
Learning Dynamics of 
Costly Signals 

  





Intuition: 
 
Suppose… 
-   long tails hinder flight for all 
- less so for healthy males. 
- females mate with those with long tails 
- -only healthy grow long tails 

 
 noone can benefit by deviating 
 
(will formalize soon…) 
 



Zahavi 

The Handicap Principle (1975) 
 
“…a highly paradoxical theory... That theory is 
the Handicap Principle… I used to think it was 
nonsense, and I said so in my first book, The 
Selfish Gene. In the Second Edition I changed my 
mind…” 

 - Richard Dawkins 
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Shorter tails better at “hawking” 





Can costly signaling emerge from social 
learning?  
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e.g. 0,3,6,9 and 0,1,2,3 
e.g. 5,5,-5 

e.g. P=1/3 



<s0, s1, {s2, s3}> 
(0,0,0) 
 
<s3, s1, {s3}> 
(5,0,-10/3) 
 
 
 
 
 
 
 



Nash Equilibrium = < , , > s.t. none benefit by 
    unilaterally deviating 
 
<s0, s2, {s2, s3}> 
<s0, s3, {s3}> 
<s0, s0, {}> 
<s0, s1, {s1, s2 , s3}> 
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With probably μ choose random strategy 



<s0, s2, {s2, s3}> 



<s0, s0, {}>  
 



<s0, s3, {s3}> 



mu w 



Efficient Separating! 
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Suppose all <s0, s0,{}> 
 
Then any female who experiments with {s2}  does equally 
as well. So may spread by chance.  
 
Then High can experimentally send s2  does well, so will 
be imitated! 
 
Likewise, for <s0, s3,{s3}> 
 
But if <s0, s2,{s2,s3}>, then REALLY complicated to leave… 



As soon as receiver drifts to accepting 2 or  3  
Enough receivers must have “neutrally drifted”  
to accept 1 so worth for good but not bad types 

Since good but not bad sending 1, receivers  start accepting 1, to point where bad start sending  

Very quickly 
After bad start  
Sending 1,  
receivers stop  
Accepting 1 
 
If in meantime 
Receivers stop 
Accepting 2 
(by drift), then 
Both good and  
Bad better  
Sending 0 

As soon as receiver drifts to 
accepting 1 or 2   





Robust?  
1) payoffs  
2) Noise 
3) Experimentation rate 
4) reinforcement learning 
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Reinforcement Learning 



Even works for super high 
experimentation rates! 



Does depend on interesting new condition:  
 

Do females prefer to pair with random male? 
 
P=1/2 
<s0, s0, {}> 
<s0, s0, {s0}> 
<s0, s2, {s2, s3}> 
<s0, s3, {s3}> 
No longer easy to leave pooling! 
 
  



 



Can explain puzzling behaviors! 
Efficient Separating! 
When no acceptance at pooling!  

 
 

 



 
Hoffman.moshe@gmail.com 
 
Evidence?  
 
Who cares?  
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