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Linear Programming Problem (LP)
(GivenA € R™d pheR™ c e RY)

LP:  max c'x
subjectto Ax<b

— <d v,
=2j=1Cj X

The feasible regiokx : Ax < b} is aconvexpolyhedron.
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Z(jj:1aij Xj <bj,Vi=1,...




Three Algorithms for Linear Programming

Simplex Method " Criss-Cfoss Method Interior-Point Method
(Arrangement Method)

All existing polynomial algorithms are of interior-poietlipsoid type.

Our ultimate goal is to find a strongly polynomial algorithm.



Outline of This Talk

e The simplex method can be considered as an arrangementanetho
(Hazan-Megiddo).

e The criss-cross method is an arrangement method with mary ni
(and some annoying) properties.



Diameters of the Feasible Region and the Arrangement

d=2,m=5

a

The feasible regio® ¢ R The arrangemer of m hyperplanes

No known polynomial bound fol: diam(P) < poly(m,d)???
A simple quadratic bound exists f&c  diam(A) = O(md)

(If all vertices on a 1-flat are considered adjacent, dranx d)



Simplex Method on the Arrangement

d=2,m=5

a

Hazan-Megiddo (2007) showdke Phase | of the simplex method can be
set up in such a way that it traces the graph of the arrangement

(This was used to show Koltun’s arrangement method (2004 szecial
case of the Phase |.)

It follows that the existence of a strongly polynomial siepmethod on
this Phase | implies the strongly polynomial solvabilityldt, but does
not imply any polynomial bound for diafR).



Simplex Method on the Arrangement
Phase | for the feasible region:Ax > b

The standard way is to set up a feasible LP:

min X0 (x € RY,x0 € R)
st. AX+1xg>Db
Xo > 0.

Let P; be its feasible regiofi(x,Xg) : AX+ 1xp > b,xg > 0} C RI+1,

Hazan-Megiddo (2007) considers another feasible LP:

min 1's (xeRY, se R™M
s.t. Ax+s>Db
s> 0.

Let P, be its feasible regiofi(x,s) : Ax+s> b,s> 0} C R4+,



Simplex Method on the Arrangement

Theorem of Hazan-Megiddo (2007):
The graph of the Phase | polyhedrBnis isomorphic to that of the
arrangemenA of the original LP, when the unbounded rays are ignored

More precisely, (under a nondegeneracy assumption), timyesl

e There is a one-to-one correspondence between the verfieesand
the vertices ofA, preserving the adjacency.

Therefore, the simplex method for this Phase | will follove tiraph of
the arrangement whose diamete©igd + m) d) = O(md).

One interesting problem:

e Analyse the complexity of the simplex method for this Phase |



Simplex Method on the Arrangement

A Key Lemma.
Let (X,S) be a vertex oP, = {(X,s) : AXx+s> b,s> 0}. Then,

(1) Atleastd+ minequalities are tight &ik, $),
(2) § =max{0,bj —AX} foralli=1,....m,
(3) § = Db — AXx=0 for at leasd values of.
Proof of (3). For each = 1,...,m, either

(@) § =b—AX>0,

(b) § =0andb, —AX<O, or

(c) § =0andb —AX=0.

While each of (a) and (b) generates one tight inequality,
(c) generates two tight inequalities. Then, (3) followairthis and (1).



The Simplex Method

stop: optimal

D
&
s
_|_
D
o
s
_|_
S¥)
r| o —
D
ratio test

l pivot on (r,s)
new feasible dictionary

S
T
SP)

D
stop: unbounded



Admissible Pivots and the Criss-Cross Method

Admissible Pivots

S S
_|_
r — r| — +
admissible type | admissible type Il

The simplex method is an admissible pivot method of type |
The dual simplex method is an admissible pivot method of tipe

The criss-cross method is the least-index admissible pnathod due to
Terlaky (1985) and Wang (1987}.is a finite self-dual method which
may not preserve feasibilityi here are a few variations, some of which
are history dependent.



Some Facts about Admissible Pivot Methods

Theorem [Roos (1990)].The criss-cross method may visit afl 2ertices
of the Klee-Minty cube.

Theorem [F.-Kaluzny (2004)]. The criss-cross method may vi§i{m®)
vertices of the arrangement of an LP.

Theorem [F.-Terlaky (2000)]. There exists a sequence of at mst
admissible pivots from any basis to some optimal basis, ev@&mnan LP
has an optimal solution.

Theorem [F.-Terlaky (1992)]. The criss-cross method can be extended to
solve the convex QP and the LCP with sufficient matrices.

Remark 1. Not much is known for the behavior of the randomized
criss-cross method for linear programming.

Remark 2. There are a few cases of LCP for which the randomized
criss-cross method is known to be (expected) polynomial.



Convex Quadratic Programming Problem (convex QP)

(GivenA € R™d G e R9%9: positive semidefiniteb € R™, ¢ € RY)

. Ty 1T
QP: max C'X—35 X GX
subjectto Ax<b

x> 0.

The convex QP (and the LP) admits a certificate for optimality

Theorem [QP Duality Theorem, Cottle 1963]
If the QP has an optimal solution, then its dual QD:

. o 1
QD: min by + 5xT Gx

subject to Gx+ATy>c

y>0

has an optimal solution and the optimal values are equaletMa@rx
values of the optimal solutions can be taken to be the same.



Convex Quadratic Programming Problem (convex QP)

All algorithms solving the convex QP (and the LP) aim at firgdihis
certificate (i.e. primal and dual solutions).

Moreover, this optimality is equivalent to tiarush-Kuhn-Tucker
(KKT) conditions:

Primal Ax<b : y>0
Feasibility x>0 , Gx+Aly>c
Ax=Db; or yi =0 Vi  Complementary

xi=0 or (Gx+Aly)j=c; Vj Slackness



Linear Complementarity Problem with Sufficient Matrices (S-LCP)

(Given a sufficient matrit € R™" ge R")

LCP: find two vectorsw, z € R" satisfying
w=Mz+q(q,
w>0,z>0, and
w'z=0.

The convex QP is a special case of S-LCP, because the KT msldan
be written as LCP with

0O -A b
M — , q —
Al G —C

Becausés i1s PSD, the matriM Is sufficient.



Sufficient Matrices and LCP

A matrix M is calledcolumnsufficient if

|z(Mz); <Oforalli] = [z(Mz); =0 foralli] .

A matrix M is calledrow sufficient if MT is column sufficient, and
sufficient if both column and row sufficient.

e Many LP algorithms (e.g. simplex, criss-cross, interiomp) can be
generalized to solve sufficient-matrix LCPs (S-LCPs).

e There is an interior-point algorithm that runs in time palymal in
the size of input and one paramekefthat is not bounded from
above), due to Kojima, Megiddo, Noma and Yoshise (1991).

e No algorithm is known to run in polynomial time.

e If S-LCP is NP-hard, it implies NP=co-NP that is unlikely.



LCP and Complementarity Bases

LCP(M,q): find two vectorsw, z € R" satisfying
W
M| ] =a
Z
w>0,z>0, and
w'z=0.

Pivoting in LCP: Try to determine whethex; = 0 or z = O for eachi at
a solution, or to prove no solution exists.

A complementarypasisB of [| — M} consists of eitherth column ofl
or —M, for each column.

If Bx = q has a non-negative solution, we have a solution for the LCP.
Otherwise, make some pivot(s) to move to an adjacent congri@ary
basis.



Morris's LCP
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Morris's LCP for n=3




The Criss-Cross Method
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Murty’s LCP (1978)
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e The associated orientation of the cube is isomorphic to the
Klee-Minty cube.

e The criss-cross method (and Murty’s least index method®gak— 1
pivots for Murty’s LCP.

e F.-Namiki (1994) showed that thendomizeccriss-cross takes
exactly (expected) pivots.



Morris’s LCP (2002)
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e Morris (2002) proved that the randomized edge (principabpi
method takes at leastn— 1) /2)! pivots on avarage for Morris’s LCP.

(The associated unique sink orientation is highly cyclic.)

e Foniok-F.-Grtner-Lithi (2008) showed that the criss-cross method
with any permutation of variables takes at mosh?) pivots.



Morris's LCP for n=3




Conjecture (F.)

The randomised criss-cross method is an expected strongly
polynomial-time algorithm for S-LCP.

Award for the resolution: A nice bottle of wine!



