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Harmonic Signal + Impulsive Noise
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Uy0: Signal with sparse DCT
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Observation: z0 = x0 +Uy0 where U is the DCT
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Convex Demixing Yields...
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minimize ‖x‖`1 + λ ‖y‖`1
subject to z0 = x+Uy
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Morphological Component Analysis

§ Observe z0 = x0 +Uy0

§ U is a known orthobasis; x0 and y0 are unknown vectors

§ To identify this model, we can assume

§ [Structure] The vectors x0 and y0 are sparse

§ [Incoherence] Columns of U are weakly correlated with std basis

§ Perform demixing using convex optimization:

minimize ‖x‖`1 + λ ‖y‖`1
subject to z0 = x+Uy

§ Application: Astronomical image processing

[Refs] Starck et al. (2003), Starck et al. (2005)
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Rank–Sparsity Decomposition

§ Observe matrix Z0 = X0 + Y0

§ To make this model identifiable, we can assume

§ [Structure] Matrix X0 is low rank and Y0 is sparse in std basis

§ [Incoherence] Singular vectors of X0 uncorrelated with std basis

§ Perform demixing using convex optimization:

minimize ‖X‖S1 + λ ‖Y ‖`1
subject to Z0 = X + Y

§ Application: Identifying latent variables in graphical models

[Refs] Chandrasekaran et al. (2009), Candès et al. (2010)
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A Phase Transition for Rank–Sparsity

Z0 = X0 + Y0 with k = rank(X0) and m = nnz(Y0)

[Source] Chandrasekaran et al. (2009)
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Examples of Structural Penalties

Structure Structural Penalty

Sparse vector `1 norm

Sign vector `∞ norm

Low-rank matrix S1 norm

Orthogonal mtx S∞ norm

§ Many, many others!

[Refs] DeVore & Temlyakov (1996), Temlyakov (2003), Chandrasekaran et al. (2010)
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Small `1 Norm Reflects Sparsity

§ A sparse vector x0 is a superposition of few standard basis vectors

§ Consider the set A = {±ek : k = 1, . . . , d}
§ convA = smallest convex set containing A

§ The `1 norm has unit ball convA , so

‖x0 + h‖1 > ‖x0‖1 for as many h as possible

=atom
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More General Structures

§ Want to construct a convex function that reflects “structure”

§ “Structure” = “a superposition of few atoms from a known set”

§ Let A be a set of atoms. Define the convex structural penalty

fA (x) := inf{t > 0 : x ∈ t · conv(A )}

fA(x) = 1

fA(x) < 1

fA(x) > 1
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Examples of Structural Penalties, Redux

Structure Dictionary Penalty

Sparse vector A = {±ei : i = 1, . . . , d} `1 norm

Sign vector A = {±1}d `∞ norm

Low-rank matrix A = {unit norm, rank-one mtx} S1 norm

Orthogonal mtx A = {orthogonal mtx} S∞ norm

§ Every set of atoms gives a convex structural penalty!

§ Not all convex penalties lead to tractable optimization problems...

[Refs] DeVore & Temlyakov (1996), Temlyakov (2003), Chandrasekaran et al. (2010)
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An Abstract Demixing Problem

§ Let x0 and y0 be structured vectors with convex penalties f and g

§ Let U be a known orthogonal matrix

§ Observe z0 = x0 +Uy0

§ We pose the convex demixing method

minimize f(x)

subject to g(y) ≤ α and z0 = x+Uy

where α = g(y0) is side information

§ Hope: The pair (x0,y0) is the unique solution
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Geometry of Exact Recovery I

§ The sublevel sets of a nonsmooth convex function are locally conic

§ The feasible cone F (f,x0) is the convex cone generated by directions

where f is locally nondecreasing at x0

§ “Pointy” sublevel set = small feasible cone

x0

f(x)

F(f, x0)

x0
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Geometry of Exact Recovery II

§ The convex demixing method succeeds if and only if two feasible cones

intersect trivially:

F (f,x0) ∩ (−UF (g,y0)) = {0}

x0 = z0 −U y 0

f (x) = f (x0)

Feasible
set

F(f, x0)

−UF(g, y0)
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A Randomized Model for Incoherence

§ We want to study the case where signal structures are oblique

§ Idea: Use a random model for incoherence

§ Let Q be a uniformly random orthogonal matrix, and we observe

z0 = x0 +Qy0

§ Convex demixing succeeds if and only if

F (f,x0) ∩ (−QF (g,y0)) = {0}

[Refs] Donoho & Stark (1989), Donoho & Huo (2001)
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The Spherical Kinematic Formula

§ Need to study when two randomly oriented cones strike

§ There is an exact expression for this quantity!

Spherical Kinematic Formula

Let K and K̃ be closed convex cones, one of which is not a subspace

P
{
K ∩QK̃ 6= {0}

}
=

d∑
j=0

(1 + (−1)j+1)

d∑
i=j

vi(K) · vd−i+j(K̃)

where vi is the ith spherical intrinsic volume for i = 0, 1, . . . , d

[Refs] Allendorfer & Weil (1943), Glasauer (1996)

Convex Demixing, IPAM, Los Angeles, 18 January 2012 15



Spherical Intrinsic Volumes

§ The spherical intrinsic volumes vi are measures of content for cones

§ Let K be a polyhedral cone. Define

vi(K) := P
{

ΠK(ω) lies inside an i-dimensional face of K

}
§ ΠK is the Euclidean projection of a point onto the cone K

§ ω is a standard Gaussian vector

§ In non-polyhedral case, define vi by approximating with polyhedral cones

[Refs] Glasauer (1996), Schneider & Weil (2008), Amelunxen (2011)

Convex Demixing, IPAM, Los Angeles, 18 January 2012 16



Example: The Nonnegative Orthant

Rd+ := {x ∈ Rd : xi ≥ 0}

§ Up to rotation, the orthant is the feasible cone of `∞ at a sign vector

§ The projection of x onto the orthant satisfies (Π+(x))i = max{xi, 0}
§ The i-dimensional faces contain vectors with exactly i positive entries

vi(Rd+) = P
{
Π+(ω) lies inside an i-dim. face of Rd+

}
= P {ω has exactly i positive entries} = 2−d

(
d

i

)
§ For the normalized index θ = i/d, the normalized intrinsic volume

d−1 log vi(Rd+)→ H(θ)− log(2) where H = bit entropy
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Spherical Intrinsic Volumes are Peaked
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Normalized intrinsic volume of the nonnegative orthant
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§ The value θ? is the structural complexity of the cone K

§ For any θ > θ?, the intrinsic volume vθd(K) ≤ const · e−c(θ)·d
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Examples of Structural Complexity

Structure Penalty Parameter Structural Complexity

Subspace Indicator σ = subspace dim
ambient dim θ? = σ

Sparse vector `1 norm τ = sparsity
dimension θ? = ϕ(τ)

Sign vector `∞ norm — θ? =
1
2

Square, low-rank S1 norm ρ = rank
side length θ? ≤ 6ρ− 5ρ2

Orthogonal mtx S∞ norm — θ? ≤ 3
4

Structural complexity = “dimension” of cone / ambient dimension!
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Demixing of Structured Incoherent Signals

Theorem 1. Suppose that

§ x0 and y0 are structured signals with convex penalties f and g;

§ Q is a uniformly random orthobasis;

§ We observe z0 = x0 +Qy0 and side information α = g(y0);

§ The structural complexities satisfy

θ?(f,x0) + θ?(g,y0) < 1.

Then, w.h.p. over Q, the pair (x0,y0) is the unique solution to

minimize f(x)

subject to g(y) ≤ α and z0 = x+Qy.

Conversely, if θ?(f,x0) + θ?(g,y0) > 1, the optimization fails w.h.p.
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Example: Sparse + Sparse in Random Basis
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Example: Low Rank + Sparse in Random Basis

Ratio of rank to edge length ρ = r/D
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Deconvolving sparse and low-rank
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Example: Spread-Spectrum Communications

§ Want to transmit a binary message m0 ∈ {±1}d
§ Modulate with a random matrix Q, known at transmitter and receiver

§ Receiver observes

z0 = Qm0 + c0

where c0 is a sparse corruption

§ Decode using convex demixing method

minimize ‖c‖`1
subject to ‖m‖`∞ ≤ 1 and z0 = Qm+ c

§ When does the receiver correctly identify the true message?

[Refs] Wyner (1979), Donoho & Huo (2001)
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Decoding Performance
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To learn more...

E-mail: mccoy@cms.caltech.edu

jtropp@cms.caltech.edu

Web: http://users.cms.caltech.edu/~mccoy

http://users.cms.caltech.edu/~jtropp

Papers:

§ MT, “Sharp recovery bounds for convex deconvolution, with applications.” arXiv cs.IT

1205.1580

§ More to come...

Convex Demixing, IPAM, Los Angeles, 18 January 2012 25


