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Linear Programming Problem (LP)

(GivenA ∈ R
m×d , b ∈ R

m, c ∈ R
d)

LP: max cT x = ∑d
j=1 c j x j

subject to A x ≤ b ∑d
j=1 ai j x j ≤ bi,∀i = 1, . . . ,m

The feasible region{x : Ax ≤ b} is aconvexpolyhedron.
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Three Algorithms for Linear Programming

Simplex Method
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2

3

Criss-Cross Method

1
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Interior-Point Method

(Arrangement Method)

All existing polynomial algorithms are of interior-point/ellipsoid type.

Our ultimate goal is to find a strongly polynomial algorithm.



Outline of This Talk

• The simplex method can be considered as an arrangement method

(Hazan-Megiddo).

• The criss-cross method is an arrangement method with many nice

(and some annoying) properties.



Diameters of the Feasible Region and the Arrangement

d = 2, m = 5

The feasible regionP ⊂ R
d The arrangementA of m hyperplanes

No known polynomial bound forP: diam(P) ≤ poly(m,d)???

A simple quadratic bound exists forA: diam(A) = O(m d)

(If all vertices on a 1-flat are considered adjacent, diam(A) ≤ d)



Simplex Method on the Arrangement

d = 2, m = 5

Hazan-Megiddo (2007) showedthe Phase I of the simplex method can be

set up in such a way that it traces the graph of the arrangement.

(This was used to show Koltun’s arrangement method (2007) isa special

case of the Phase I.)

It follows that the existence of a strongly polynomial simplex method on

this Phase I implies the strongly polynomial solvability ofLP, but does

not imply any polynomial bound for diam(P).



Simplex Method on the Arrangement

Phase I for the feasible region:Ax ≥ b

The standard way is to set up a feasible LP:

min x0 (x ∈ R
d ,x0 ∈ R)

s.t. Ax+1x0 ≥ b

x0 ≥ 0.

Let P1 be its feasible region{(x,x0) : Ax+1x0 ≥ b,x0 ≥ 0} ⊆ R
d+1.

Hazan-Megiddo (2007) considers another feasible LP:

min 1T s (x ∈ R
d ,s ∈ R

m)

s.t. Ax+s ≥ b

s ≥ 0.

Let P2 be its feasible region{(x,s) : Ax+ s ≥ b,s ≥ 0} ⊆ R
d+m.



Simplex Method on the Arrangement

Theorem of Hazan-Megiddo (2007):
The graph of the Phase I polyhedronP2 is isomorphic to that of the

arrangementA of the original LP, when the unbounded rays are ignored.

More precisely, (under a nondegeneracy assumption), they showed

• There is a one-to-one correspondence between the vertices of P2 and

the vertices ofA, preserving the adjacency.

Therefore, the simplex method for this Phase I will follow the graph of

the arrangement whose diameter isO((d +m) d) = O(m d).

One interesting problem:

• Analyse the complexity of the simplex method for this Phase I.



Simplex Method on the Arrangement

A Key Lemma.
Let (x̂, ŝ) be a vertex ofP2 = {(x,s) : Ax+ s ≥ b,s ≥ 0}. Then,

(1) At leastd +m inequalities are tight at(x̂, ŝ),

(2) ŝi = max{0,bi −Aix̂} for all i = 1, . . . ,m,

(3) ŝi = bi −Aix̂ = 0 for at leastd values ofi.

Proof of (3). For eachi = 1, . . . ,m, either

(a) ŝi = bi −Aix̂ > 0,

(b) ŝi = 0 andbi −Aix̂ < 0, or

(c) ŝi = 0 andbi −Aix̂ = 0.

While each of (a) and (b) generates one tight inequality,

(c) generates two tight inequalities. Then, (3) follows from this and (1).



The Simplex Method

⊕
...
⊕

↓ ց
s
+ ⊖ · · · ⊖

⊕ ⊕
...

...
⊕ ⊕

stop: optimal
↓ ց

s s
+ +

⊕ ⊕ ⊕

r
... − r

...
...

⊕ ⊕ ⊕
ratio test stop: unbounded

↓ pivot on(r,s)

new feasible dictionary



Admissible Pivots and the Criss-Cross Method

Admissible Pivots

s s

+

r − r − +

admissible type I admissible type II

The simplex method is an admissible pivot method of type I.

The dual simplex method is an admissible pivot method of typeII.

The criss-cross method is the least-index admissible pivotmethod, due to

Terlaky (1985) and Wang (1987).It is a finite self-dual method which

may not preserve feasibility. There are a few variations, some of which

are history dependent.



Some Facts about Admissible Pivot Methods

Theorem [Roos (1990)].The criss-cross method may visit all 2d vertices

of the Klee-Minty cube.

Theorem [F.-Kaluzny (2004)]. The criss-cross method may visitΩ(md)

vertices of the arrangement of an LP.

Theorem [F.-Terlaky (2000)]. There exists a sequence of at mostm

admissible pivots from any basis to some optimal basis, whenever an LP

has an optimal solution.

Theorem [F.-Terlaky (1992)]. The criss-cross method can be extended to

solve the convex QP and the LCP with sufficient matrices.

Remark 1. Not much is known for the behavior of the randomized

criss-cross method for linear programming.

Remark 2. There are a few cases of LCP for which the randomized

criss-cross method is known to be (expected) polynomial.



Convex Quadratic Programming Problem (convex QP)

(GivenA ∈ R
m×d , G ∈ R

d×d: positive semidefinite, b ∈ R
m, c ∈ R

d)

QP: max cT x− 1
2 xT Gx

subject to A x ≤ b

x ≥ 0.

The convex QP (and the LP) admits a certificate for optimality.

Theorem [QP Duality Theorem, Cottle 1963]

If the QP has an optimal solution, then its dual QD:

QD: min bT y+ 1
2xT Gx

subject to Gx +AT y ≥ c

y ≥ 0

has an optimal solution and the optimal values are equal. Moreoverx

values of the optimal solutions can be taken to be the same.



Convex Quadratic Programming Problem (convex QP)

All algorithms solving the convex QP (and the LP) aim at finding this

certificate (i.e. primal and dual solutions).

Moreover, this optimality is equivalent to theKarush-Kuhn-Tucker

(KKT) conditions:

Primal Ax ≤ b , y ≥ 0 Dual

Feasibility x ≥ 0 , Gx +AT y ≥ c Feasibility

Aix = bi or yi = 0 ∀i Complementary

x j = 0 or (Gx +AT y) j = c j ∀ j Slackness



Linear Complementarity Problem with Sufficient Matrices (S-LCP)

(Given a sufficient matrixM ∈ R
n×n, q ∈ R

n)

LCP: find two vectorsw,z ∈ R
n satisfying

w = M z+q,

w ≥ 0, z ≥ 0, and

wT z = 0.

The convex QP is a special case of S-LCP, because the KT conditions can

be written as LCP with

M =





0 −A

AT G



 , q =





b

−c





BecauseG is PSD, the matrixM is sufficient.



Sufficient Matrices and LCP

A matrix M is calledcolumnsufficient if

[ zi(Mz)i ≤ 0 for all i ] =⇒ [zi(Mz)i = 0 for all i] .

A matrix M is calledrow sufficient if MT is column sufficient, and

sufficient if both column and row sufficient.

• Many LP algorithms (e.g. simplex, criss-cross, interior-point) can be

generalized to solve sufficient-matrix LCPs (S-LCPs).

• There is an interior-point algorithm that runs in time polynomial in

the size of input and one parameterκ (that is not bounded from

above), due to Kojima, Megiddo, Noma and Yoshise (1991).

• No algorithm is known to run in polynomial time.

• If S-LCP is NP-hard, it implies NP=co-NP that is unlikely.



LCP and Complementarity Bases

LCP(M,q): find two vectorsw,z ∈ R
n satisfying

[

I −M
]





w

z



 = q,

w ≥ 0, z ≥ 0, and

wT z = 0.

Pivoting in LCP: Try to determine whetherwi = 0 or zi = 0 for eachi at

a solution, or to prove no solution exists.

A complementarybasisB of
[

I −M
]

consists of eitherith column ofI

or−M, for each columni.

If Bx = q has a non-negative solution, we have a solution for the LCP.

Otherwise, make some pivot(s) to move to an adjacent complementary

basis.



Morris’s LCP

M =



























1 2 0 . . . 0 0 0

0 1 2 . . . 0 0 0

0 0 1 . . . 0 0 0
...

0 0 0 . . . 1 2 0

0 0 0 . . . 0 1 2

2 0 0 . . . 0 0 1



























, q =



























−1

−1

−1
...

−1

−1

−1



























.



Morris’s LCP for n = 3

(

0 0 0
− − −

)

(

1 0 0
+ − +

) (

0 1 0
+ + −

) (

0 0 1
− + +

)

(

1 1 0
− + −

) (

1 0 1
+ − −

) (

0 1 1
− − +

)

(

1 1 1
+ + +

)

1
2

3



The Criss-Cross Method any compl. basis

↓ ց

⊕
·

r : top most r − ·
·
⊕

stop
↓ ց

s: left most s

r − + − ⊖ · · · ⊖

stop

ւ ց

p := max{r,s} q p q p
q := min{r,s}

q q •

p • p • 0

diagonal pivotց ւ exchange pivot
complementary dictionary



Murty’s LCP (1978)

M =























1 2 2 . . . 2 2

0 1 2 . . . 2 2

0 0 1 . . . 2 2
...

0 0 0 . . . 1 2

0 0 0 . . . 0 1























, q =























−1

−1

−1
...

−1

−1























.

• The associated orientation of the cube is isomorphic to the

Klee-Minty cube.

• The criss-cross method (and Murty’s least index method) takes2n −1

pivots for Murty’s LCP.

• F.-Namiki (1994) showed that therandomizedcriss-cross takes

exactly (expected)n pivots.



Morris’s LCP (2002)

M =



























1 2 0 . . . 0 0 0

0 1 2 . . . 0 0 0

0 0 1 . . . 0 0 0
...

0 0 0 . . . 1 2 0

0 0 0 . . . 0 1 2

2 0 0 . . . 0 0 1



























, q =



























−1

−1

−1
...

−1

−1

−1



























.

• Morris (2002) proved that the randomized edge (principal pivot)

method takes at least((n−1)/2)! pivots on avarage for Morris’s LCP.

(The associated unique sink orientation is highly cyclic.)

• Foniok-F.-G̈artner-L̈uthi (2008) showed that the criss-cross method

with any permutation of variables takes at mostO(n2) pivots.



Morris’s LCP for n = 3

(

0 0 0
− − −

)

(

1 0 0
+ − +

) (
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+ + −

) (

0 0 1
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)

(
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) (

1 0 1
+ − −

) (

0 1 1
− − +

)

(

1 1 1
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Conjecture (F.)

The randomised criss-cross method is an expected strongly

polynomial-time algorithm for S-LCP.

Award for the resolution: A nice bottle of wine!


