Social Networks and Success in Online Games

Winter Mason Facebook Stevens Institute of Technology

- Friendships and success in Halo:Reach
- Network structure and success in an experimental game

- Friendships and success in Halo:Reach
- Network structure and success in an experimental game

joint work

Sears Merritt

Abigail Z Jacobs

Aaron Clauset

funded in part by

James S. McDonnell Foundation

University of Colorado Boulder

online games

some basic statistics

- •100+ million Americans play online games
- •most prefer to play with friends
- •broad age distribution (mean = 41)
- •1000s of games, diverse types

online game social networks

- nodes identified by online pseudonyms unique across game / platform & tied to one person (generally)
- edges = online interactions interactions = costly shared activity, repeated
- nodes attributes demographics, online activity, performance, etc.
- edges attributes weights, time, character, etc.

a massive online game

Halo: Reach (Bungie, 2010)

•played online via XBox Live platform

- •team combat simulation (FPS)
- •20TB of game data, spanning
- •18 months of time
- •17+ million players
- •1 billion competitions
 - 70% are team competitions
 - complex spatial environments
 - complex social interactions

Glossary

- •Kills
- •Deaths

Assists

•Player 1 greatly injures an opponent, "assisting" Player 2 who kills injured opponent

Betrayal

•Killing player on own team

•Suicide

•Throwing yourself off a cliff

a small problem

- we observe interactions not friendships
- interactions = matchmaking + friendships
- no demographic information

a small solution

anonymous web survey

4

- 847 participants
- demographic questions age, sex, location, education
- psychometric questions attitudes, play style, etc.
- friendship survey
- 14,405 labeled friends
- 7,159,989 labeled non-frien

		The Halo:Read	n Project
+ 🕞 https://www.cs	s.colorado.edu/haloreach/		
	Sec. A.		100 E.C.
The Halo:Reach P	Project	and the second	
			100
WELCOME TO	THE HALO:REACH PROJE	CT	N.K.
We're analyzing th	e gameplay of Halo:Reach tea	ims for Science.	
	amertags are your in-game fri each game history and show y		
- The Halo:Reach Project Team			III
sign up		or, login	
mail address*		email address*	
			0
lmary gamertag) *	password	
		1	
Submit		Login	1
Submit		Login	1
Submit	SUIVEY	Login	1
	Juivey		
compiete .	Games played	Edand	Friend offline?
complete .	Games played	together Friend	
bo Gamertag	Games played	together Friend online?	offline?
bo Gamertag FearfulSpoon TOURIST1224	Games played	together Friend online?	offline?
bo Gamertag FearfulSpoon	Games played 168 4 80	together Friend online?	offline?
bo Gamertag FearfulSpoon TOURIST1224 AngryKnife	Games played 168 4 80 38	I together Friend online?	offline?
bo Gamertag FearfulSpoon TOURIST1224 AngryKnife donour	Games played 168 4 80 38 35	I together Friend online?	offline?
bo Gamertag FearfulSpoon TOURIST1224 AngryKnife donour Stilted Fox INGLE22	Games played 168 4 80 38 35 34 33	I together Friend online? © © ©	offline?
bo Gamertag FearfulSpoon TOURIST1224 AngryKnife donour Stilted Fox INGLE22 McChizey	Games played 168 4 80 38 35 34 33 23	I together Friend online?	offline?
bo Gamertag FearfulSpoon TOURIST1224 AngryKnife donour Stilted Fox INGLE22	Games played 168 4 80 38 35 34 33 23 12	I together Friend online?	offline?

Survey respondents

Mason and Clauset, CSCW 2013

Survey respondents are not typical players

- Survey players are much more active, in number of games as well as time spent
- Survey players have more kills, but they also die more
- Survey players are much better at the game

recovering friendships from interactions

we can observe a sequence of pairwise interactions $\sigma_{ij} = (i, j, t_1), (i, j, t_2), \square$

- can we robustly distinguish friendships from nonfriendships?
- > this is a general problem for interaction networks problems:
 - volume of data varies widely by individual = heavy-tailed distribution |ing|
 - friendships are sparse in large networks
 - "ground truth" data hard to obtain

statistics to detect friendships

features of interaction time series:

1. autocorrelation	$AC_{x,y}$	1
2. pair volume	$N_{x,y}$	temporal features
3. fraction of	$N_{x,y}/N_x$	J
interactions	$H_s(x,y)$	1
4. schedule entropy	$H_t(x,y)$	entropy features
5. location entropy	$H_{t,s}(x,y)$	J
6. locsched. entropy	$B_{x,y}$	ו
7. betrayals	$A_{x,y}$	prosocial features
8. assistance	$V_{x,y}$	J
9. indirect assistance		

Merrit, Jacobs, Mason and Clauset, ICWSM 2013

exploring the feature space

classification tree

- 50/50 training/test by survey participant
- cross-validation to control tree size
- highly compact trees, high AUCs (often >0.9)
- key feature is $AC_{x,y}$ autocorrelation
- friendships look like periodic + prosocial

Merrit, Jacobs Machine Machine Market Ma

AUC=0.924

lightweight predictors

logistic regression with individual features

- single-feature predictors scale up better on real systems (Facebook, etc.)
- ROC curves $AC_{x,y}$
- autocorrelation $A_{x,y}$ and direct assistance both highly accurate: AUC > 0.98

predictions for low-volume individuals

most people have "shallow" histories

- 90% have less than 200 games
- most users are "casual"
- true for most online social systems
- do predictions fail on these individuals?

predictions for low-volume individuals

 N_{x}

most people have "shallow" histories

- AUC vs. size of history
- periodic + prosocial interactions highly robust and efficient
- total interaction count not good, but not efficient

does friendship impact individual or team performance?

impact of friendship on performance

- among survey respondents
- individual behavior vs. number of friends on team
- you perform better & nicer when you collaborate with friends

impact of friendship on performance

- among survey respondents
- team performance vs. number of friends on team
- team performs better the more friendships it contains

summary

recovering friendships from interactions friendships *easy* to recover from interactions results likely to generalize [see Jones et al. PLoS ONE (2013)] clarifies "friendship" = periodic + prosocial interactions players structure their behavior to enable friend-friend interactions raises significant privacy concerns friendships effect on performance the more friends on a team:

- the better the team performs
- the better the individual performs

- Friendships and success in Halo:Reach
- Network structure and success in an experimental game

Social Learning Strategies

- Background:
 - Many species benefit from social organization because of *social learning*, or "zero-trial learning" (A. Bandura)
 - Humans' ability to share information and build on that information is key to our technological advancement.

Social learning as a strategy

- The ability to observe and imitate the trials and successes of peers has advantages and disadvantages:
 - Saves the individual from making costly mistakes
 - Allows individuals to "free ride" off others trials
 - Allows the group to try many different approaches in parallel
 - Excessive copying reduces innovation

What is the optimal strategy?

- The decision to "explore" versus "exploit" is not just a hard problem in biology, but also in psychology, machine learning, artificial intelligence, etc.
- What information should one use to decide whether to explore for new possibilities, observe one's peers, or exploit the best known method / solution?
- And what consequences do these decision strategies have on the individual & the group?

Collaborative Problem Solving

- Many ways groups work together to solve problems
 - Cooperatively, as a team, with specified roles
 - **Collectively**, with (constrained) information sharing
 - **Competitively**, with antagonistic information control
- We focus on collective problem solving
 - Individuals searching for a solution for their own benefit
 - Information sharing is incidental or ultimately self-motivated
- Examples:
 - Scientists searching for a cure to a disease.
 - Inventors competing for the X-prize.
 - Situations in which innovations are shared and built upon

Characterizing Problems

(Levinthal, 1997; Lazer, 2005)

- Simple problems
 - Easy to find, correct solution
 - Can be discovered with local exploration
- Complex problems
 - Many potential solutions
 - Local, suboptimal solutions

Key Questions

- 1. How does the *presence* of a communication network affect complex problem solving?
- 1. How does the *structure* of the network contribute to collective performance?
- 1. How does an individual's position in the network relate to:
 - Individual strategy and performance?
 - Collective performance?

Payoff Functions

- The "signal" was generated:
 - A unimodal Gaussian function with mean chosen uniformly at random and SD = 3
- The "noise" was added:
 - Background generated with 4-octave Perlin noise

Payoff Functions

Communication Networks

Greatest Average Betweenness

Smallest Maximum Closeness

Greatest Maximum Betweenness

Greatest Average Clustering

Greatest Variance in Constraint

Greatest Maximum Closeness

Smallest Average Clustering

Smallest Average Betweenness

Experiments

- For each session, 16 subjects are recruited from Amazon's Mechanical Turk
- Each session comprises 8 games
 - One for each network topology
- Each game runs for 15 rounds
 - 100 x100 grid
 - Relative dimensions of peak and landscape adjusted such that peak is found sometimes, but not always

RESULTS

It's a good idea to share ideas

- Collectives do much better when peak is found
- Even when peak is not found, collectives more effectively exploit local optima

Round

It's good to share good ideas quickly

Round

3. Diffusion of Best Solution

Greatest Average Betweenness

Smallest Average Betweenness

Path length predicts collective performance

- Roughly breaks into two groups:
- Short path length, low betweenness, low clustering
- 2. Higher path length, more centrality, higher clustering

Average Points

Individual Performance Is Combination of Individual Position and Collective Performance

Greatest Maximum Betweenness

Smallest Average Clustering

Exploration / Exploitation

- Players nearly always exploited solution when peak found by neighbor
- Players also exploited when peak not found

Round

Collective problem solvers face a social dilemma

Invisible networks affect individual behavior

Less efficiency is associated with more copying

How invisible networks affect behavior

Connected neighbors imitate each other

Imitating neighbors lead to more imitation

Number of Similar Neighbors

Clustering

Summary

- 1. Having a communication network improves collective success
- 2. Efficient networks better for collective: less imitation & faster dissemination
- 3. Performance gap greater in inefficient networks
- 4. Individuals face a social dilemma: risky exploration vs. free-riding
- 5. Even though invisible, network structure affects players' strategy of exploration vs. exploitation

Thank you!

social network of a massive online game

extracting friendship network from interaction networkideally, use generative model

•for now, a threshold: friendship $A C_{x,y} \ge t_c$

social network of a massive online game

- choose threshold_c by matching sampled with recovered degree distribution
- but, survey is a biased sample and, sampling bias is unknown
- do we match head or tail?
- try both

social network of a massive online game

- choose threshold_c by matching sampled with recovered degree distribution
- but, survey is a biased sample and, sampling bias is unknown
- do we match head or tail?
- try both
- inferred degree distributions no power laws (shocking!)
- \bullet maan degree 2/20

component sizes

- 17M people in interaction graph
- 4.7-8.4M in friendship network
- largest component is 31% of people

local structure

- vertex-level correlation coefficient

Individual Performance Is Combination of Individual Position and Collective Performance

Best player in inefficient networks

Median player in efficient networks

Average Points Earned

Agent-based Models

- How do simple agents compare to human performance?
- Test two simple rule sets:
 - Based on agents in Lazer & Friedman (2007)
 - Based on optimal performance in simplified problem space

Lazer & Friedman (LF) agents

- If any of your neighbors have found a higher-scoring location, copy them
- Else, explore randomly within some radius R of current location

Optimal Strategy in Simplified Problem Space

- Characterize the landscape as "solution" and "not solution" with values of each equivalent to average
- Use inductive reasoning to determine optimal strategy in this simplified landscape

Recursive rule

- On round T-1, the expected payoff is
- $P_{T-1} = fp + (1-f)n$
- $P_{T-2} = 2fp + (1-f)(n+P_{T-1})$
- $P_{T-3} = 3fp + (1-f)(n+P_{T-2})$

p is the payoff from the solution **n** is the payoff from "not solution" f is the probability of finding the peak from random exploration T is the number of rounds P₊ is the expected payoff to exploration t steps from end

LF agents "Vision" = 3 units

Proportion of Games in which Peak was Found

LF agents "Vision" = 12 units

ound

LF agents "Vision" = 20 units

Proportion of Games in which Peak was Found

"Optimal" agents

Agent Based Model, Based on Real Agents

- Extract individual playing strategies
- Build agent-based simulation where agents play like "real" players
- Explore problem space to discover new hypotheses
 - More complex landscapes
 - Different composition of individual strategies
 - Larger networks
- Return to experiments to test hypotheses

Exploration vs. Exploitation

Probability of exactly copying / guessing within 5 units from neighbor given maximum has not yet been found

Simulation Details

- Fit linear model to users' probability of copying by round
- Obtain distribution of slopes & intercepts
- On each round:
 - If agent or neighbors have score = 100, copy
 - If agent or neighbors have 60 < score < 100, guess within
 3 units of score
 - Else, copy highest score with probability based on intercept, slope & round or explore uniformly at random
- 100 simulated sessions (800 simulated games)

Finding the maximum

- 100 simulated sessions (800 simulated games)
- Maximum is found by at least one agent in 59% of games [63%]
- Maximum is found by all agents in 49% of games [56%]

Round

Frequency of Finding Maximum

Human Experiments

Simulations

Networks Affect Convergence Time

Simulation

Human Players

- Replicates findings from experimental work
- Suggests model of player behavior is reasonable

Networks Affect Convergence Time

- Replicates findings from experimental work
- Suggests model of player behavior is reasonable

Individual Performance Is Combination of Individual Position and Collective Performance

- Individuals in centralized networks perform well, relative to their peers
- All individuals in centralized networks perform poorly relative to individuals in decentralized networks
- Corroborates experimental results

Next Steps

- Explore problem space to discover new hypotheses
 - More complex payoff functions
 - Larger networks
 - Different composition of individual strategies
- Realistic model, but may be over-fit
 - Point threshold & imitation radius learned from known features of payoff functions
 - Copying / round depends on N rounds
- Return to experiments to test hypotheses

Constructing Communication Networks

- Goal: 16-node fixed-degree graphs with extreme statistics
- Start with fixed-degree random graphs
 - All players have same amount of information
 - Only position in graph can affect success
- Rewire to increase or decrease some graph feature
 - Maximum, Average, Variance
 - Betweenness, Closeness, Clustering, Network Constraint
 - Ensuring connected graph
- Stop when no rewiring improves feature
- Repeat 100 times, keep maximal graph

Features

- Clustering:
 - Number of connected neighbors / Possibly connected neighbors
- Betweenness
 - Number of shortest paths through node
- Closeness
 - Average shortest path to all nodes
- Network Constraint

$$nc(i) = \frac{1}{d^2} \sum_{j \in N(i)} (1 + \sum_{q \in N(i), q \neq j} p_{qj})^2$$

- Redundancy with neighbors

	Тороlоду	Radius	Diameter	Closeness	Betweenness	Clustering	Network Constraint
	Min Avg Betweenness	3	3	0.45	0.09	0	0.33
	Min Avg Clustering	3	4	0.44	0.09	0	0.33
	Max Max Closeness	3	5	0.41	0.1	0.06	0.36
	Max Var Constraint	3	6	0.39	0.12	0.25	0.47
\bigcirc	Max Avg Clustering	6	6	0.31	0.16	0.5	0.6
	Max Max Betweenness	3	6	0.31	0.17	0.37	0.54
	Min Max Closeness	5	9	0.27	0.2	0.37	0.53
	Max Avg Betweenness	5	9	0.27	0.2	0.44	0.57

Exploring vs. exploiting previous best

No difference in finding peak

 Independent searchers found the peak more often, but not significantly

No difference in finding peak

- Previous models suggest inefficient networks should find the peak more often
- Slower communication → more exploration

