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Outline

e Part |: Relaxing Sparsity
— k-support norm

e Part ll: Relaxing Rank

— Matrix max-norm
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Relaxing Sparsity Constraints

D

conv({|w|0<k lw| <1})
= { |w[,<k, IWlooél}

min L(w
lwlo<k ( )




Sample Complexity

Want to minimize:
L(w) = E,, [l{w,x,y)]
Based in m iid samples (x,y,):

W =arg min,cyy 2icg m (Wx;y))
# samples m so that L(w)<<inf, ., L(w)+e :

o For W={weRY, |w|,<k}:
m = O( k log(d) / €?)
o For W={weRd |w|, <k, |w|_ <k}:

m = O( |wl{log(d) / €2 ) = O( k? log(d) / €2
Can be reduced
to 1/e-((L*+€)/€)




Measuring Scale by [w],

e Replace |w|_<1by |w|,<1 (or <B)
— Robustness
— Scale of E[{w,x)?]
— Generalization




The Elastic Net

{ |W|O < k, |W|2 < 1}
c{lwly <Vk,Iwl, <1} = {|w|f" < 1}

lw]
|W|irl — max (|W|2,—1

vk

* Sample Complexity (# samples m so that L(w)<inf ., L(w)+e):
O( |wl;log(d) / €2) = O( k log(d) / €?)



The Elastic Net

conv({ |w|y <k, |w|l, <1})
c {Iwly <Vk Iwl, <1} ={|wl§" < 1}




The k-Support Norm

conv({|w|y <k, |w|l, <1} = { |W|ip < 1}
c{lwly < Vk,Iwl, <1} = {Iw|f" < 1}

O ®




The k-Support Norm

{IwlyY <1} =conv({|wl|y <k, Iwl|, <1})

e (Can be viewed as Overlap Group Lasso where the “groups” are all k-subsets:

Wl = igllf{ z lvrl, |supp(v)) =1, Y v, =
[d].|I|=k

wly=lwly wig'=lwl;

 Dual norm: 2-k symmetric gauge norm

Sp* \/Zl 1(|u|a)2— |t0p k elements in Ulz

Sp*

Wl =Iwle wlg =lwl



Computation and Optimization

[

k-r—1 d 2
[P = (w2 +——{ S wit
Whe = Wi r+1 Wi
i=1 ] r

i=k-—

where:
d

|i

> |W|k —-r
i=k—
e Can compute |W|Zp in time O(d log(d))
 Can compute Vlwlfcpin time O(d log(d))
e Can compute prox map in time O(d (log(d)+k)):
prox;(w) = argmin1 lu—w|3 + A(luISp

— can optimize m1n|W|Sp<B L(w)orminL(w) + 4 |W|k using e.g. FISTA



k-Support vs Elastic Net

{ leip <1 } =conv({ |w|, <k, |w|, <1})
- { lwl; < vk, lwl|, < 1} ={|w|i" <1}
o« |wif < wlP
o |wlP=lwlP=lwl; and |w[P=lw|}=|wl,
e Forw=(k'°,1,1,..,1)€ERY,d=k?*+1:

1
k1> (1 + ﬁ) = w|g < |w|}P = V2 k1S

—- Gap could be as much as V2

Theorem: = |W|Zp <2 w8




Experiments

Zou+Hastie Synthetic | South African Heart 20 Newsgroups

(d=40,k=15,
strong correlations)
Lasso 0.27 0.18 0.70
Elastic Net 0.23 0.18 0.70
k-Support 0.21 0.18 0.69

Mean Squared Error on test data.
Parameters )\, k selected on validation set.

k-Support Elastic Net



Summary: k-Support Norm

When discussing “tightness” of convex relaxation,
scale constraint is important!

k-support norm is tightest convex relaxation of sparsity
with an |, constraint

efficiently to computable and optimizable
strictly tighter then elastic net (relaxing |w|,to |w]|,)

.. but only up to a factor of V2

= elastic net is tight up to v2



Part Il: Rank

e Relax {rank(X) <k}
e With what scale constraint?

e Trace-norm (aka nuclear norm, |[spectrum|,) is
tightest relaxation subject to spectral norm
(|spectrum|_.):

X e < K, 1Xsp < 1)
= conv({rank(X) < k, 1 X|sp < 1D



Constraining Avg Entry Magnitude
e Relax {rank(X) < k,ﬁ 1X|2 < 1}

* |X|12: — |SpeCtl‘um|2, vector case carries over:
1 2 1 2 } .
_ {— < - <
{nm Xt < k,—|X|7 < nm tight up to a factor of V2

— Convex hull (tight relaxation) give by k-support norm
applied to spectrum
e Can calculate and optimize, just like vector case

e But often |X|_ more natural
— Required for (noisy) matrix completion guarantees



The Matrix Max-Norm

e Recall: |X|¢ = ming_yy | Ulp|V|E

e The Max-Norm: | X|max = Xmlllr‘} | U2 01V 2 00

— Not a spectral function!

— SDP representable

— Super-fast non-convex opt [Lee et al 2010]
— Fast 15t order optimization [PRISMA: Argyriou, Orabona, S 2012]

Ul = max| Ui

|X|tr = |X|max < rank(X) - IXI2

— Contrast W|th — IXItr < rank(X) |X|F



Trace-Norm vs Max-Norm

1
{—|X|%r <K, |X|o < 1}
nm
C {IX|2ny < K, [X]oo < 1)

c {rank(X) <k, |X|o < 1}

e Gap between relaxations as large as 3/n:

Hs3 0 - 0]
vo| © 0 - 0
0 0 - O
3 1
[ X[ max = Vn/k ﬁlxltrzl

(Gap between max-norm and trace-norm as large as n)



Sample Complexity for
Low-Rank Matrix Reconstruction

e Y= low rank M, observe random subset S of entries
1 1
° —_— —_— < — —_—
#tsample to get - X —-Y|; < - Y — M| + €

(or, if Y=M+iid noise, to get % X — M|2 <€)
— Using trace-norm: O( rank(M) (n+m) log(n) / €?)
— Using max-norm: O( rank(M) (n+m) / €?)

e |f entries sampled non-uniformly:
— Using trace-norm:
Q(rank(M) (n+m) 3/m / €2) ~ O(rank(M) (n+m)mn / €?)
— Using max-norm: O( rank(M) (n+m) / €?)



The Trace-Norm with Non-Uniform Sampling

n
n2/3

n2/3

e Both A,B of rank 2

e Sampling:
— uniformin Aw.p. %
— uniform w.p. %

e Regularizing with the rank or with the max-norm:
sample complexity o< n, i.e. O(1) per row
e Regularizing with the trace-norm:

number oc n?3, i.e. O(n'/3) per row!!!

[Salakhutdinov S 10]
improved to O(n3/2) by [Hazan Kale Shalev-Shwartz 12]



Experiments on Netflix

NetFlix Cinematch:
(baseline)

TraceNorm:

MaxNorm:

Weighted TraceNorm:
Smoothed Wghtd TrNorm:
Local MaxNorm

Winning team:

RMSE
0.9525

0.9235
0.9138
0.9078
0.9068
0.9063
0.8553

%improvement
0

3.04
4.06
4.69
4.80
4.85
10.20



Tightness of Max-Norm Relaxation

e Grothendik’s inequality:
conv({rank(X) <1, |X|, < 1})
C {IX|fhax < 13
c 1.79 - conv({rank(X) < 1, |X|s < 1})

 What about larger k?
conv({ rank(X) < k, |X|, < 1})
C {IX1fhax < b 1X]e < 13
c G(k) - conv({rank(X) < k, [ X| < 1})
e How does G(k) grow?
1.4 < G(k) <Vk - 1.79



Summary

When discussing “tightness” of convex relaxation,
scale constraint is important!

Relaxing sparsity with bounded |, scale:
— k-support norm is tightest convex relaxation
— elastic net is tight up to V2

Relaxing rank constraint for bounded entry matrices:
(bounded entries required for reconstruction gurantees)
— Max-norm much tighter then trace-norm

— Better reconstruction guarantees; often better empirical
performance



