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Convex Demixing Yields...

Original and Demixed

1 | | | | |
Demixed

o 05F Original |-

3
5 Of

2

-0.51 7

_‘] ] ] ] ] ] ] ] ] ]

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
Time (seconds)

minimize ||33||g1 ‘|‘)\||y||el

subject to zo=x+ Uy
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Morphological Component Analysis

« QObserve zg = xg + Uy
@ U is a known orthobasis; xy and yy are unknown vectors

« To identify this model, we can assume

:a- [Structure] The vectors xy and yq are sparse
:a- [Incoherence] Columns of U are weakly correlated with std basis

« Perform demixing using convex optimization:

minimize ], + Ayl

subject to zo=xz+ Uy

:a Application: Astronomical image processing

[Refs] Starck et al. (2003), Starck et al. (2005)
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Rank—Sparsity Decomposition

: Qbserve matrix Zg = X9+ Yy

s To make this model identifiable, we can assume

& [Structure] Matrix X is low rank and Yj is sparse in std basis
:a- [Incoherence] Singular vectors of X uncorrelated with std basis

« Perform demixing using convex optimization:
minimize 1 X|[s, + MY,
subject to Zo=X+Y
« Application: ldentifying latent variables in graphical models

[Refs] Chandrasekaran et al. (2009), Candeés et al. (2010)
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A Phase Transition for Rank—Sparsity
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Zo=Xo+Yy with k=rank(Xy) and m = nnz(Yp)

[Source] Chandrasekaran et al. (2009)
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Examples of Structural Penalties

Structure Structural Penalty
Sparse vector /1 norm
Sign vector {oo NOrm
Low-rank matrix S1 norm
Orthogonal mtx Soc NOrm

@ Many, many others!

[Refs] DeVore & Temlyakov (1996), Temlyakov (2003), Chandrasekaran et al. (2010)
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Small /; Norm Reflects Sparsity

« A sparse vector x( is a superposition of few standard basis vectors
¢ Consider the set & = {+er:k=1,...,d}

@ conv ./ = smallest convex set containing .o/

: The ¢1 norm has unit ball conv <7, so

|zo + h||; > ||xo|l; for as many h as possible

1 J¢=atom

[0 + hlly < llzolly

|20 + k||, > [|zoll,
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More General Structures

« Want to construct a convex function that reflects “structure”
« “Structure” = “a superposition of few atoms from a known set”
@ Let &/ be a set of atoms. Define the convex structural penalty

fo(x) :=inf{t >0:x €t-conv(e)}
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Examples of Structural Penalties, Redux

Structure Dictionary Penalty
Sparse vector o ={te;:i=1,...,d} /1 norm
Sign vector o = {£1}4 s nOrm

Low-rank matrix &/ = {unit norm, rank-one mtx} 57 norm

Orthogonal mtx o/ = {orthogonal mtx} Soo NOrmM

« Every set of atoms gives a convex structural penalty!
@ Not all convex penalties lead to tractable optimization problems...

[Refs] DeVore & Temlyakov (1996), Temlyakov (2003), Chandrasekaran et al. (2010)
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An Abstract Demixing Problem

@ Let xy and yo be structured vectors with convex penalties f and g

@ Let U be a known orthogonal matrix
@ QObserve zg = o + Uy

# We pose the convex demixing method

minimize f(x)

subjectto ¢g(y) <a and zg=x+Uy

where oo = g(yo) is side information

¢ Hope: The pair (xg,yo) is the unique solution
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Geometry of Exact Recovery |

- The sublevel sets of a nonsmooth convex function are locally conic

& The feasible cone .7 (f,xq) is the convex cone generated by directions
where f is locally nondecreasing at x

@ "Pointy” sublevel set = small feasible cone
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Geometry of Exact Recovery I

& The convex demixing method succeeds if and only if two feasible cones
intersect trivially:

F(f,20) N (=UZF(9,90)) = {0}

f(x) = f(xo)
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A Randomized Model for Incoherence

« \We want to study the case where signal structures are oblique
‘6 ldea: Use a random model for incoherence

@ Let (Q be a uniformly random orthogonal matrix, and we observe

zo = To + Qo

« Convex demixing succeeds if and only if

F(f,20) N (—QF (9,Y0)) = {0}

[Refs] Donoho & Stark (1989), Donoho & Huo (2001)
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The Spherical Kinematic Formula

8 Need to study when two randomly oriented cones strike
« There is an exact expression for this quantity!

Spherical Kinematic Formula

Let K and K be closed convex cones, one of which is not a subspace

d d
PAKNQE # {0} = (14 (=17 ™) Y 0ilK) - vy ()

J

where v; is the tth spherical intrinsic volume for 1 =0,1,...,d

[Refs] Allendorfer & Weil (1943), Glasauer (1996)
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Spherical Intrinsic Volumes

:8 The spherical intrinsic volumes v; are measures of content for cones

# Let K be a polyhedral cone. Define
v (K) = IP{ ITx (w) lies inside an i-dimensional face of K }

8 Il is the Euclidean projection of a point onto the cone K
8 w Is a standard Gaussian vector

@ |n non-polyhedral case, define v; by approximating with polyhedral cones

[Refs] Glasauer (1996), Schneider & Weil (2008), Amelunxen (2011)
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Example: The Nonnegative Orthant

RY :={x € R%: z;, >0}

@ Up to rotation, the orthant is the feasible cone of /., at a sign vector
& The projection of  onto the orthant satisfies (Il (x)); = max{x;,0}

@ The i-dimensional faces contain vectors with exactly 7 positive entries

v;(RY) = P{IL; (w) lies inside an i-dim. face of R% }

d
= [P {w has exactly i positive entries} = 2_d( )
(

¢a For the normalized index 6 = ¢/d, the normalized intrinsic volume
d 'logv;(RL) — H(0) —log(2) where H = bit entropy
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Spherical Intrinsic Volumes are Peaked

Normalized intrinsic volume of the nonnegative orthant
T T T T T T T T T |
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0: Normalized index (0 =i/d)

0 The value 6, is the structural complexity of the cone K

s For any § > 6,, the intrinsic volume vgq(K) < const - e¢(0)-d
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Examples of Structural Complexity

Structure Penalty Parameter Structural Complexity
. __ subspace dim L
Subspace Indicator = 0, =0
Sparse vector /1 norm = = 0. = (1)
Sign vector {~ norm 0, = %
_ 2
Square, low-rank S; norm  p = e length 6, < 6p—5p
Orthogonal mtx S, norm 0, < %
Structural complexity = “dimension” of cone / ambient dimension!
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Demixing of Structured Incoherent Signals

Theorem 1. Suppose that

@ xo and yqo are structured signals with convex penalties f and g;
@ @ is a uniformly random orthobasis;

o We observe zg = o + Qyq and side information o = g(yo),

« The structural complexities satisfy

0.(f,xo) + 0.(g,y0) < 1.

Then, w.h.p. over Q, the pair (xg,yo) is the unique solution to

minimize f(x)

subject to g(y) < a and zy=x+ Qy.

Conversely, if 0,(f,xq) + 04(g,yo) > 1, the optimization fails w.h.p.
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Example: Sparse + Sparse in Random Basis

Phase transition for success of constrained MCA (d=100)
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Example: Low Rank 4+ Sparse in Random Basis

Deconvolving sparse and low-rank

Empirical 50% success
Theoretical success bound

Ratio of support to dimension T = k/D? = k/d
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Example: Spread-Spectrum Communications

s \Want to transmit a binary message mg € {£1}¢
@ Modulate with a random matrix ), known at transmitter and receiver
:a. Receiver observes

zo = Qmy + ¢y

where ¢ Is a sparse corruption

:a Decode using convex demixing method

minimize |/c||,,

subject to  [[m||, <1 and zp=Qm+c

8 When does the receiver correctly identify the true message?

[Refs] Wyner (1979), Donoho & Huo (2001)
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Decoding Performance

Success rate vs. corruption sparsity for channel coding
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To learn more...

E-mail: mccoy@cms.caltech.edu
jtropp@cms.caltech.edu

Web: http://users.cms.caltech.edu/~mccoy
http://users.cms.caltech.edu/~jtropp

Papers:

@ MT, “Sharp recovery bounds for convex deconvolution, with applications.” arXiv cs.IT
1205.1580
@ More to come...
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