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+ Laura Balzano (Michigan). (GROUSE was proposed, studied, and
applied in her Ph.D. thesis, defended at UW-Madison in 2012.)
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|dentifying Subspaces from Partial Observations

Often we observe a certain phenomenon on a high-dimensional ambient
space, but the phenomenon lies on a low-dimension subspace. Moreover,
our observations may not be complete: “missing data.”

Can we recover the subspace of interest?

@ Matrix completion, e.g. Netflix. Observe partial rows of an m x n
matrix; each row lies (roughly) in a low-d subspace of R".
o Background/Foreground separation in video data.

@ Mining of spatal sensor data (traffic, temperature) with high
correlation between locations.

@ Structure from Motion: Observe a 3-d object from different camera
angles, noting the location of reference points on the object’s surface
on the (2-d) photo taken at each camera angle.

o Object is solid, so some reference points are occluded in each photo.
Missing data!

o Matrix of reference point locations in 2-d images has rank three.

o Range subspace reveals 3-d location of reference points.
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Structure from Motion: Figures and Reconstructions

(Kennedy, Balzano, Taylor, Wright, 2012)
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Euclidean Subspace Identification

@ Seek subspace S C R” of known dimension d < n.

e Know certain components Q; C {1,2,...,n} of vectors v; € S,
t=1,2,... — the subvector [v¢]q,.

@ Assume that S is incoherent w.r.t. the coordinate directions.

We'll also assume for purposes of analysis that

o v; = Us;, where U is an n x d orthonormal spanning S and the
components of s; € R? are i.i.d. normal with mean 0.

e Sample set Q; is independent for each t with |Q;| > g, for some ¢
between d and n.

o Observation subvectors [v¢]q, contain no noise.
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Full Data: Q; = {1,2,...,n}: SVD (or QR)

If the vectors v; are fully revealed — Q; = {1,2,...,n} — we obtain the
solution after d steps. An SVD

ULV =it vt -+ 1 vy

yields a spanning n x d orthonormal matrix U for S.

Our focus is on the case of |Q;| < n, but the analysis simplifies greatly —
and gives an interesting result — in the full-data case. (More in a
moment.)
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Sampled Data: Batch Methods

For a fixed collection of vectors t = 1,2, ..., T, use matrix completion:
Seek X € R"™*T such that

A(X) = v, rank(X) =d,

where v is constructed from the known elements [v¢]q, and A is the
corresponding location map.

Need to relax for tractability, e.g. min [|.X]|. instead of imposing
rank(X) = d.

Ideally, the solution X will have
X=[w:wv::vr]

A spanning matrix U can be obtained by finding the SVD of X — or of
some collection of d random vectors of the form Xs, with s random.
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Sampled Data: An Online / Incremental Algorithm

GROUSE (Grassmannian Rank-One Update Subspace Estimation).

@ Process the v; as a sequential stream.

o Maintain an estimate U; (orthonormal n x d) of the basis U for
target subspace S;

o Simple update formula Uy — Uyt1 when the next (v¢)q, is received.

Note:

@ Setup is similar to incremental and stochastic gradient methods in
machine learning and optimization.

@ Simple rank-one update formula, akin to updates in quasi-Newton
Hessian and Jacobian approximations in optimization

@ Projection, so that all iterates U; are n x d orthonormal.

0 Subspace Identification IPAM, January 2013

8 /38



One GROUSE Step

Given current estimate U; and partial data vector [v¢]q,, where v; = Us;:

w; 1= arg mmi/n [[Uew — Vt]Qt“%

pt := Upwy;
[rel@. == [ve = Uswe],;  [relag :=0;
or = rellllpel;

Choose n: > 0;

Pt WT
Ut+]_ = Ut + (COS otNt — ].)_ + sin OtNe— 7 —t_
[Pl | tH
We focus on the (locally acceptable) choice
[[re o el el
Ne = — arcsm which yields osn; = arcsin RS .
[pell” [pell e
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GROUSE Observations

With the particular step above, and assuming ||r¢|| < ||p¢]|, have

Irell re WtTWf
[Pl [frell [Iwell

Uryiwe = Urwy + =pt+ I,

since py = Uiw;. Thus
[Ut—l—th]Qt ~ [Pt + rt]Qt = [Vt]Qtv
[Utriwelas = [pr + ri]ac = [Urwiq,,

where the second line follows from [r:]qc = 0. Thus
@ On sample set Q;, U;r1w; matches obervations in v;

@ On other elements, the components of U;r1w; and Uyw; are similar.

@ Uty1z = Uiz for any z with Wth =0.
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GROUSE Comments

The GROUSE update is essentially a project of a step along the search
direction r:w,”. Defining the inconsistency measure

E(Ur) = "a/it" I[Uela.we — [vela. |13,

we have Je
d_(jt = —2rtWtT,

so we see that the GROUSE search direction is the negative gradient of £.

The GROUSE update has much in common with quasi-Newton updates in
optimization, in that it makes the minimal adjustment required to
match the latest observations, while retaining a certain desired
structure — orthonormality, in this case.
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GROUSE Local Convergence Questions

@ How to measure discrepancy between current estimate R(U;) and S7

@ Convergence behavior is obviously random, but what can we say
about expected rate? Linear? If so, how fast?

@ How does the analysis specialize to the full-data case?

For the first question, can use angles between subspaces ¢y ;,
i=12,...,d.
S
cos ¢ j = oi(U, U),

where oj(-) denotes the ith singular value. Define

d

= singi=d—Y oi(UTU)? =d—||U] |3
i=1 i=1

We seek a bound for E[c;.1|e¢], where the expectation is taken over the

random vector s; for which v; = Us;.
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Full-Data Case

Full-data case vastly simpler to analyze than the general case. Define
o O := arccos(||pt||/||ve]]) is the angle between R(U;) and S that is
revealed by the update vector v;;
o Define A; := UtTL_/, d x d, nearly orthogonal when R(U;) ~ S. We
have € = d — [|A¢|%.

€t — €t41

_ sin(oene) sin(20 — oene) ( _ StTAZ-AtAtTAtSt)

TAT
S¢ At Atst

The right-hand side is nonnegative for o¢n: € (0,20;), and zero if
Vi € R(Ut) = St or V¢ 1 St.

sin? 6,

Our favorite choice of 7; (defined above) yields o:n: = 6, which simplifies
the expression above vastly:

TAT T
Sy At AtAt AtSt
s¢ Al Avst
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Dropping subscripts, we obtain

sTATAAT As _ sTYT4YTs B RS
sTATAs  sTYI2yTs 37123

where Y is orthogonal and I is a diagonal matrix with elements cos ¢;; —

the angles between the subspaces R(U;) and S defined earlier.

Lemma

Given @ € R9*9, suppose that § € RY is a random vector whose
components are all i.i.d. in N(0,1). Then

~T ~
E (s QS) = %trace Q.

575

Useful, but can't quite apply it directly.
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§TT*s Y52 cost ¢
§T125 332 cos? ¢
ST 82[1 — 2sin? ¢; + sin® @]
- XF-sa)
1-2(0 #sin6)/( %) 1-20
I 2sn?e)/(X8)  1-v
where 1 := (3" 8?sin? ¢;)/(32 §?). Two nice things about 1:

sin® =—e 0<¢¥ < max sin2 ¢: < €.
dz t T/J 112’ ,d ¢I_ t

Suppose that e; < € for some € € (0,1/3). Then

1-3e\ 1
< = — .
E[€t+1|€t]_ (1 (]_—E) d) €t
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Full-Data: Summary

Since the sequence {e;} is decreasing, by the earlier lemma, we have ¢; | 0
with probability 1 when started with ey < €.

Linear convergence rate is asymptotically 1 — 1/d.
e For d =1, get near-convergence in one step (thankfully!)

o Generally, in d steps (which is number of steps to get the exact
solution using SVD), improvement factor is

(1—1/d)9 <

|-

Plot some computational results for {€;} on a semilog plot, comparing
with the curve (1 —1/d)". n= 10000 and d = 4,6, 10, 20.
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€: vs expected (1 — 1/d) rate (for various d)

“'4'“','"""" 4=6,n=10000
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€: vs expected (1 — 1/d) rate (for various d)

¢=20,n=10000
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General Case: Preliminaries

Assume a regime in which ¢; is small.

Define coherence of S (w.r.t. coordinate directions) by

b= max | Pse;l3.

n
di=12,...n
It's in range [1, n/d], nearer the bottom if “incoherent.”

Add a safeguard to GROUSE: Take the step only if

Q Q
O-i([Ut]g:’Z—t[Ut]Qt) S [5%,15|—nt|:| y i = 1,2,...,d,

i.e. the sample is big enough to capture accurately the expression of v; in
terms of the columns of U;. Can show that this will happen w.p. > .9 if

4
9] > g > Gillogn)dfilog(20d), G > %
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More Preliminaries

Given current measure of the distance ¢; from optimality, use a result from
Stewart and Sun (1990) to obtain

Suppose that n > 2d. Then there is an orthogonal V; € R9*? such that

€t S HUVt — Ut”%: S 2Et.

Assume globally that
Q%] >q, €< -5

We can then derive several useful bounds:

2
el 32,

lpell> — 9

3 5
Il < V&l ol € |31l sl
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Estimate for ¢; — €11

Drop subscripts on r:, wy, pt, o, n:. Have exactly that

et — oo = | UT U2 — | DT U2
_ T rl12 U7 p||2 _
= sin(on) (H uruz” - HPHQH ) - sin(207)
(UTp)T(0TH)
el

(07p)7(D71)
B

> —sin?(on) + sin(207)

Our favorite choice of 7 yields sinon = ||r||/||p||. We can show that
(UTp)T(UTr) = r|>.
Together these yield the key estimate (asymptotically exact):

Ire1?

lpe]I*

€t — €41 =
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The Result

Require conditions on g and the fudge factor Ci:
5 - 64
q > Ci(log n)“dplog(20d), G > 3

Also need (; large enough that the coherence in the residual between v;
and current subspace estimate U; satisfies a certain (reasonable) bound
w.p. 1 =9, for some ¢ € (0,.6). Then for

e < (8% 1075)(.6 —8)2—— pEpER

we have

Elecs|ed] < (1 — (.16)(.6 — 5)%) €
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The Result: Comments and Steps

The decrease constant it not too far from that observed in practice; we see
a factor of about

q
1-X—
nd

where X is not too much less than 1.

The threshold condition on ¢; is quite pessimistic, however. Linear
convergence behavior is seen at much higher values.

18 pages (SIAM format) of technical analysis. We highlight the main tools
and key inequalities.
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1. Tightening of (deterministic) bound on € — €¢41:

el 7 32
R PR

If we can find a lower bound on ||r¢||?/||w:||? as a multiple of ¢, the last
term becomes lower-order and we can get linear decrease, for small ¢;.

2.

Irell? 16 [[re®
1Pell® — 25 ||se[|*”
by the GROUSE safeguard (which holds for at least 90% of the iterates).

3. Use a 2010 result below: high-probability lower bound on ||r¢||? in
terms of ”PN(UtT)VtH%' The factor is close to [Q¢|/n in practice, but we
pay a price for coherence and for the 1 — § guarantee.

(Here 1(.) denote coherence measures, which are close to 1 when the rows
of the argument have similar weight, closer to n or n/d otherwise.)
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Lemma (Balzano, Recht, Nowak (2010))

Let § > 0 be given, and suppose that

8 2d
] > Sau(ue)iog (7) |

Then with probability at least 1 — 35, we have

2
Q11 — &) — dp(Ur) 2L
Irell3 > ( - P | 1Pyuryvell?,

where

2u(Pyuryve)? 1 1
ft T \/m—tl Iog (5), Bt = 2/"L(PN(UtT) Vt) IOg (5)7

8du(Uy) 2d
= | — .
i 31| °g< 5 )
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4. Set 6 =.1. We observe computationally that the error identified by the
latest sample — Py 7)v; — is incoherent with respect to coordinate
directions. (It seems to grow like log n.) We find that the factor is
bounded below by g/2 when this quantity satisifies the following:

045 1/2
1(Preuryve) < logn [I 0C1du(U) |og(20d)]

(Puupy) < (ogn)? 2 Culog(20d)|.

That is, we have w.p. at least .7 that
24 9 2
[rell2 = §||PN(UI)Vt||2-

We assume that C_1 is chosen large enough that these bounds are satisfied
w.p. at least 1 — ¢ for some ¢ € (0,.6).
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5. Defining 6; as the angle between v; and the subspace R(U;), we have

HPN(UtT)Vt”2

)
= sin“ 6;.
[[ve[2

6. The high-probability bound now gives two cases:
€ri1 < € — .32% sin? 0; + 55\/562’/2, w.p. .6 -39,

€re1 < €+ 55\/; 3/2, otherwise.

7. Can show uisng the technical Lemma defined earlier, can show that
when v, = Us; with components of s; i.i.d A’(0,1), then
1

E(sin®6,) = pias

The Result follows by combining all these arguments.
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Computations for GROUSE with Sampling

@ Choose Uy so that ¢g is between 1 and 4.
@ Stop when ¢; < 10-°.

o Calculate average convergence rate: value X such that

D AAL
wmalioxd)

We find that X is not too much less than 1!
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e+, for n =500, d = 10, g = 50.

‘ d=10,n="500, g= 50
T T

T T T T

PEEETTET BRI AT EETAra e |

sl

Ll

1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
average decrease factor 1-Xgi(nd), where X=0.7939

Avera 1—.79%q
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e+, for n =500, d = 10, g = 25.

q d=10,n= 500, g= 25
10 T T T

1 1 1 1
0 1000 2000 3000 4000 5000 6000
average decrease factor 1-Xql(nd), where X=0.5697

Average decrease factor ~ 1 — .57 % q/(nd)
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e+, for n =500, d = 20, g = 100.

1 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
average decrease factor 1-Xq/(nd), where X=0.8202

Average decrease factor ~ 1 — .82 % q/(nd)
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¢+, for n = 5000, d =

5 | ! I |
0 0.5 1 il 2 25 3
average decrease factor 1-Xqi(nd), where X=0.7199 %10

Average decrease factor ~ 1 — .72 % g/(nd)
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SVD Approaches for the General Case

A naive batch SVD approach, following the successful approach for full
data, would be to assemble all the partial [v¢]q, into an n x T matrix,
filling out with zeros, and take the estimate Ut to be the leading d
singular values.

This gives terrible results — the zeros confuse it.

An incremental version, in which we update U; by adding the column v;
(filled out with zeros), and taking the leading d singular vectors of the
resulting matrix, is similarly bad.
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Incremental SVD, done right: iSVD

Given U and [v¢]q,:
o Compute w; as in GROUSE:

we = argmin || [Uw — velo, 13

o Use w; to impute the unknown elements (vt)th, and fill out v; with

these estimates:
\7t = |: [Vt]Qt ] .

[Ut]ﬂg Wi
e Append ¥; to U; and take the SVD of the resulting n x (d + 1)
matrix [Ur : ¥);
@ Define Uiy1 to be the leading d singular vectors. (Discard the

singular vector that corresponds to the smallest singular value of the
augmented matrix.)
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iISVD and GROUSE

iSVD and GROUSE seem similar:
@ Both compute and use w; to extract the missing information from U;
and [v¢]q,.
@ Both generate a sequence {U;} of orthonormal estimates of S.
@ Both ostensibly use no information before Us;.

@ Neither has different confidence for different subspaces of the target
subspace S; both maintain a “flat” approximation.

Indeed, can show that iSVD and GROUSE are identical for certain choices
of the parameter 7;.

The choice of 7; is not the same as the “optimal” choice in GROUSE, but
it works farily well in practice.
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Relating iSVD and GROUSE

Theorem

Suppose we have the same U; and [v¢]q, at the t-th iterations of iSVD
and GROUSE. Then there exists n: > 0 in GROUSE such that the next
iterates U;11 of both algorithms are identical, to within an orthogonal
transformation by the d x d matrix

Wt: |: ’Zt:| )
[[we|

where Z; is a d x (d — 1) orthonormal matrix whose columns span N(w,").
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GROUSE and iSVD: Details

The precise values for which GROUSE and iSVD are identical are:

1
A= {(llwtll2 el 1) + /(w2 + 12 + 1)2 - 4||,t||z]

o Pl
[relPTwel? + O = P2
Il = felP)

lrelPlwel? + (A = r2)?

1
Ny = — arcsin 3.
Ot
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