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Outline

• Part I: Relaxing Sparsity

– k-support norm

• Part II: Relaxing Rank

– Matrix max-norm
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Sample Complexity

Want to minimize:

L(w) = Ex,y[l(w,x,y)] 

Based in m iid samples (xi,yi):

ŵ = arg minw∈W ∑i=1..m l(w,xi,yi)

# samples m so that L(ŵ)≤infw∈W L(w)+ǫ :

• For W = { w∈Rd, |w|0≤k } :

m = O( k log(d) / ǫ2 )

• For W = { w∈Rd, |w|1≤k, |w|∞≤k } :

m = O( |w|1
2log(d) / ǫ2 ) = O( k2 log(d) / ǫ2 )

Can be reduced 

to 1/ǫ·((L*+ǫ)/ǫ)



Measuring Scale by |w|2

• Replace |w|∞≤1 by |w|2≤1 (or ≤B)
– Robustness

– Scale of E[�w,x	2]

– Generalization
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The k-Support Norm
	 	 �

�� ≤ 1	 	=	conv 	 	 	 � ≤ �, 	 � ≤ 1 	

• Can be viewed as Overlap Group Lasso where the “groups” are all k-subsets:

	 �
�� = inf$% & '( �

(⊂ ) , ( *�
supp '( = ., ∑'( = 	

	 �
��

= 	 � 	 )
��
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• Dual norm: 2-k symmetric gauge norm

0 �
��∗ = ∑ (|0|45)��4*� = |top k elements in u|2

	 �
��∗
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Computation and Optimization

	 �
�� = & 	 4↓

�
�9:9�

4*�
+ 1
< + 1 & 	 4↓

)

4*�9:

�

where:

	 �9:9�↓ > 1
r + 1 & 	 4↓

)

4*�9:
≥ 	 �9:↓

• Can compute 	 �
��

in time O(d log(d))

• Can compute ∇ 	 �
��

in time O(d log(d))

• Can compute prox map in time O(d (log(d)+k)):

proxA(	) = argminC
1
2 0 − 	 �� + F 0 �

�� �

⇒ can optimize min � G
���H �(	) or min � 	 + F 	 �

��
using e.g. FISTA



k-Support vs Elastic Net

	 	 �
�� ≤ 1	 	=	conv 	 	 	 � ≤ �, 	 � ≤ 1 	

⊂ 	 	 � ≤ �, 	 � ≤ 1 = {	 	 ��� ≤ 1}
• 	 ��I ≤ 	 �
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• For 	 = ��.K, 1,1, … , 1 ∈ N), O = �� + 1	:
��.K 1 + 1

� = 	 ��I < 	 �
�� = 2 ∙ ��.K

⇒ Gap could be as much as 2

Theorem: 	 ��I ≤ 	 �
�� ≤ 2 ⋅ 	 ��I



Experiments

Zou+Hastie Synthetic

(d=40,k=15,

strong correlations)

South African Heart 20 Newsgroups

Lasso 0.27 0.18 0.70

Elastic Net 0.23 0.18 0.70

k-Support 0.21 0.18 0.69

Mean Squared Error on test data.

Parameters λ, k selected on validation set.
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Summary: k-Support Norm

• When discussing “tightness” of convex relaxation,

scale constraint is important!

• k-support norm is tightest convex relaxation of sparsity

with an l2 constraint

• efficiently to computable and optimizable

• strictly tighter then elastic net (relaxing |w|0 to |w|1)

• … but only up to a factor of 2
⇒ elastic net is tight up to 2



Part II: Rank

• Relax { rank(X) ≤ k }

• With what scale constraint?

• Trace-norm (aka nuclear norm, |spectrum|1) is 

tightest relaxation subject to spectral norm 

(|spectrum|∞): 

 ] ^_ ≤ �, ] `a ≤ 1

= conv( rank ] ≤ �, ] `a ≤ 1 )



Constraining Avg Entry Magnitude

• Relax {rank ] ≤ �, �
bc ] d� ≤ 1}

• ] d� = spectrum �, vector case carries over:

–
�
bc ] ^_� ≤ �, �

bc ] d� ≤ ef tight up to a factor of 2
– Convex hull (tight relaxation) give by k-support norm 

applied to spectrum

• Can calculate and optimize, just like vector case

• But often |X|∞ more natural

– Required for (noisy) matrix completion guarantees



The Matrix Max-Norm

• Recall: ] ^_ = ming*hij | k|d l d

• The Max-Norm: ] mno = ming*hij | k|�,7 l �,7
– Not a spectral function!

– SDP representable

– Super-fast non-convex opt [Lee et al 2010]

– Fast 1st order optimization [PRISMA: Argyriou, Orabona, S 2012]

•
�
bc ] ^_� ≤ ] mno� ≤ rank ] ⋅ ] 7�

– Contrast with: 
�
bc ] ^_� ≤ rank ] ⋅ �

bc ] d�

k �,7 = max4 k4 �



Trace-Norm vs Max-Norm

	 1ef ] ^_� ≤ �, ] 7 ≤ 1
⊂ ] mno� ≤ �, ] 7 ≤ 1

⊂ rank ] ≤ �, ] 7 ≤ 1

• Gap between relaxations as large as ep :

] =
q br�p 0 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

] mno = e/�p 	 �
bb ] ^_ = 1

(Gap between max-norm and trace-norm as large as n)



Sample Complexity for

Low-Rank Matrix Reconstruction

• Y ≈ low rank M, observe random subset S of entries

• #sample to get 
�
bc ] − x � ≤ �

bc x −y � + z
(or, if Y=M+iid noise, to get 

�
bc ] −y d� ≤ z)

– Using trace-norm: O( rank(M) (n+m) log(n) / ǫ2 )

– Using max-norm: O( rank(M) (n+m) / ǫ2 )

• If entries sampled non-uniformly:

– Using trace-norm:

Ω(rank(M) (n+m) {|
/ ǫ2)   ~  O(rank(M) (n+m) { / ǫ2)

– Using max-norm: O( rank(M) (n+m) /  ǫ2 )



The Trace-Norm with Non-Uniform Sampling

• Both A,B of rank 2

• Sampling:

– uniform in A w.p. ½

– uniform w.p. ½

A

B

n2/3

n2/3

n

n

• Regularizing with the rank or with the max-norm:

sample complexity ∝ n, i.e. O(1) per row

• Regularizing with the trace-norm:

number  ∝ n4/3, i.e. O(n1/3) per row!!!
[Salakhutdinov S 10]

improved to O(n3/2) by [Hazan Kale Shalev-Shwartz 12]



Experiments on Netflix

RMSE %improvement

NetFlix Cinematch: 0.9525 0     
(baseline)

TraceNorm: 0.9235 3.04

MaxNorm: 0.9138 4.06

Weighted TraceNorm: 0.9078 4.69

Smoothed Wghtd TrNorm: 0.9068 4.80

Local MaxNorm 0.9063 4.85

Winning team: 0.8553 10.20



Tightness of Max-Norm Relaxation

• Grothendik’s inequality: 

conv 	rank ] ≤ 1, ] 7 ≤ 1
⊂ ] mno� ≤ 1

⊂ 1.79 ⋅ conv rank ] ≤ 1, ] 7 ≤ 1

• What about larger k?

conv 	rank ] ≤ �, ] 7 ≤ 1
⊂ ] mno� ≤ �, ] 7 ≤ 1

⊂ G k ⋅ conv rank ] ≤ �, ] 7 ≤ 1
• How does G(k) grow?

1.4 ≤ G(k) ≤ � ⋅ 1.79



Summary

• When discussing “tightness” of convex relaxation,
scale constraint is important!

• Relaxing sparsity with bounded l2 scale:

– k-support norm is tightest convex relaxation

– elastic net is tight up to 2

• Relaxing rank constraint for bounded entry matrices:

(bounded entries required for reconstruction gurantees)

– Max-norm much tighter then trace-norm

– Better reconstruction guarantees; often better empirical 
performance


