Learning Dynamics of Costly Signals

Intuition:

Suppose...

- long tails hinder flight for all
- less so for healthy males.
- females mate with those with long tails
- -only healthy grow long tails

➔ noone can benefit by deviating

(will formalize soon...)

Zahavi

The Handicap Principle (1975)

"...a highly paradoxical theory... That theory is the Handicap Principle... I used to think it was nonsense, and I said so in my first book, The Selfish Gene. In the Second Edition I changed my mind..."

- Richard Dawkins

Shorter tails better at "hawking"

Can costly signaling emerge from social learning?

$$S_n < S_{n+1}$$

 $S_{n<} << S_{n+1}$ if low

e.g. P=1/3

<s₀, s₁, {s₂, s₃}> (0,0,0)

<s₃, s₁, {s₃}> (5,0,-10/3)

Nash Equilibrium = < , , > s.t. none benefit by unilaterally deviating

e.g.N_L=100 N_H=100 N₂=150

Low 1's

1-w+w(payoffs) e.g. w=.1

1-w+w(payoffs) e.g. w=.1

<s₀, s₂, {s₂, s₃}>

<s₀, s₀, {}>

<s₀, s₃, {s₃}>

Efficient Separating!

Suppose all <s₀, s₀,{}>

Then any female who experiments with $\{s_2\}$ does equally as well. So may spread by chance.

Then High can experimentally send s₂ does well, so will be imitated!

Likewise, for $\langle s_0, s_3, \{s_3\} \rangle$

But if <s₀, s₂,{s₂,s₃}>, then REALLY complicated to leave...

Since good but not bad sending 1, receivers start accepting 1, to point where bad start sendin

Robust?

- 1) payoffs
- 2) Noise
- 3) Experimentation rate
- 4) reinforcement learning

Reinforcement Learning

Even works for super high experimentation rates!

Does depend on interesting new condition:

Do females prefer to pair with random male?

P=1/2 $<s_0, s_0, \{\}>$ $<s_0, s_0, \{s_0\}>$ $<s_0, s_2, \{s_2, s_3\}>$ $<s_0, s_3, \{s_3\}>$ No longer easy to leave pooling!

- → Can explain puzzling behaviors!
- → Efficient Separating!
- → When no acceptance at pooling!

Hoffman.moshe@gmail.com

Evidence?

Who cares?