efficiently find the sink of an LP-digraph by following a
directed path from any given vertex, using a given edge selection
rule (pivoting)?



Necessary conditions for LP digraphs

Unique Sink Orientation (USO) ['01 Szabo,Welzl]
Acyclicity

Holt Klee Property ['99 Holt, Klee]

Shelling Property ['09 Avis, Moriyama]



Necessary conditions for LP digraphs

Unique Sink Orientation (USO)

[‘'01 Szabo,Welzl]
Each subgraph G(P,H) of G(P) induced by a face
H of P has a unique sink (and then a unique source).

A &
|



Necessary conditions for LP digraphs

Acyclicity

G(P) has no directed cycle.

Acyclic Not acyclic



Necessary conditions for LP digraphs

Holt Klee property [‘99 Holt, Klee]
G(P) has a USO, and for every k-dimensional face H of P
there are k disjoint paths from the unique source to the
unique sink in G(P,H).



Klee-Minty Examples

e 3-cube (Chvatal, P.47)

maximize 100x1 + 10x2 + x3
s.t. X1 <1
20x1 + x2 < 100
200x1 + 20x2 + x3 < 10000

X1, X2, X3 >0



Klee-Minty Examples

e 3-cube (Chvatal, P.47)

maximize 100x1 + 10x2 + x3

s.t. X1 <1
20x1 4+ xo <100
200x1 + 20x2 + x3 < 10000
X1, X2, X3 >0

000 0 100 8000
100 1 80 8200
1800 1009800

0 100 0 0 0 10000

e Vertices:



Pivot Sequence (Dantzig's rule)

X1 X2 X3
000
100
1800
01000

0 100 8000
1 09800

1 80 8200
0 0 10000



Pivot Sequence (Dantzig's rule)

X1 X2 X3
000
100
1800

e 01000
0 100 8000
1 09800
1 80 8200
0 0 10000

e X, stays out of basis for 2" iterations.



Pivot Sequence (Dantzig's rule)

X1 X2 X3
000
100
1800

e 01000
0 100 8000
1 09800
1 80 8200
0 0 10000

e X, stays out of basis for 2" iterations.

e x1 pivots 2771 times.



Klee-Minty construction
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Klee-Minty path
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n-cube USOs

e Vertices V = {0,1,...,2" — 1} = {00..00,00..01, ..., 11..11}
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n-cube USOs

Vertices V = {0, 1, ...,2" — 1} = {00..00,00..01, ..., 11..11}
Facets F1, Fp, ..., Fp,. Fori=1,...,n,
F,' = {(Xl,XQ, ...,Xn)|X,' = 0}, F,,Jr,' = {(Xl,XQ, ...,Xn)|X,' = 1}.

Cobasis C(v)={i:ve F,i=1,..,2n},veV
Basis B(v)={i:v¢ Fi,i=1,..,2n},ve V
Note i € B(v) iff n+i € C(v).



n-cube USOs

Vertices V = {0,1,...,2" — 1} = {00..00, 00..01, ..., 11..11}
Facets F1, Fp, ..., Fp,. Fori=1,...,n,

Fi = {(x1, %2, s xn)[xi = 0}, Fpj = {(x1, X2, ... Xp)[x;i = 1}

Cobasis C(v)={i:ve F,i=1,..,2n},veV
Basis B(v)={i:v¢ Fi,i=1,..,2n},ve V
Note i € B(v) iff n+i € C(v).

A pivot interchanges a pair of indices i and n+ i between
B(v) and C(v). (flips bit i of v)



3-cube acyclic USO

e Vertices V ={0,1,...,7} = {000,001, ...,111}



3-cube acyclic USO

e Vertices V ={0,1,...,7} = {000,001, ...,111}

o Fi ={(x1,x,x3)|x;i =0}, F3pj = {(x1,x,,x3)|x; =1}



3-cube acyclic USO

e Vertices V ={0,1,...,7} = {000,001, ...,111}

° F,' = {(Xl,XQ,X3)|X,' = 0}, F3+,' = {(Xl,Xg, ,X3)|X,' = l}
e C(6) = C(110) = {4,5,3}, B(6) = B(110) = {1,2,6}



3-cube acyclic USO

Vertices V = {0,1,...,7} = {000,001, ...,111}

Fi ={(x1,x2,x3)|x; = 0}, F34; = {(x1,x2,,x3)|x; =1}
C(6) = C(110) = {4,5,3}, B(6) = B(110) = {1,2,6}
v = 6 pivots to vertices 2,4,7 by flipping bits 1,2,3



3-cube acyclic USO

Vertices V = {0,1,...,7} = {000,001, ...,111}

Fi ={(x1,x2,x3)|x; = 0}, F34; = {(x1,x2,,x3)|x; =1}
C(6) = C(110) = {4,5,3}, B(6) = B(110) = {1,2,6}
v = 6 pivots to vertices 2,4,7 by flipping bits 1,2,3
Pivots correspond to moves in the 4,2,1 directions
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History based rules

Choose the improving variable that satisfies:

Least number of times to enter basis (Zadeh)

Least recently considered (Cunningham)

Least recently entered (Fathi-Tovey)

Least number of iterations in basis (A-M-M)

Least used direction (A-M-M)

Least recently basic (Johnson)

All of the above break Klee-Minty type constructions

We try to find an acyclic USO for which a given rule follows a
Hamiltonian path



Least entered rule (Zadeh)

(orientation, direction)-pair

Vertex +4 | -4 [ +3| 3| +2] -2 | +1| -1 Options

0 10000 O | O O[O0 ]| 0| 0] 0| 0 [+1,+2,43,+4

1 (0001 O|O|O]O]O]O 1 0 [+2,43,+4

3. (00110 0 0 0 1 0 1 0 |-1,+4

2 10010/ 0| 0] O0]O 1 0 1 1 [+3,+4

10 [1010] 1 00| o0 1 0 1 1|2

8 |1000| 1 0 0 0 1 1 1 1




Least recently basic (Johnson)

(orientation, direction)-pair

Vertex +4 | -4 (43| -3 |42 -2 |+1|-1 Options
0 10000 v v v Vo1 42,43, +4
110001 v v V| v +2, 43, +4
510101 v | v v | v +2, +4
131101 v v v v +2
I5(1111| v v v v -1
411110 v v v v o|-3
10 (1010 v vV vo|-2
8 |11000| v v v v




Least recently considered (Cunningham)

Vertex Sequence Options
0 [0000[+2,-2,+1,-1,+3,-3,+4,-4 [+2
2 [0010[-2,+1,-1,+3,-3,+4,-4 +3
6 |0110[-3,+4,-4,+2,-2,+1,-1 +4
14 [1110]-4,42,-2,+1,-1,+3,-3 -3
10 [1010(+4,-4,4+2,-2,+1,-1,+3 -2
8 |1000(+1,-1,+3,-3,+4,-4,+2




Least recently entered (Fathi-Tovey)

Vertex (orientation, direction)-pair Options
44| -4 | +3 -3 | +2|-2|+1 1

010000 v v v Vo1 42,43, +4
1 (0001 4 v V| v +2,+3, +4
510101 v v v | v +2, +4
131101 v v V| v +2
I5(1111| v v v v -1,-3,-4
mjrorr| v v |V ' -2
9 |1001] v v V| v -1
8 |11000| v v 4 v




Least number of iterations in basis (A-M-M)

Vertex +4 | -4 [ +3 -3 +2-2(+1]-1 Options.
0 (0000 O 1 0 1 0 1 0 1 [+1,42,43,+4
1 [0001| O 2 0 2 0 2 1 142,43, +4
5 (0101 0O 3 1 2 0 3 2 1 [+2,+4
1B(rior| 1 3 2 2 0 4 3 1 |+2
IS (1rre| 2 3 3 2 1 4 4 1|1
411100 3| 3[4 [2]|2]4]4]|2]3
10 {1010 4 3 4 3 3 4 4 3 |+1,-2
1mj1orifs 3 4 4 4 4 5 3|2
9 (1001 6 3 4 5 4 5 6 3|1
8 (1000 7 3 4 6 4 6 6 4




Least used direction (A-M-M)

Direction
Vert 4| 3| 2] 1] options
0 0000 0|00 |o0][1234
1 {0001 0| 0|01 (234
3jootifof o1 |1|4
mportr| 1o 1|12
9 [1oo1| 1 {0211
8 (1000 1[0 |2]2




Least used direction

For n-cube H,, directions i =1,...,n

e nv(i)= the number of times that direction i has been taken.
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Least used direction

For n-cube H,, directions i =1,...,n
e nv(i)= the number of times that direction i has been taken.
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e Update: From current vertex y choose an outgoing edge to a
facet F; minimizing nv(j)



Least used direction

For n-cube H,, directions i =1,...,n

nv(i)= the number of times that direction i has been taken.

Initialize: nv(i) =0 fori=1,...,n

Update: From current vertex y choose an outgoing edge to a
facet F; minimizing nv(j)

Set nv(j)=nv(j)+1.

Special case of Zadeh's rule.



Unique Hs

Hamilton path using least used direction rule
It satisfies the Holt-Klee condition

V(1) =nv(2) =nv(4) =0
1nv(1) =nv(2) =0, nv(4) =1
nv(1)=0,nv(2) =1, nv(4)=1

)
nv(1)=1,nv(2)=1,nv(4) =1
1)=1,nv(2) =2, nv(4) =1
nv(1)=1,nv(2) =2,nv(4)=2
nv(1)=1,nv(2) =3, nv(4)=2

n
4
2
1 nv(
2:nv(
4:ny(
2:nv(
1

Least visited rule




Unique H,

Hamilton path using least used direction rule
It satisfies the Holt-Klee condition

[3.4,3,2,1,2,1,3,1,0,2,2,1,3,2,2]
[9,8,12,4,6,14,10, 11, 15,13,5,7,3,2,0, 1]

3

nv(1) = nv(2) = nv(4) = nv(8) = 0
1:nv(1) = 1, nv(2) = nv(4) = nv(8) = 0
4:nv(1)=1,nv(2) =0, nv(4) = 1, nv(8) = 0
8:nv(1) = 1, nv(2) = 0, nv(4) = 1, nv(8) = 1
2:nv(1) = 1, nv(2) = 1, nv(4) = 1, nv(8) = 1
8:nv(1) = 1,nv(2) = 1, nv(4) = 1, nv(8) = 2
4:nv(1) =1, nv(2) = 1, nv(4) = 2, nv(8) = 2

1 1:nv(1) =2, nv(2) = 1, nv(d) = 2, nv(8) = 2
4:nv(1) =2, nv(2) = 1, nv(4) = 3, nv(8) = 2
2:nv(1) = 2, nv(2) = 2, nv(4) = 3, nv(8) = 2
8:nv(1) = 2, nv(2) = 2, nv(4) = 3, nv(8) = 3
2:nv(1) = 2, nv(2) = 3, nv(4) = 3, nv(8) = 3
4:nv(1) = 2, nv(2) = 2, nv(4) = 4, nv(8) = 2
1:nv(1) = 3, nv(2) = 2, nv(4) = 4, nv(8) = 2
2:nv(1) = 3, nv(2) = 3, nv(4) = 4, nv(8) = 2
p



Hs




Another candidate for Hs




Computational results: least used direction

dimension 213|415
number of Hamilton paths | 1 | 1
Holt-Klee 11110
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Computational results: least used direction

dimension 213|415
number of Hamilton paths | 1 | 1| 1|2
Holt-Klee 11110

e For n < 4, each example extends to the next dimension



Computational results: least used direction

dimension 213|415
number of Hamilton paths | 1 | 1| 1|2
Holt-Klee 11110

e For n < 4, each example extends to the next dimension

e Since HK fails for n = 5, these examples are not LP-digraphs



Computational results: least used direction

But things do not go well for n > 6 ...

dimension 213|4|5]6|7]|8
number of Hamilton paths || 1 (1|12 (0|0 |0
Holt-Klee 111(1]0/0|010

We did a computer search of all acyclic USOs that contain
Hamiltonial paths.
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Least times to enter basis (Zadeh's rule)

Facets F;,i =1,...,2n
e nv(i)= the number of times that F; has been visited.
e Initialize: nv(i) = 0 for all i

e Update: From current vertex y choose an outgoing edge to a
facet F; minimizing nv(j)



Least times to enter basis (Zadeh's rule)

Facets F;,i =1,...,2n
e nv(i)= the number of times that F; has been visited.
e Initialize: nv(i) = 0 for all i
e Update: From current vertex y choose an outgoing edge to a
facet F; minimizing nv(j)
e Set nv(j)=nv(j)+1.



Computational results: least times to enter basis

The deluge!
dimension 3| 4 5 6 7
Ham. paths 2|17 | 1,072 | 3,262,342 | > 42,500,000,000
Holt-Klee 2|12 79 360 none yet




Computational results: all rules

Dimension H 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 7
Least-entered(Zadeh) 1]2]17] 1,072 | 3,262,342 | > 10%°
Least-used-direction 1111 2 0 0
Least-recently-entered 1]1]1 0 0 0
Least-recently-considered || 1 |0 | O 0 0 0
Least-recently-basic 110]0 0 0 0
Least-iterations-in-basis 110]0 0 0 0

Table: Hamiltonian paths produced by history based pivot rules
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How do we get the results?

Williamson Hoke's theorem (1988)

e Given an oriented n-cube H, let dy = number of vertices with
in-degree k

e Theorem: H is an AUSO if and only if

dy = (Z) k=0,1,...n

e Eg. Exactly n vertices have in-degree one.
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How do we get the results(ctd)?

Hopeless trying to generate all AUSOs directly

We generate a Hamiltonian path (HP) on an unoriented cube
(Klee's maxim)

A HP defines the orientation of all edges of an acyclic
orientation

We generate only HPs consistent with Zadeh's rule using nv
sequence

Reject partial HP if it violates W-H theorem



Canonical paths lemma

For any history based pivot rule generating a HP there is a
labelling of the cube s.t.
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Canonical paths lemma

For any history based pivot rule generating a HP there is a
labelling of the cube s.t.

e HP starts at vertex 0
e The order of first used-directions is +1,+2, ..., +d.

e Except for Zadeh's rule we can assume that the first d pivots
are +1,+2,...,+d.

e For Zadeh's rule we cannot:
Eg. +1, 42, -1, 43, .... is valid.
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Indegree 1 vertices

In a canonical HP the indegree of a vertex is 1 if and only it is
reached by a signed direction that is being used for the first time.

e (v,V) is an edge of HP that uses the direction +t for the first
time.

e Previous vertices in the path must have zero on the t-th bit.

e Neighbours of v/ on the hypercube except v have one on this
bit, so they cannot have been visited .

e The indegree of v/ is one.

e Each of d directions yields one such vertex.

e By WH there are no others.

e Eg: +1,+2,43,-1,... does give a HP by Zadeh
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Non-existence of Hamiltonian paths

Theorem

e For d > 3 the following rules do not generate any Hamiltonian
paths on AUSO cubes: least-iterations-in-basis,
least-recently-basic, least-recently considered.

e For d > 5 the least-recently-entered rule does not generate
any Hamiltonian paths on AUSO cubes.
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Proof of non-existence of Hamiltonian paths

e The least-iterations-in-basis, least-recently-basic,
least-recently considered, rules start with +1,+2,...,+d,-1,...

e These d 4 1 vertices have indegree one violating
Williamson-Hoke



Non-existence: least-recently-entered, d > 5

Theorem 1.1. The |mw«mm entered rule does not have any Hamiltonian
paths on a d-cube for d >
Proof. Suppose P is a Hamiltonian path produced by Algorithm 1 for the least-
recently entered n\lc when d > 5. We will show that P must m«m with the
sequence of vertices Q = leQ Qs, 424 »\hm Q= (0 1,3, —1}, Q2=
{2-1-2- - s = {24142,2,6, u 202}
and Q4 .2" T2+ 448,20 4244}
Qincludes the vertices {20-1+2, 2142448, 214244} as a subsequence
and does not contain the vertex 2~1 42+ 8. These four vertices lic on a
s two sources, 24~ +2 and 291 42+ 4+ 8, a contradiction. It remains
o shon that P besine s specfed

© Qi=0,1,3-+,2¢~ 1. This follows from Lemma ??.
o Qoo 120912 1 pd_pi2 _gi-a_y .. gi-t
We prove this Lw muhcmnmsl induction. For he basic step, e vill

show only 2! can come right after 2! — 1. When we visited
the vertex 2¢ 1 all 01 the bits are 1. n means the next vertex can be
represented as 27 =yt 2% (4~ 1> k > 0). By Corollary
72, vertex * should have two visited neighbours, one of which
s obviously the vertex 27— 1. In other words, there exists j # k such that
e -2 o e {0,180, 2 1) = (ol st 0= 1,2} U {0}
Since d = 3 forces 307 2~ 2% 2/ not to bv quml o, T ai-ok-9i
should be represented as E‘ 2 !11 2" for certain I
Therefore, the (k 3) equal (4~ 1,d— 3'or (d 24-1), andd~1>
xequires k = d ~
Wecan prove the inductive step similarl. 1F the path s continued by
29-1,20-1-242,... 241
be equal to 000 21— S007 , 2142 (d—2—k < j < d—2) or T
Sd, 2 (j=d—1lorj <d—2-k). By Corollary 77, two neigh-
boursof itarein {0, 1,3+, 20~ 1,20 = 1= 242, ... 201 - 1
Using binary numbers, 2<L{): » "’(2“'}7101“ be denoted 100001111,
where we have k+ 1 0s.
o Q5= {271 +2,2.6,14, 29 -2}
At the vertex 241, the history information function becomes

}. the next vertex should

f(;):{ 1(ifr=—d)
2d+1-

Although its minimum value is 1, when = = —d, and the second smallest
value is 2, when & = +1, we can not use either the direction ~d or +1,
since they lead to visited vertices. That leads us to use the direction +2,
whose value is third smallest. Likewise, to avoid visiting an already visited

o e e e e
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How few times can a variable enter the basis?

In Klee-Minty examples, one variable never enters the basis...
...and one variable enter 271 times.
Zadeh's rule tries to balance this.

Theorem
Let H be a AUSO n-cube with a H.P. followed by Zadeh's rule.
Each variable enters the basis at least # — 1 times.
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Proof of the lower bound

Variable —d enters the basis min number k times
At the sink 327" nv(i) =2" — 1

Pivot +d is blocked at v if v's twin already visited
Any pivot with nv(i) > k 4+ 2 must be blocked
Number of blocked pivots is at most 271

S22 nv(i) < 2n(k42) — 14271

Combining, k > 22 _ 9

n
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Hamiltonian paths are special

e The theorem does not generalize to arbitrary exponential
length Zadeh paths

e Let (G and (; be copies of an AUSO with an exponential
length Zadeh path.
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And the open problems are ...

e Show Hamiltonian paths exist in all dimensions for Zadeh's
rule

o Are there exponential lower bounds for all rules?

e Are any of these rules subexponential for LPs?
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