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Motivation: data deluge 

Claim:  A  hidden dynamical systems  
 identification  problem 



Motivation: data deluge 

Claim:  A  hidden “structured” robust 
PCA problem 



Structured Robust PCA Problems 



Prototype SRPCA problem: 

!!   

 
–! Generalization of 
 

 

minkS(x)kW,⇤ + �1 ke1k1 +
�2
2 ke2k22

subject to:

d� Fx = 0

S1x� e1 = 0

S2x� e2 = 0

SQ(x) ⌫ 0, S,SQ a�ne structural constraints

decompose H= HL + HE 
 
HL: low rank 
HE: sparse 



Prototype SRPCA problem: 
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!! Solvable using interior point methods, but poor scaling 
properties  (time: O(n3), memory O(n2)) 
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Prototype SRPCA problem: 

!!   

!! Solvable using interior point methods, but poor scaling 
properties  (time: O(n3), memory O(n2)) 

!! Alternative:  ADMM methods 

 
 
 

 

minkS(x)kW,⇤ + �1 ke1k1 +
�2
2 ke2k22

subject to:

d� Fx = 0

S1x� e1 = 0

S2x� e2 = 0

SQ(x) ⌫ 0, S,SQ a�ne structural constraints



 

 

Prototype ADMM: 

See for instance  tutorial by 
S. Boyd  (2011) 

while not converged do

1. For i=1,. . . ,n
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end while

min f(x1, . . . ,xn) subject to: h(x1, . . . ,xn) = 0
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Prototype ADMM: 

while not converged do

1. For i=1,. . . ,n
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2. Y

k+1
= Y

k
+ µh(Xk+1

)

end while

min f(x1, . . . ,xn) subject to: h(x1, . . . ,xn) = 0

Only as efficient as 
this step 

min L(x,Y, µ)
.
= f(x1, . . . ,xn) + hY, h(x1, . . . ,xn)i+

µ

2
kh(x1, . . . ,xn)k2F



!! For problems of the form: 

 
–! Closed form solutions at each step 
–! Many cheap iterations (cost of a partial SVD) 

 

minkS(x)kW,⇤ + �1 ke1k1 +
�2
2 ke2k22

subject to:

d� Fx = 0

S1x� e1 = 0

S2x� e2 = 0

SQ(x) ⌫ 0, S,SQ a�ne structural constraints

ADMM methods for SRPCA problems: 



Application: – Outlier Removal 
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Find and remove outliers   Decompose H= HL + HE 
 
HL: low rank 
HE: sparse 



Speed:  ADMM: 25 secs         Int. Point: Out of Mem. 

Application: – Outlier Removal 



Nonlinear Dimensionality Reduction 



!! Use spatial correlations to project to a lower dimensional manifold 

–! Linear  (PCA, SVD) 
–! Non linear: 

!! Locally Linear Embedddings 
!! Hessian Eigenmaps 
!! Maximum Variance Unfolding 
!! Semi Definite Embeddings 

 

!! Typically these methods do not exploit temporal correlations 
 

 
  
 
 
 

Maximum Variance Unfolding 
Semi Definite 

Classical dimensionality reduction methods: 



•! Map to/from manifold: a memoryless non-linearity 
 

 
 

H 

!"

f(.) g(.) 

projections 

Dimensionality reduction as an Id problem: 



Dimensionality reduction as an Id problem: 

Dynamics on the manifold 

H 

!"

f(.) g(.) 

•! Map to/from manifold: a memoryless non-linearity 
•! Manifold dynamics: piece-wise linear: 

 
•! A switched Hammerstein/Wiener SysId problem: 



A SRPCA Formulation: 
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Captures local spatial properties 

Captures temporal information 

Note:                                  and   
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where 
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Note:                                  and   

T
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where 

High dimensional data (given) 

Manifold data (unknown) 

A SRPCA Formulation: 
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Note:                                  and   Note:                                  and   

where 

Captures local spatial properties 

Captures temporal information 

Note:                                  and   

Academic Example: 

Dynamic Static 



Application: diauxic  shift analysis 

Manifold evolution 

Original data: 2000 promoters 



Information Extraction 



 
–! Model  data streams as outputs of switched systems 
–! “Interesting” events ! Model invariant(s) changes  
–! “Homogeneous” segments ! output of a single sub-system 

Information extraction as an Id problem: 

u 
G(#) 

y 

features, pixel values, ! 



 
–! Equivalent to detecting changes in a switched system 
–! An identification/model (in)validation problem. 
 

Information extraction as an Id problem: 

u 
G(#) 

y 

features, pixel values, ! 



Identifying Switched ARX Models 



SARX Id problem: 

!! Given: 
–! Bounds on noise (||"||# $%), sub-system order (no) 
–! Input/output data (u,y) 
–! Number of sub-models 
 

!! Find: 
–! A piecewise affine model such that: 

 

u y 

G!t 
" 



SARX Id problem: 

!! Problem is (generically) NP hard: 
 

!! Solutions based on: 
–! Heuristics: 
–! Optimization 
–! Probabilistic priors 
–! Convex Relaxations 

 

u y 

G!t 
" 

Vidal, Chiuso, Roll, Bemporad, Paoletti, Garulli, Vicino, Juloski, Ferrari-
Trecate, Ozay, Bako, and many others  



SARX Id problem: 

!! Problem is (generically) NP hard: 
 

!! Solutions based on: 
–! Heuristics: 
–! Optimization 
–! Probabilistic priors 
–! Convex Relaxations 

 

u y 

G!t 
" 

Vidal, Chiuso, Roll, Bemporad, Paoletti, Garulli, Vicino, Juloski, Ferrari-
Trecate, Ozay, Bako, and many others  



!! GPCA: an algebraic geometric method due to Vidal et al. 
!! Main Idea: 

 arrangement of subspaces 

 vanishing ideal 

SARX Id problem in the noise free case: 



Toy example: 2 first order systems: 



Toy example: 2 first order systems: 



Toy example: 2 first order systems: 

Function of the data only System parameters 
Independent of the data  

One such equation per data point 



!! GPCA: an algebraic geometric method due to Vidal et al. 
!! Main Idea: 

SARX Id problem in the noise free case: 

!! Solve for cs from the null space of the embedded data matrix. 
!! Get bi from cs via polynomial differentiation 
 
 Details in Vidal et al., 2003 



What happens with noisy measurements? 

to ! 

t ! 

T ! 

! t 



What happens with noisy measurements? 

to ! 

t ! 

T ! 

! t 

Need to find the null space of a noisy matrix:  Obvious approach: SVD 

 



Academic Example 

Noise bound: 0.25 
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Need to find the null space of a noisy matrix:  Minimize rank Vs w.r.t  !t 



What happens with noisy measurements? 

to ! 

t ! 

T ! 

! t 

Need to find the null space of a noisy matrix:  Minimize rank Vs w.r.t  !t 



Detour: Polynomial Optimization 

 Theorem:  p1* = p2*   

From Lasserre 01: 



Detour: Polynomial Optimization 

From Lasserre 01: 



Detour: Polynomial Optimization 

Affine in mi 

From Lasserre 01: 



Hausdorff, Hamburger 
moments problem. 

Set of LMIs. 

Detour: Polynomial Optimization 

From Lasserre 01: 



Optimization Problem 1: 

What happens with noisy measurements? 

!! Rank is not a polynomial function. 
Can we use ideas from polynomial 
optimization? 

 



Optimization Problem 1: 

What happens with noisy measurements? 

Optimization Problem 2: 



Optimization Problem 1: 

What happens with noisy measurements? 

Optimization Problem 2: 

Convex constraint set!! 



Optimization Problem 1: 

What happens with noisy measurements? 

Optimization Problem 2: 

Convex constraint set!! 

           
–! Matrix rank minimization 
–! Subject to LMI constraints 

!! (approx) solvable using a 
convex relaxation (e.g. log-det 
heuristic of Fazel et al.). 

 



Optimization Problem 1: 

What happens with noisy measurements? 

Optimization Problem 2: 

Convex constraint set!! 

!! Fact: 

–! There exists a rank deficient 
solution for Problem 2 if and 
only if there exists a rank 
deficient solution for Problem 1.  

–! If c belongs to the nullspace of 
the solution of Problem 2, there 
exists a noise value      with                         

                      such that c belongs  
     to the nullspace of  

exists a noise value      with                         
                      such that c belongs  



!! Rank is not a polynomial function. 
Can we use ideas from polynomial 
optimization? 

–! YES 

Optimization Problem 1: 

What happens with noisy measurements? 

Optimization Problem 2: 

  
!! Use a convex relaxation (e.g. log-

det heuristic of Fazel et al.) to 
solve Problem 2 

!! Find a vector c in the nullspace 
!! Estimate noise by root finding 
     (Vsc = 0 polynomials of one 

variable) 
!! Proceed as in noise-free case 



!! Rank is not a polynomial function. 
Can we use ideas from polynomial 
optimization? 

–! YES 

Optimization Problem 1: 

What happens with noisy measurements? 

Optimization Problem 2: 

  
!! Use a convex relaxation (e.g. log-

det heuristic of Fazel et al.) to 
solve Problem 2 

!! Find a vector c in the nullspace 
!! Estimate noise by root finding 
     (Vsc = 0 polynomials of one 

variable) 
!! Proceed as in noise-free case 

Provably convergent as the information is completed 



Example: Human Activity Analysis 

WALK BEND WALK 



Handling outliers 

min

n

rank
h

Ṽ(r,m) +E
i

+ �1kEk0,row
o

subject to

M(m) ⌫ 0, L(m) ⌫ 0



Handling outliers 

WALK BEND WALK 



(In)Validating SARX Models 



!! Given: 
–! A nominal switched model of the form: 

–! A bound on the noise (||"||# $%) 
–! Experimental Input/Output Data  

!! Determine: 
–! whether there exist noise and switching sequences  
–! consistent with a priori information and experimental data   

 Data  

Reduces to SPD via 
moments and duality  
 

Model (In)validation of SARX Systems 

Equivalent to checking 
emptyness of a 
semialgebraic set 



yt + ⌘t �
naX

i=1

Ai(�t)(yt�i + ⌘t�i)�
ncX

i=1

Ci(�t)ut�i = 0

yt + ⌘t �
naX

i=1

Ai(�t)(yt�i + ⌘t�i)�
ncX

i=1

Ci(�t)ut�i = 0

Semi-algebraic Consistency Set 

or 



Semi-algebraic Consistency Set 

and 

s1,t(yt + ⌘t �
naX

i=1

Ai(�1)(yt�i + ⌘t�i)�
ncX

i=1

Ci(�1)ut�i) = 0
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Subject to: 

si,t 2 {0, 1},
X

i

si,t = 1



 (In)validation Certificates: 

!! The model is invalid if and only if 
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!! The model is invalid if and only if 
 

  
 
 
 

 

d⇤
.
=

8
>>>><

>>>>:

mins,⌘
PT

t=1 s
2
i,t(kgi,t + hi,t⌘t�na:t)k

2
2

subject to:P
i si,t = 1

s2i,t = 1

k⌘k1  ✏

9
>>>>=

>>>>;

> 0



 (In)validation Certificates: 

!! The model is invalid if and only if there exists N such  
that            , where: 
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 (In)validation Certificates: 

!! The model is invalid if and only if there exists N such  
that            , where: 

!! Fact:  N<T+2 
  

 
 
 

 

that            , where: 

d� d⇤ = u0 +
mX

j=1

ujgj,
uj 2 ⌃
deg(u0),deg(ujgj)  2(T + 1)



 (In)validation Certificates: 

!! The model is invalid if and only if there exists N such  
that            , where: 

!! Fact:  N<T+2 

!! Conjecture:  N =2 
  

 
 
 

 

that            , where: 



Example: Activity Monitoring 

•! A priori switched model: walking and waiting, 4% noise 

• Test sequences of hybrid behavior: 

WALK, WAIT RUN WALK, JUMP 

Not Invalidated Invalidated Invalidated 



 Adding topological constraints: 

!! The model is invalid if and only if 

 
plus additional linear constraints: 
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2
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2
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Example: Activity Monitoring 

A Priori information 

Invalidated  (d=0.175) 

Not Invalidated  (d=-3e-8) 



Learning: Dynamic data association 



y(t) 

z(t) 

y(t) 

z(t) 

Look for simplest joint models   

Fast Dynamic Data Association: 



y(t) 

z(t) 

Group according to the  “similarity score”:  

Fast Dynamic Data Association: 

rank(Hi)+rank(Hj)
rank([Hi Hj ])

� 1



 Application: Tracking by detection 

Reduces to a min-cut problem with “dynamics- induced” weights 

rank(Hi)+rank(Hj)
rank([Hi Hj ])

� 1



Fast Dynamic Data Classification: 

aTy = 0

 
!! Sequences from the same “class” live in the same subspace: 

!! Use a “SVM-like” classifier:  find w such that 
–!                   in class 
–!                     out of class 

kHywk ⇡ 0

kHywk � 0



Fast Dynamic Data Classification: 

aTy = 0

 
!! Sequences for the same “class” live in the same subspace: 

!! Use a “SVM-like” classifier: 

minW,�,⇠,⇣i,zi
1
2 trace(W ) + c

P
⇠i + c

P
|⇣j |

s.t.
li(� � trace(HT

yi
HyiW )) + ⇠i � 1 ; ⇠i � 0; known labels

� � trace(HT
yi
HyiW ) + ⇣i + zi = 0 ; |zi| � 1; unknown labels

� < s||⌘||2trace(W ) ;W � 0



Fast Dynamic Data Classification: 

aTy = 0

 
!! Sequences for the same “class” live in the same subspace: 

!! Use a “SVM-like” classifier: 

minW,�,⇠,⇣i,zi
1
2 trace(W ) + c

P
⇠i + c

P
|⇣j |

s.t.
li(� � trace(HT

yi
HyiW )) + ⇠i � 1 ; ⇠i � 0; known labels

� � trace(HT
yi
HyiW ) + ⇣i + zi = 0 ; |zi| � 1; unknown labels

� < s||⌘||2trace(W ) ;W � 0



Fast Dynamic Data Classification: 



 
  

 
 
–! Data  as manifestation of hidden, “sparse”  dynamic structures 
 
–! Extracting information from high volume  data streams: finding 

changes in dynamic invariants (often no need to find the models) 
 
–! Dynamic models  as very compact, robust data surrogates 
 
–! An interesting connection between several communities:  

!! Control, computer vision, systems biology, compressive sensing, machine 
learning,!. 

Dynamic models as the key to encapsulate 
and 

 analyze (extremely) high dimensional data 

From sensing to “information”: 
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