Tightness of Relaxations for Sparsity and Rank

Nati Srebro TTI-Chicago

Sparse Prediction with the k-Support Nom, NIPS 2012

Andreas Argyriou (TTIC→'Ecole Centrale Paris), Rina Foygel (TTIC→Stanford), S Concentration-Based Guarantees for Low-Rank Matrix Reconstruction, COLT 2011 Rinay Foygel, S Rank, Trace Norm and Max Norm, COLT 2005 S, Adi Shraibman (Tel Aviv)

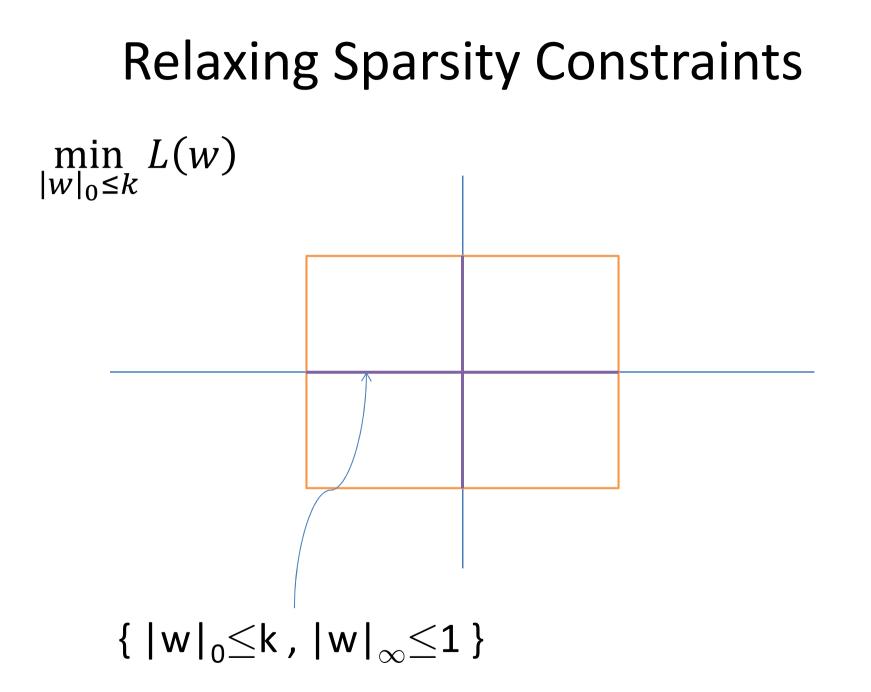
Outline

• Part I: Relaxing Sparsity

*– k-*support norm

Part II: Relaxing Rank
 Matrix max-norm

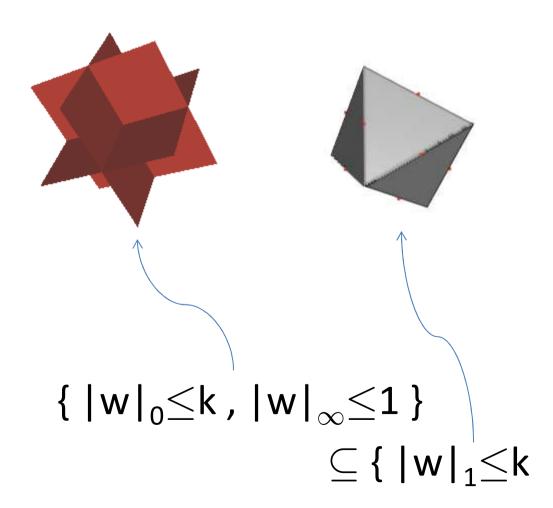
$\operatorname{min}_{|w|_0 \leq k} L(w)$



Relaxing Sparsity Constraints $\min_{|w|_0 \le k} L(w)$ $\{ |w|_{0} \leq k, |w|_{\infty} \leq 1 \}$ $\subseteq \{ |w|_1 \leq k \}$

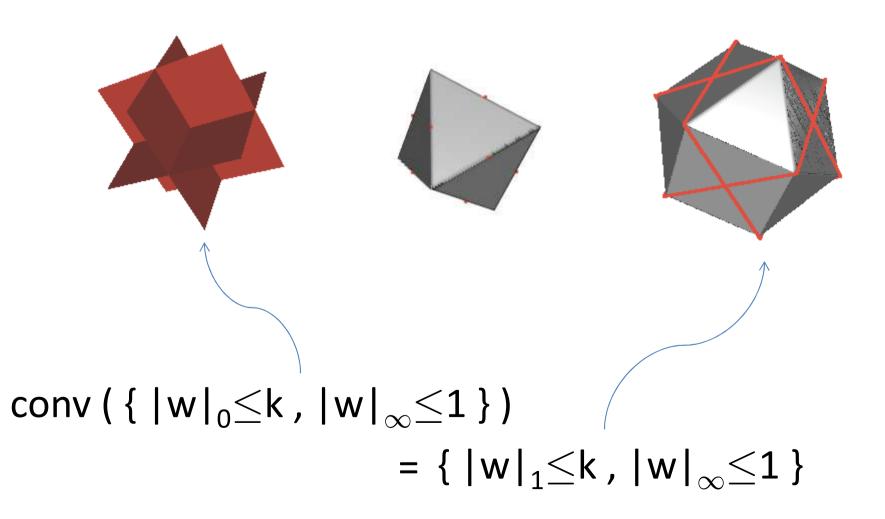
Relaxing Sparsity Constraints

 $\min_{|w|_0 \le k} L(w)$



Relaxing Sparsity Constraints

 $\min_{|w|_0 \le k} L(w)$



Sample Complexity

Want to minimize:

$$\begin{split} L(w) &= E_{x,y}[I(w,x,y)]\\ \text{Based in m iid samples } (x_i,y_i):\\ \hat{w} &= \arg\min_{w\in\mathcal{W}}\sum_{i=1..m}I(w,x_i,y_i) \end{split}$$

samples m so that L(\hat{w}) \leq inf_{w\inW} L(w)+ ϵ :

- For $\mathcal{W} = \{ w \in \mathbb{R}^d, \|w\|_0 \leq k \}$: m = O(k log(d) / ϵ^2)
- For $\mathcal{W} = \{ w \in \mathbb{R}^d, \|w\|_1 \le k, \|w\|_\infty \le k \} :$ m = O($\|w\|_1^2 \log(d) / \epsilon^2$) = O($k^2 \log(d) / \epsilon^2$)

Can be reduced to $1/\epsilon \cdot ((L^* + \epsilon)/\epsilon)$

Measuring Scale by |w|₂

- Replace $|w|_{\infty} \leq 1$ by $|w|_{2} \leq 1$ (or $\leq B$)
 - Robustness
 - Scale of E[$\langle w, x \rangle^2$]
 - Generalization

The Elastic Net

$$\{ |w|_0 \le k, |w|_2 \le 1 \}$$

 $\subset \{ |w|_1 \le \sqrt{k}, |w|_2 \le 1 \} = \{ |w|_k^{\text{en}} \le 1 \}$

$$|w|_k^{\mathbf{en}} = \max\left(|w|_2, \frac{|w|_1}{\sqrt{k}}\right)$$

• Sample Complexity (# samples m so that $L(\hat{w}) \leq \inf_{w \in W} L(w) + \epsilon$): O($|w|_1^2 \log(d) / \epsilon^2$) = O(k log(d) / ϵ^2)

The Elastic Net

$$\operatorname{conv}\left(\left\{ |w|_{0} \leq k, |w|_{2} \leq 1 \right\}\right)$$

$$\subset \left\{ |w|_{1} \leq \sqrt{k}, |w|_{2} \leq 1 \right\} = \left\{ |w|_{k}^{\operatorname{en}} \leq 1 \right\}$$

$$|w|_{k}^{\operatorname{en}} = \max\left(|w|_{2}, \frac{|w|_{1}}{\sqrt{k}}\right)$$

The k-Support Norm

conv({ $|w|_0 \le k, |w|_2 \le 1$ } = { $|w|_k^{sp} \le 1$ } $\subset \{ |w|_1 \le \sqrt{k}, |w|_2 \le 1$ } = { $|w|_k^{en} \le 1$ }

The k-Support Norm
$$\{|w|_{k}^{sp} \leq 1\} = \operatorname{conv}(\{|w|_{0} \leq k, |w|_{2} \leq 1\})$$

• Can be viewed as Overlap Group Lasso where the "groups" are all *k*-subsets:

$$|w|_{k}^{sp} = \inf_{v_{I}} \left\{ \sum_{I \subset [d], |I| = k} |v_{I}|_{2} \left| \operatorname{supp}(v_{I}) = I, \sum v_{I} = w \right\} \\ |w|_{1}^{sp} = |w|_{1} \qquad |w|_{d}^{sp} = |w|_{2} \right\}$$

• Dual norm: 2-*k* symmetric gauge norm

$$|u|_{k}^{\mathbf{sp}*} = \sqrt{\sum_{i=1}^{k} (|u|_{i}^{a})^{2}} = |\operatorname{top} k \operatorname{ elements} \operatorname{in} u|_{2}$$
$$|w|_{1}^{\mathbf{sp}*} = |w|_{\infty} \qquad |w|_{d}^{\mathbf{sp}*} = |w|_{2}$$

Computation and Optimization

$$|w|_{k}^{\mathbf{sp}} = \sqrt{\sum_{i=1}^{k-r-1} (|w|_{i}^{\downarrow})^{2} + \frac{1}{r+1} \left(\sum_{i=k-r}^{d} |w|_{i}^{\downarrow}\right)^{2}}$$

where:

$$|w|_{k-r-1}^{\downarrow} > \frac{1}{r+1} \sum_{i=k-r}^{d} |w|_{i}^{\downarrow} \ge |w|_{k-r}^{\downarrow}$$

- Can compute $|w|_k^{sp}$ in time O(d log(d))
- Can compute $\nabla |w|_k^{sp}$ in time O(d log(d))
- Can compute prox map in time O(d (log(d)+k)):

$$\operatorname{prox}_{\lambda}(w) = \arg\min_{u} \frac{1}{2} |u - w|_{2}^{2} + \lambda (|u|_{k}^{\operatorname{sp}})^{2}$$

 \Rightarrow can optimize $\min_{|w|_k^{sp} \leq B} L(w)$ or $\min L(w) + \lambda |w|_k^{sp}$ using e.g. FISTA

k-Support vs Elastic Net

$$\{ |w|_k^{\text{sp}} \le 1 \} = \operatorname{conv}(\{ |w|_0 \le k, |w|_2 \le 1\}) \subset \{ |w|_1 \le \sqrt{k}, |w|_2 \le 1\} = \{ |w|_k^{\text{en}} \le 1\}$$

- $|w|_k^{\mathbf{el}} \le |w|_k^{\mathbf{sp}}$
- $|w|_1^{sp} = |w|_1^{sp} = |w|_1$ and $|w|_d^{sp} = |w|_d^{sp} = |w|_2$

• For
$$w = (k^{1.5}, 1, 1, ..., 1) \in \mathbb{R}^d$$
, $d = k^2 + 1$:
 $k^{1.5} \left(1 + \frac{1}{\sqrt{k}} \right) = |w|_k^{\text{el}} < |w|_k^{\text{sp}} = \sqrt{2} \cdot k^{1.5}$

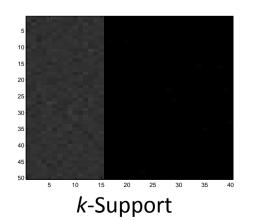
 \Rightarrow Gap could be as much as $\sqrt{2}$

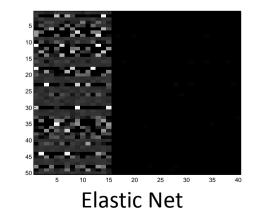
Theorem: $|w|_k^{\text{el}} \le |w|_k^{\text{sp}} \le \sqrt{2} \cdot |w|_k^{\text{el}}$

Experiments

	Zou+Hastie Synthetic (d=40,k=15, strong correlations)	South African Heart	20 Newsgroups
Lasso	0.27	0.18	0.70
Elastic Net	0.23	0.18	0.70
k-Support	0.21	0.18	0.69

Mean Squared Error on test data. Parameters λ , k selected on validation set.





Summary: *k*-Support Norm

- When discussing "tightness" of convex relaxation, scale constraint is important!
- k-support norm is tightest convex relaxation of sparsity with an l₂ constraint
- efficiently to computable and optimizable
- strictly tighter then elastic net (relaxing $|w|_0$ to $|w|_1$)
- ... but only up to a factor of $\sqrt{2}$
- \Rightarrow elastic net is tight up to $\sqrt{2}$

Part II: Rank

- Relax { rank(X) \leq k }
- With what scale constraint?
- Trace-norm (aka nuclear norm, $|\text{spectrum}|_1$) is tightest relaxation subject to spectral norm ($|\text{spectrum}|_{\infty}$): $\{ |X|_{\text{tr}} \le k, |X|_{\text{sp}} \le 1 \}$ $= \operatorname{conv}(\{ \operatorname{rank}(X) \le k, |X|_{\text{sp}} \le 1 \})$

Constraining Avg Entry Magnitude

• Relax {rank(
$$X$$
) $\leq k, \frac{1}{nm} |X|_F^2 \leq 1$ }

• $|X|_F^2 = |\text{spectrum}|_2$, vector case carries over:

$$-\left\{\frac{1}{nm}|X|_{\mathrm{tr}}^2 \le k, \frac{1}{nm}|X|_F^2 \le nm\right\} \text{tight up to a factor of } \sqrt{2}$$

- Convex hull (tight relaxation) give by k-support norm applied to spectrum
 - Can calculate and optimize, just like vector case
- But often $|X|_{\infty}$ more natural
 - Required for (noisy) matrix completion guarantees

The Matrix Max-Norm

- Recall: $|X|_{tr} = \min_{X=UV'} |U|_F |V|_F$
- The Max-Norm: $|X|_{\max} = \min_{X=UV'} |U|_{2,\infty} |V|_{2,\infty}$ Not a spectral function! $|U|_{2,\infty} = \max_{i} |U_i|_2$

 - SDP representable
 - Super-fast non-convex opt [Lee et al 2010]
 - Fast 1st order optimization [PRISMA: Argyriou, Orabona, S 2012]

•
$$\frac{1}{nm} |X|_{tr}^2 \le |X|_{max}^2 \le \operatorname{rank}(X) \cdot |X|_{\infty}^2$$

- Contrast with:
$$\frac{1}{nm} |X|_{tr}^2 \le \operatorname{rank}(X) \cdot \frac{1}{nm} |X|_F^2$$

Trace-Norm vs Max-Norm

$$\begin{cases} \frac{1}{nm} |X|_{tr}^2 \le k, |X|_{\infty} \le 1 \\ \subset \{|X|_{max}^2 \le k, |X|_{\infty} \le 1\} \\ \subset \{rank(X) \le k, |X|_{\infty} \le 1\} \end{cases}$$

• Gap between relaxations as large as $\sqrt[3]{n}$:

$$X = \begin{bmatrix} H_{\sqrt[3]{n^2k}} & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$
$$|X|_{\max} = \sqrt[3]{n/k} \qquad \qquad \frac{1}{\sqrt{nn}} |X|_{\mathrm{tr}} = 1$$

(Gap between max-norm and trace-norm as large as n)

Sample Complexity for Low-Rank Matrix Reconstruction

• Y \approx low rank M, observe random subset S of entries

• #sample to get
$$\frac{1}{nm} |X - Y|_1 \le \frac{1}{nm} |Y - M|_1 + \epsilon$$

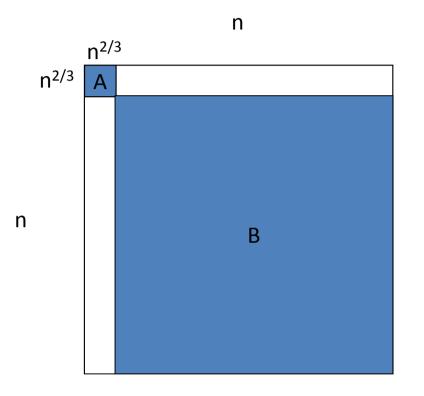
(or, if Y=M+iid noise, to get $\frac{1}{nm} |X - M|_F^2 \le \epsilon$)

- Using trace-norm: O(rank(M) (n+m) log(n) / ϵ^2)
- Using max-norm: O(rank(M) (n+m) / ϵ^2)
- If entries sampled non-uniformly:
 - Using trace-norm:

 $\Omega(\text{rank}(M) (n+m) \sqrt[3]{n} / \epsilon^2) \sim O(\text{rank}(M) (n+m) \sqrt{n} / \epsilon^2)$

– Using max-norm: O(rank(M) (n+m) / ϵ^2)

The Trace-Norm with Non-Uniform Sampling



- Both A,B of rank 2
- Sampling:
 - uniform in A w.p. ½
 - uniform w.p. ½

- Regularizing with the rank or with the max-norm: sample complexity \propto n, i.e. O(1) per row
- Regularizing with the trace-norm:

number $\propto n^{4/3}$, i.e. O($n^{1/3}$) per row!!!

[Salakhutdinov **S** 10] improved to O(n^{3/2}) by [Hazan Kale Shalev-Shwartz 12]

Experiments on Netflix

	RMSE	%improvement
NetFlix Cinematch: (baseline)	0.9525	0
TraceNorm:	0.9235	3.04
MaxNorm:	0.9138	4.06
Weighted TraceNorm:	0.9078	4.69
Smoothed Wghtd TrNorm:	0.9068	4.80
Local MaxNorm	0.9063	4.85
Winning team:	0.8553	10.20

Tightness of Max-Norm Relaxation

- Grothendik's inequality: $\operatorname{conv}(\{\operatorname{rank}(X) \le 1, |X|_{\infty} \le 1\})$ $\subset \{|X|_{\max}^{2} \le 1\}$ $\subset 1.79 \cdot \operatorname{conv}(\{\operatorname{rank}(X) \le 1, |X|_{\infty} \le 1\})$
- What about larger k? $\operatorname{conv}(\{\operatorname{rank}(X) \le k, |X|_{\infty} \le 1\})$ $\subset \{|X|_{\max}^{2} \le k, |X|_{\infty} \le 1\}$ $\subset G(k) \cdot \operatorname{conv}(\{\operatorname{rank}(X) \le k, |X|_{\infty} \le 1\})$
- How does G(k) grow? $1.4 \leq G(k) \leq \sqrt{k} \cdot 1.79$

Summary

- When discussing "tightness" of convex relaxation, scale constraint is important!
- Relaxing sparsity with bounded l₂ scale:
 - k-support norm is tightest convex relaxation
 - elastic net is tight up to $\sqrt{2}$
- Relaxing rank constraint for bounded entry matrices: (bounded entries required for reconstruction gurantees)
 - Max-norm much tighter then trace-norm
 - Better reconstruction guarantees; often better empirical performance