Convex Demixing

Sharp Thresholds for Recovering Superimposed Signals

Joel A. Tropp Michael B. McCoy

jtropp@cms.caltech.edu mccoy@cms.caltech.edu

Computing + Mathematical Sciences California Institute of Technology

Harmonic Signal + Impulsive Noise

Observation: $oldsymbol{z}_0 = oldsymbol{x}_0 + oldsymbol{U}oldsymbol{y}_0$ where $oldsymbol{U}$ is the DCT

Convex Demixing Yields...

Morphological Component Analysis

- Normalized Deserve $oldsymbol{z}_0 = oldsymbol{x}_0 + oldsymbol{U}oldsymbol{y}_0$
- \blacktriangleright U is a known orthobasis; x_0 and y_0 are unknown vectors
- >>> To identify this model, we can assume
 - ***** [Structure] The vectors \boldsymbol{x}_0 and \boldsymbol{y}_0 are sparse
 - \blacktriangleright [Incoherence] Columns of U are weakly correlated with std basis
- Perform demixing using convex optimization:

minimize
$$\|m{x}\|_{\ell_1} + \lambda \, \|m{y}\|_{\ell_1}$$

subject to $m{z}_0 = m{x} + m{U}m{y}$

Application: Astronomical image processing

[Refs] Starck et al. (2003), Starck et al. (2005)

Rank–Sparsity Decomposition

- ▶ Observe matrix $Z_0 = X_0 + Y_0$
- To make this model identifiable, we can assume
 - **Structure**] Matrix X_0 is low rank and Y_0 is sparse in std basis
 - ***** [Incoherence] Singular vectors of X_0 uncorrelated with std basis
- Perform demixing using convex optimization:

minimize	$\left\ oldsymbol{X} ight\ _{S_{1}}+\lambda\left\ oldsymbol{Y} ight\ _{\ell_{1}}$
subject to	$oldsymbol{Z}_0 = oldsymbol{X} + oldsymbol{Y}$

Application: Identifying latent variables in graphical models

[Refs] Chandrasekaran et al. (2009), Candès et al. (2010)

A Phase Transition for Rank–Sparsity

 $Z_0 = X_0 + Y_0$ with $k = \operatorname{rank}(X_0)$ and $m = \operatorname{nnz}(Y_0)$

[Source] Chandrasekaran et al. (2009)

Convex Demixing, IPAM, Los Angeles, 18 January 2012

Examples of Structural Penalties

Structure	Structural Penalty	
Sparse vector	ℓ_1 norm	
Sign vector	ℓ_∞ norm	
Low-rank matrix	S_1 norm	
Orthogonal mtx	S_∞ norm	

Many, many others!

[Refs] DeVore & Temlyakov (1996), Temlyakov (2003), Chandrasekaran et al. (2010)

Small ℓ_1 Norm Reflects Sparsity

- \sim A sparse vector x_0 is a superposition of few standard basis vectors
- ▶ Consider the set $\mathscr{A} = \{\pm \mathbf{e}_k : k = 1, \dots, d\}$
- ▶ $\operatorname{conv} \mathscr{A} = \operatorname{smallest} \operatorname{convex} \operatorname{set} \operatorname{containing} \mathscr{A}$
- **a** The ℓ_1 norm has unit ball $\operatorname{conv} \mathscr{A}$, so

 $\|m{x}_0 + m{h}\|_1 > \|m{x}_0\|_1$ for as many $m{h}$ as possible

More General Structures

Want to construct a convex function that reflects "structure"

- \sim "Structure" = "a superposition of few atoms from a known set"
- Let *A* be a set of atoms. Define the *convex structural penalty*

 $f_{\mathscr{A}}(\boldsymbol{x}) := \inf\{t > 0 : \boldsymbol{x} \in t \cdot \operatorname{conv}(\mathscr{A})\}$

Examples of Structural Penalties, Redux

Structure	Dictionary	Penalty
Sparse vector	$\mathscr{A} = \{\pm \mathbf{e}_i : i = 1, \dots, d\}$	ℓ_1 norm
Sign vector	$\mathscr{A} = \{\pm 1\}^d$	ℓ_∞ norm
Low-rank matrix	$\mathscr{A} = \{$ unit norm, rank-one mtx $\}$	S_1 norm
Orthogonal mtx	$\mathscr{A} = \{ orthogonal \ mtx \}$	S_∞ norm

- Every set of atoms gives a convex structural penalty!
- Not all convex penalties lead to tractable optimization problems...

[Refs] DeVore & Temlyakov (1996), Temlyakov (2003), Chandrasekaran et al. (2010)

An Abstract Demixing Problem

- \blacktriangleright Let \boldsymbol{x}_0 and \boldsymbol{y}_0 be structured vectors with convex penalties f and g
- \blacktriangleright Let U be a known orthogonal matrix
- Normalized Deserve $oldsymbol{z}_0 = oldsymbol{x}_0 + oldsymbol{U}oldsymbol{y}_0$
- We pose the *convex demixing method*

minimize $f({m x})$ subject to $g({m y}) \le lpha$ and ${m z}_0 = {m x} + {m U} {m y}$

where $\alpha = g(\boldsymbol{y}_0)$ is side information

Hope: The pair $(\boldsymbol{x}_0, \boldsymbol{y}_0)$ is the unique solution

Geometry of Exact Recovery I

- The sublevel sets of a nonsmooth convex function are locally conic
- The *feasible cone* $\mathscr{F}(f, x_0)$ is the convex cone generated by directions where f is locally nondecreasing at x_0
- ✤ "Pointy" sublevel set = small feasible cone

Geometry of Exact Recovery II

The convex demixing method succeeds if and only if two feasible cones intersect trivially:

$$\mathscr{F}(f, \boldsymbol{x}_0) \cap (-\boldsymbol{U}\mathscr{F}(g, \boldsymbol{y}_0)) = \{\boldsymbol{0}\}$$

A Randomized Model for Incoherence

- We want to study the case where signal structures are oblique
- Idea: Use a random model for incoherence
- \blacktriangleright Let Q be a uniformly random orthogonal matrix, and we observe

 $oldsymbol{z}_0 = oldsymbol{x}_0 + oldsymbol{Q}oldsymbol{y}_0$

Convex demixing succeeds if and only if

$$\mathscr{F}(f, \boldsymbol{x}_0) \cap (-\boldsymbol{Q}\mathscr{F}(g, \boldsymbol{y}_0)) = \{\boldsymbol{0}\}$$

[Refs] Donoho & Stark (1989), Donoho & Huo (2001)

Convex Demixing, IPAM, Los Angeles, 18 January 2012

The Spherical Kinematic Formula

- Need to study when two randomly oriented cones strike
- There is an exact expression for this quantity!

Spherical Kinematic Formula

Let K and \tilde{K} be closed convex cones, one of which is not a subspace

$$\mathbb{P}\left\{K \cap \boldsymbol{Q}\tilde{K} \neq \{\mathbf{0}\}\right\} = \sum_{j=0}^{d} (1 + (-1)^{j+1}) \sum_{i=j}^{d} v_i(K) \cdot v_{d-i+j}(\tilde{K})$$

where v_i is the *i*th *spherical intrinsic volume* for i = 0, 1, ..., d

[Refs] Allendorfer & Weil (1943), Glasauer (1996)

Convex Demixing, IPAM, Los Angeles, 18 January 2012

Spherical Intrinsic Volumes

- \sim The spherical intrinsic volumes v_i are measures of content for cones
- \blacktriangleright Let K be a polyhedral cone. Define

$$v_i(K) := \mathbb{P}\left\{ \left. \mathbf{\Pi}_K(\boldsymbol{\omega}) \right. \text{ lies inside an } i \text{-dimensional face of } K \right\}$$

- Π_K is the Euclidean projection of a point onto the cone K• ω is a standard Gaussian vector
- \sim In non-polyhedral case, define v_i by approximating with polyhedral cones

[Refs] Glasauer (1996), Schneider & Weil (2008), Amelunxen (2011)

Example: The Nonnegative Orthant

$$\mathbb{R}^d_+ := \{ \boldsymbol{x} \in \mathbb{R}^d : x_i \ge 0 \}$$

- \blacktriangleright Up to rotation, the orthant is the feasible cone of ℓ_∞ at a sign vector
- The projection of x onto the orthant satisfies $(\Pi_+(x))_i = \max\{x_i, 0\}$
- \sim The *i*-dimensional faces contain vectors with exactly *i* positive entries

$$v_i(\mathbb{R}^d_+) = \mathbb{P}\left\{\mathbf{\Pi}_+(\boldsymbol{\omega}) \text{ lies inside an } i\text{-dim. face of } \mathbb{R}^d_+
ight\}$$

= $\mathbb{P}\left\{\boldsymbol{\omega} \text{ has exactly } i \text{ positive entries}
ight\} = 2^{-d} \binom{d}{i}$

Nor the normalized index $\theta = i/d$, the normalized intrinsic volume

$$d^{-1}\log v_i(\mathbb{R}^d_+) \to H(\theta) - \log(2)$$
 where $H = \text{bit entropy}$

Spherical Intrinsic Volumes are Peaked

The value θ_{\star} is the *structural complexity* of the cone KFor any $\theta > \theta_{\star}$, the intrinsic volume $v_{\theta d}(K) \leq \text{const} \cdot e^{-c(\theta) \cdot d}$

Examples of Structural Complexity

Structure	Penalty	Parameter	Structural Complexity
Subspace	Indicator	$\sigma = \frac{\text{subspace dim}}{\text{ambient dim}}$	$ heta_{\star} = \sigma$
Sparse vector	ℓ_1 norm	$ au = rac{ ext{sparsity}}{ ext{dimension}}$	$\theta_{\star} = \varphi(\tau)$
Sign vector	ℓ_∞ norm		$\theta_{\star} = \frac{1}{2}$
Square, Iow-rank	S_1 norm	$ ho = rac{\mathrm{rank}}{\mathrm{side \ length}}$	$\theta_\star \leq 6\rho - 5\rho^2$
Orthogonal mtx	S_∞ norm		$\theta_{\star} \leq \frac{3}{4}$

Structural complexity = "dimension" of cone / ambient dimension!

Demixing of Structured Incoherent Signals

Theorem 1. Suppose that

- $\triangleright x_0$ and y_0 are structured signals with convex penalties f and g;
- $\triangleright Q$ is a uniformly random orthobasis;
- We observe $m{z}_0 = m{x}_0 + m{Q}m{y}_0$ and side information $lpha = g(m{y}_0)$;
- The structural complexities satisfy

 $\theta_{\star}(f, \boldsymbol{x}_0) + \theta_{\star}(g, \boldsymbol{y}_0) < 1.$

Then, w.h.p. over $oldsymbol{Q}$, the pair $(oldsymbol{x}_0, oldsymbol{y}_0)$ is the unique solution to

minimize $f(\boldsymbol{x})$ subject to $g(\boldsymbol{y}) \leq \alpha$ and $\boldsymbol{z}_0 = \boldsymbol{x} + \boldsymbol{Q} \boldsymbol{y}.$

Conversely, if $\theta_{\star}(f, x_0) + \theta_{\star}(g, y_0) > 1$, the optimization fails w.h.p.

Convex Demixing, IPAM, Los Angeles, 18 January 2012

Example: Sparse + Sparse in Random Basis

Phase transition for success of constrained MCA (d=100)

Example: Low Rank + Sparse in Random Basis

Example: Spread-Spectrum Communications

- \blacktriangleright Want to transmit a binary message $oldsymbol{m}_0 \in \{\pm 1\}^d$
- \sim Modulate with a random matrix Q, known at transmitter and receiver
- Receiver observes

$$oldsymbol{z}_0 = oldsymbol{Q}oldsymbol{m}_0 + oldsymbol{c}_0$$

where c_0 is a sparse corruption

Decode using convex demixing method

minimize
$$\|m{c}\|_{\ell_1}$$

subject to $\|m{m}\|_{\ell_\infty} \leq 1$ and $m{z}_0 = m{Q}m{m} + m{c}$

When does the receiver correctly identify the true message?

[Refs] Wyner (1979), Donoho & Huo (2001)

Decoding Performance

To learn more...

E-mail: mccoy@cms.caltech.edu

jtropp@cms.caltech.edu

Web: http://users.cms.caltech.edu/~mccoy http://users.cms.caltech.edu/~jtropp

Papers:

- ▶ MT, "Sharp recovery bounds for convex deconvolution, with applications." arXiv cs.IT 1205.1580
- More to come...