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+ Laura Balzano (Michigan). (GROUSE was proposed, studied, and
applied in her Ph.D. thesis, defended at UW-Madison in 2012.)
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Identifying Subspaces from Partial Observations

Often we observe a certain phenomenon on a high-dimensional ambient
space, but the phenomenon lies on a low-dimension subspace. Moreover,
our observations may not be complete: “missing data.”

Can we recover the subspace of interest?

Matrix completion, e.g. Netflix. Observe partial rows of an m × n
matrix; each row lies (roughly) in a low-d subspace of Rn.

Background/Foreground separation in video data.

Mining of spatal sensor data (traffic, temperature) with high
correlation between locations.
Structure from Motion: Observe a 3-d object from different camera
angles, noting the location of reference points on the object’s surface
on the (2-d) photo taken at each camera angle.

Object is solid, so some reference points are occluded in each photo.
Missing data!
Matrix of reference point locations in 2-d images has rank three.
Range subspace reveals 3-d location of reference points.
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Structure from Motion: Figures and Reconstructions

(Kennedy, Balzano, Taylor, Wright, 2012)
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Euclidean Subspace Identification

Seek subspace S ⊂ Rn of known dimension d � n.

Know certain components Ωt ⊂ {1, 2, . . . , n} of vectors vt ∈ S ,
t = 1, 2, . . . — the subvector [vt ]Ωt .

Assume that S is incoherent w.r.t. the coordinate directions.

We’ll also assume for purposes of analysis that

vt = Ūst , where Ū is an n × d orthonormal spanning S and the
components of st ∈ Rd are i.i.d. normal with mean 0.

Sample set Ωt is independent for each t with |Ωt | ≥ q, for some q
between d and n.

Observation subvectors [vt ]Ωt contain no noise.
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Full Data: Ωt ≡ {1, 2, . . . , n}: SVD (or QR)

If the vectors vt are fully revealed — Ωt ≡ {1, 2, . . . , n} — we obtain the
solution after d steps. An SVD

ŪΣ̄V̄ T = [v1 : v2 : · · · : vd ]

yields a spanning n × d orthonormal matrix Ū for S.

Our focus is on the case of |Ωt | < n, but the analysis simplifies greatly —
and gives an interesting result — in the full-data case. (More in a
moment.)
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Sampled Data: Batch Methods

For a fixed collection of vectors t = 1, 2, . . . ,T , use matrix completion:
Seek X ∈ Rn×T such that

A(X ) = v̄ , rank(X ) = d ,

where v is constructed from the known elements [vt ]Ωt and A is the
corresponding location map.

Need to relax for tractability, e.g. min ‖X‖∗ instead of imposing
rank(X ) = d .

Ideally, the solution X will have

X = [v1 : v2 : · · · : vT ].

A spanning matrix Ū can be obtained by finding the SVD of X — or of
some collection of d random vectors of the form Xs, with s random.
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Sampled Data: An Online / Incremental Algorithm

GROUSE (Grassmannian Rank-One Update Subspace Estimation).

Process the vt as a sequential stream.

Maintain an estimate Ut (orthonormal n × d) of the basis Ū for
target subspace S ;

Simple update formula Ut → Ut+1 when the next (vt)Ωt is received.

Note:

Setup is similar to incremental and stochastic gradient methods in
machine learning and optimization.

Simple rank-one update formula, akin to updates in quasi-Newton
Hessian and Jacobian approximations in optimization

Projection, so that all iterates Ut are n × d orthonormal.
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One GROUSE Step

Given current estimate Ut and partial data vector [vt ]Ωt , where vt = Ūst :

wt := arg min
w
‖[Utw − vt ]Ωt‖2

2;

pt := Utwt ;

[rt ]Ωt := [vt − Utwt ]Ωt ; [rt ]Ωc
t

:= 0;

σt := ‖rt‖‖pt‖;
Choose ηt > 0;

Ut+1 := Ut +

[
(cosσtηt − 1)

pt
‖pt‖

+ sinσtηt
rt
‖rt‖

]
wT
t

‖wt‖
;

We focus on the (locally acceptable) choice

ηt =
1

σt
arcsin

‖rt‖
‖pt‖

, which yields σtηt = arcsin
‖rt‖
‖pt‖

≈ ‖rt‖
‖pt‖

.
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GROUSE Observations

With the particular step above, and assuming ‖rt‖ � ‖pt‖, have

Ut+1wt ≈ Utwt +
‖rt‖
‖pt‖

rt
‖rt‖

wT
t wt

‖wt‖
= pt + rt ,

since pt = Utwt . Thus

[Ut+1wt ]Ωt ≈ [pt + rt ]Ωt = [vt ]Ωt ,

[Ut+1wt ]Ωc
t
≈ [pt + rt ]Ωc

t
= [Utwt ]Ωt ,

where the second line follows from [rt ]Ωc
t

= 0. Thus

On sample set Ωt , Ut+1wt matches obervations in vt ;

On other elements, the components of Ut+1wt and Utwt are similar.

Ut+1z = Utz for any z with wT
t z = 0.
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GROUSE Comments

The GROUSE update is essentially a project of a step along the search
direction rtw

T
t . Defining the inconsistency measure

E(Ut) := min
wt
‖[Ut ]Ωtwt − [vt ]Ωt‖2

2,

we have
dE
dUt

= −2rtw
T
t ,

so we see that the GROUSE search direction is the negative gradient of E .

The GROUSE update has much in common with quasi-Newton updates in
optimization, in that it makes the minimal adjustment required to
match the latest observations, while retaining a certain desired
structure — orthonormality, in this case.
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GROUSE Local Convergence Questions

How to measure discrepancy between current estimate R(Ut) and S?

Convergence behavior is obviously random, but what can we say
about expected rate? Linear? If so, how fast?

How does the analysis specialize to the full-data case?

For the first question, can use angles between subspaces φt,i ,
i = 1, 2, . . . , d .

cosφt,i = σi (U
T
t Ū),

where σi (·) denotes the ith singular value. Define

εt :=
d∑

i=1

sin2 φt,i = d −
d∑

i=1

σi (U
T
t Ū)2 = d − ‖UT

t Ū‖2
F .

We seek a bound for E [εt+1|εt ], where the expectation is taken over the
random vector st for which vt = Ūst .
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Full-Data Case

Full-data case vastly simpler to analyze than the general case. Define

θt := arccos(‖pt‖/‖vt‖) is the angle between R(Ut) and S that is
revealed by the update vector vt ;
Define At := UT

t Ū, d × d , nearly orthogonal when R(Ut) ≈ S. We
have εt = d − ‖At‖2

F .

Lemma

εt − εt+1 =
sin(σtηt) sin(2θt − σtηt)

sin2 θt

(
1− sTt AT

t AtA
T
t Atst

sTt AT
t Atst

)
,

The right-hand side is nonnegative for σtηt ∈ (0, 2θt), and zero if
vt ∈ R(Ut) = St or vt ⊥ St .

Our favorite choice of ηt (defined above) yields σtηt = θt , which simplifies
the expression above vastly:

εt − εt+1 = 1− sTt AT
t AtA

T
t Atst

sTt AT
t Atst

.
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Dropping subscripts, we obtain

sTATAATAs

sTATAs
=

sTY Γ4Y T s

sTY Γ2Y T s
=

s̃TΓ4s̃

s̃TΓ2s̃
,

where Y is orthogonal and Γ is a diagonal matrix with elements cosφt,i —
the angles between the subspaces R(Ut) and S defined earlier.

Lemma

Given Q ∈ Rd×d , suppose that s̃ ∈ Rd is a random vector whose
components are all i.i.d. in N (0, 1). Then

E

(
s̃TQs̃

s̃T s̃

)
=

1

d
traceQ.

Useful, but can’t quite apply it directly.
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s̃TΓ4s̃

s̃TΓ2s̃
=

∑
s̃2
i cos4 φi∑
s̃2
i cos2 φi

=

∑
s̃2
i [1− 2 sin2 φi + sin4 φi ]∑

s̃2
i (1− sin2 φi )

≈
1− 2(

∑
s̃2
i sin2 φi )/(

∑
s̃2
i )

1− (
∑

s̃2
i sin2 φi )/(

∑
s̃2
i )

=
1− 2ψ

1− ψ
,

where ψ := (
∑

s̃2
i sin2 φi )/(

∑
s̃2
i ). Two nice things about ψ:

E (ψ) =
1

d

d∑
i=1

sin2 φi =
1

d
εt , 0 ≤ ψ ≤ max

i=1,2,...,d
sin2 φi ≤ εt .

Theorem

Suppose that εt ≤ ε̄ for some ε̄ ∈ (0, 1/3). Then

E [εt+1 | εt ] ≤
(

1−
(

1− 3ε̄

1− ε̄

)
1

d

)
εt .
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Full-Data: Summary

Since the sequence {εt} is decreasing, by the earlier lemma, we have εt ↓ 0
with probability 1 when started with ε0 ≤ ε̄.

Linear convergence rate is asymptotically 1− 1/d .

For d = 1, get near-convergence in one step (thankfully!)

Generally, in d steps (which is number of steps to get the exact
solution using SVD), improvement factor is

(1− 1/d)d <
1

e
.

Plot some computational results for {εt} on a semilog plot, comparing
with the curve (1− 1/d)t . n = 10000 and d = 4, 6, 10, 20.
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εt vs expected (1− 1/d) rate (for various d)
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εt vs expected (1− 1/d) rate (for various d)
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General Case: Preliminaries

Assume a regime in which εt is small.

Define coherence of S (w.r.t. coordinate directions) by

µ̄ :=
n

d
max

i=1,2,...,n
‖PSei‖2

2.

It’s in range [1, n/d ], nearer the bottom if “incoherent.”

Add a safeguard to GROUSE: Take the step only if

σi ([Ut ]
T
Ωt

[Ut ]Ωt ) ∈
[
.5
|Ωt |
n
, 1.5
|Ωt |
n

]
, i = 1, 2, . . . , d ,

i.e. the sample is big enough to capture accurately the expression of vt in
terms of the columns of Ut . Can show that this will happen w.p. ≥ .9 if

|Ωt | ≥ q ≥ C1(log n)2d µ̄ log(20d), C1 ≥
64

3
.
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More Preliminaries

Given current measure of the distance εt from optimality, use a result from
Stewart and Sun (1990) to obtain

Lemma

Suppose that n ≥ 2d. Then there is an orthogonal Vt ∈ Rd×d such that

εt ≤ ‖ŪVt − Ut‖2
F ≤ 2εt .

Assume globally that

|Ωt | ≥ q, εt ≤
1

128

q2

n2d
.

We can then derive several useful bounds:

‖rt‖ ≤
√

2εt‖st‖, ‖pt‖ ∈
[

3

4
‖st‖,

5

4
‖st‖

]
,
‖rt‖2

‖pt‖2
≤ 32

9
εt .
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Estimate for εt − εt+1

Drop subscripts on rt , wt , pt , σt , ηt . Have exactly that

εt − εt+1 = ‖ŪTUt+1‖2
F − ‖ŪTUt‖2

F

= sin2(ση)

(
‖ŪT r‖2

‖r‖2
− ‖Ū

Tp‖2

‖p‖2

)
+ sin(2ση)

(ŪTp)T (ŪT r)

‖p‖‖r‖

≥ − sin2(ση) + sin(2ση)
(ŪTp)T (ŪT r)

‖p‖‖r‖
.

Our favorite choice of η yields sinση = ‖r‖/‖p‖. We can show that

(ŪTp)T (ŪT r) ≈ ‖r‖2.

Together these yield the key estimate (asymptotically exact):

εt − εt+1 ≈
‖rt‖2

‖pt‖2
.
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The Result

Require conditions on q and the fudge factor C1:

q ≥ C1(log n)2d µ̄ log(20d), C1 ≥
64

3
;

Also need C1 large enough that the coherence in the residual between vt
and current subspace estimate Ut satisfies a certain (reasonable) bound
w.p. 1− δ̄, for some δ̄ ∈ (0, .6). Then for

εt ≤ (8× 10−6)(.6− δ̄)2 q3

n3d2
,

εt ≤
1

16

d

n
µ̄,

we have
E [εt+1 | εt ] ≤

(
1− (.16)(.6− δ̄)

q

nd

)
εt .
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The Result: Comments and Steps

The decrease constant it not too far from that observed in practice; we see
a factor of about

1− X
q

nd

where X is not too much less than 1.

The threshold condition on εt is quite pessimistic, however. Linear
convergence behavior is seen at much higher values.

18 pages (SIAM format) of technical analysis. We highlight the main tools
and key inequalities.
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Steps

1. Tightening of (deterministic) bound on εt − εt+1:

εt+1 ≤ εt −
‖rt‖2

‖pt‖2
+ 55

√
n

q
ε

3/2
t .

If we can find a lower bound on ‖rt‖2/‖wt‖2 as a multiple of εt , the last
term becomes lower-order and we can get linear decrease, for small εt .

2.
‖rt‖2

‖pt‖2
≥ 16

25

‖rt‖2

‖st‖2
,

by the GROUSE safeguard (which holds for at least 90% of the iterates).

3. Use a 2010 result below: high-probability lower bound on ‖rt‖2 in
terms of ‖PN(UT

t )vt‖2
2. The factor is close to |Ωt |/n in practice, but we

pay a price for coherence and for the 1− δ guarantee.

(Here µ(.) denote coherence measures, which are close to 1 when the rows
of the argument have similar weight, closer to n or n/d otherwise.)
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Lemma (Balzano, Recht, Nowak (2010))

Let δ > 0 be given, and suppose that

|Ωt | >
8

3
dµ(Ut) log

(
2d

δ

)
.

Then with probability at least 1− 3δ, we have

‖rt‖2
2 ≥

 |Ωt |(1− ξt)− dµ(Ut)
(1+βt)2

1−γt
n

 ‖PN(UT
t )vt‖

2
2,

where

ξt :=

√
2µ(PN(UT

t )vt)
2

|Ωt |
log

(
1

δ

)
, βt :=

√
2µ(PN(UT

t )vt) log

(
1

δ

)
,

γt :=

√
8dµ(Ut)

3|Ωt |
log

(
2d

δ

)
.
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Steps

4. Set δ = .1. We observe computationally that the error identified by the
latest sample — PN(UT

t )vt — is incoherent with respect to coordinate
directions. (It seems to grow like log n.) We find that the factor is
bounded below by q/2 when this quantity satisifies the following:

µ(PN(UT
t )vt) ≤ log n

[
.045

log 10
C1dµ(Ū) log(20d)

]1/2

µ(PN(UT
t )vt) ≤ (log n)2

[
.05

8 log 10
C1 log(20d)

]
.

That is, we have w.p. at least .7 that

‖rt‖2
2 ≥

q

2
‖PN(UT

t )vt‖
2
2.

We assume that C1 is chosen large enough that these bounds are satisfied
w.p. at least 1− δ̄ for some δ̄ ∈ (0, .6).
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Steps

5. Defining θt as the angle between vt and the subspace R(Ut), we have

‖PN(UT
t )vt‖2

‖vt‖2
= sin2 θt .

6. The high-probability bound now gives two cases:

εt+1 ≤ εt − .32
q

n
sin2 θt + 55

√
n

q
ε

3/2
t , w.p. .6− δ̄,

εt+1 ≤ εt + 55

√
n

q
ε

3/2
t , otherwise.

7. Can show uisng the technical Lemma defined earlier, can show that
when vt = Ūst with components of st i.i.d N (0, 1), then

E (sin2 θt) =
1

d
εt .

The Result follows by combining all these arguments.
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Computations for GROUSE with Sampling

Choose U0 so that ε0 is between 1 and 4.

Stop when εt ≤ 10−6.

Calculate average convergence rate: value X such that

εN ≈ ε0

(
1− X

q

nd

)N
.

We find that X is not too much less than 1!
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εt , for n = 500, d = 10, q = 50.

Average decrease factor ≈ 1− .79 ∗ q/(nd)
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εt , for n = 500, d = 10, q = 25.

Average decrease factor ≈ 1− .57 ∗ q/(nd)
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εt , for n = 500, d = 20, q = 100.

Average decrease factor ≈ 1− .82 ∗ q/(nd)
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εt , for n = 5000, d = 10, q = 40.

Average decrease factor ≈ 1− .72 ∗ q/(nd)
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SVD Approaches for the General Case

A naive batch SVD approach, following the successful approach for full
data, would be to assemble all the partial [vt ]Ωt into an n × T matrix,
filling out with zeros, and take the estimate UT to be the leading d
singular values.

This gives terrible results — the zeros confuse it.

An incremental version, in which we update Ut by adding the column vt
(filled out with zeros), and taking the leading d singular vectors of the
resulting matrix, is similarly bad.
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Incremental SVD, done right: iSVD

Given Ut and [vt ]Ωt :

Compute wt as in GROUSE:

wt := arg min
w
‖[Utw − vt ]Ωt‖2

2.

Use wt to impute the unknown elements (vt)ΩC
t

, and fill out vt with
these estimates:

ṽt :=

[
[vt ]Ωt

[Ut ]Ωc
t
wt

]
.

Append ṽt to Ut and take the SVD of the resulting n × (d + 1)
matrix [Ut : ṽt ];

Define Ut+1 to be the leading d singular vectors. (Discard the
singular vector that corresponds to the smallest singular value of the
augmented matrix.)
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iSVD and GROUSE

iSVD and GROUSE seem similar:

Both compute and use wt to extract the missing information from Ut

and [vt ]Ωt .

Both generate a sequence {Ut} of orthonormal estimates of S.

Both ostensibly use no information before Ut .

Neither has different confidence for different subspaces of the target
subspace S; both maintain a “flat” approximation.

Indeed, can show that iSVD and GROUSE are identical for certain choices
of the parameter ηt .

The choice of ηt is not the same as the “optimal” choice in GROUSE, but
it works farily well in practice.
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Relating iSVD and GROUSE

Theorem

Suppose we have the same Ut and [vt ]Ωt at the t-th iterations of iSVD
and GROUSE. Then there exists ηt > 0 in GROUSE such that the next
iterates Ut+1 of both algorithms are identical, to within an orthogonal
transformation by the d × d matrix

Wt :=

[
wt

‖wt‖
|Zt

]
,

where Zt is a d × (d − 1) orthonormal matrix whose columns span N(wT
t ).
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GROUSE and iSVD: Details

The precise values for which GROUSE and iSVD are identical are:

λ =
1

2

[
(‖wt‖2 + ‖rt‖2 + 1) +

√
(‖wt‖2 + ‖rt‖2 + 1)2 − 4‖rt‖2

]
β =

‖rt‖2‖wt‖2

‖rt‖2‖wt‖2 + (λ− ‖rt‖2)2

α =
‖rt‖(λ− ‖rt‖2)

‖rt‖2‖wt‖2 + (λ− ‖rt‖2)2

ηt =
1

σt
arcsinβ.
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FIN
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