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Structured models

models with low-dimensional structure (low“degrees of freedom”), living in a
high-dimensional ambient space

goal: recover/derive such a model from limited observations

applications: signal processing, machine learning, system identification,. . .

questions: are there suitable convex regularizers? how to quantify their
performance?
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Typical structured models

• sparse vector (compressed sensing, LASSO,. . . )

• group-sparse vectors (group LASSO)

• low-rank matrix (collaborative filtering, system identification, . . . )

• sparse plus low-rank matrix (graphical models with hidden variables, PCA with outliers)

• simultaneously sparse and low-rank (phase retrieval)

2



Typical structured models

• sparse vector (compressed sensing, LASSO,. . . )

• group-sparse vectors (group LASSO)

• low-rank matrix (collaborative filtering, system identification, . . . )

• sparse plus low-rank matrix (graphical models with hidden variables, PCA with outliers)

• simultaneously sparse and low-rank (phase retrieval)

3



Recovery of structured models

basic setup: unknown (structured) model x0 ∈ Rn;
we are given observations G(x0) = y where G : Rn → Rm is a linear map, m ≪ n

goal: given G, y ∈ Rm (and structure type), find x0.

for different structures, much recent research has focused on

• how to find desired model from underdetermined observations?

• how many measurements m suffice? (sample complexity)

for analysis, assume generic measurements G: m× n measurement matrix with
i.i.d. Gaussian entries.
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Example: Sparse vectors and ‖x‖1

generic measurements G : Rn → Rm. x0 is k-sparse.

non-convex program:

minimize ‖x‖0
subject to G(x) = G(x0)

needs O(k) observations to exactly recover x0 with high probability (probability goes

to 1 exponentially with m)

convex program:
minimize ‖x‖1
subject to G(x) = G(x0)

needs O(k log n
k
) observations for exact recovery w.h.p.

some past work: Candes,Romberg,Tao’04; Donoho’04; Tropp’04; Fuchs’04; . . .
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Example: Low-rank matrices and ‖X‖∗

generic measurements G : Rn×n → Rm. X0 is rank r.

non-convex program:

minimize rank(X)
subject to G(X) = G(X0)

needs O(nr) observations to exactly recovers X0 w.h.p

convex program:
minimize ‖X‖∗
subject to G(X) = G(X0)

also needs O(nr) observations for exact recovery w.h.p.

some past work: Fazel’01; Srebro’04; Recht,Fazel,Parrilo’07; Candes,Recht’08; Candes,Plan’09;

Keshavan et al.’09; Negahban et al.’09,. . .
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This talk: Simultaneous structures

• model of interest is known to be structured in several ways

• additional structures reduce degrees of freedom

we hope for recovery with fewer observations

example: matrix is both (block-)sparse and low-rank: X0 ∈ Rn×n

• rank(X0) = r with r ≪ n

• X0 supported over a k × k submatrix
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Application: Sparse phase retrieval

phase retrieval: a classic signal processing/optics problem

recover signal x0 from linear phaseless

measurements,

|aTi x0| = bi, i = 1, . . . ,m

reformulate as: find X = x0x
T
0 s.t. 〈aiaTi ,X〉 = b2i

i.e., X � 0, rank(X) = 1, A(X) = b′ [Candes,Eldar,Strohmer,Voroninski’11]

in applications, signal x0 is also often sparse. then, X is rank-1 and (block-)sparse
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‘combination of norms’ recovery program

consider class of convex programs

minimize
x∈C

f(x) = h(‖x‖(1), . . . , ‖x‖(τ))
subject to G(x) = G(x0),

where h : Rτ
+ → R+ is increasing with respect to the order induced by Rτ

+ .

examples:

f(x) =

τ
∑

i=1

λi‖x‖(i)

where λi > 0 are regularization parameters.

f(x) = max
i=1,...,τ

1

‖x0‖(i)
‖x‖(i)
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Pareto optimal front

• sets of achievable objective
values shrink as the number
of measurements grows, always
containing x0

• for x0 to be recoverable; for any
m < m, x0 is not on the Pareto
optimal front.

• need at least m measurements

-‖ · ‖(1)

6‖ · ‖(2)

r

x0

m
m
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Our results

• theoretical analysis of general simultaneous structures

• performance of combined convex penalties, and a fundamental limitation

• special case of sparse and low-rank matrix problem

– performance of convex vs nonconvex penalty, and a gap
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Decomposable norms

Definition. norm ‖·‖ is decomposable at x if there exist

subspace T ⊂ Rn (support), vector e ∈ T (sign)

such that ∂‖x‖ = {z ∈ Rn : PT (z) = e, ‖PT⊥(z)‖∗ ≤ 1}

and for all y ∈ T⊥, ‖y‖ = supz∈T⊥,‖z‖∗≤1〈y, z〉.
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Simultaneously structured models

suppose norms {‖ · ‖(i)}τi=1 are decomposable at x0. x0 is a simultaneously

structured object with

• sign vectors ei, supports Ti, joint support T∩ =
⋂τ

i=1 Ti

• projected signs e∩,i = PT∩(ei), “angles” θi =
‖e∩,i‖2
‖ei‖2
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Lower bound on measurements for recovery

consider class of convex programs

minimize f(x) = h(‖x‖(1), . . . , ‖x‖(τ))
subject to G(x) = G(x0),

Theorem 1. program above fails to recover x0 with high probability if

m <
n

81
inf

g∈∂f(x0)

‖PT∩(g)‖22
‖g‖22
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Main result

Assumption. ∀ i 6= j, let 〈e∩,i, e∩,j〉 ≥ 0.

Theorem 2. Suppose assumption holds. Then program above fails to recover x0

with high probability, if

m <
κθ2

81τ
min
i

dim(Ti)

note: need measurements on the order of mini dim(Ti), rather than dim(T∩)!

can handle also additional cone constraints on x0 (affects the constant)
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quantity κ = mini κi where

κi =
n

dim(Ti)

‖ei‖22
L2
i

,

and L is Lipschitz constant of the norm L = supz1 6=z2

‖z1‖−‖z2‖
‖z1−z2‖2

examples. for ℓ1, ℓ1,2, and nuclear norm,

κ1 = 1, κ1,2 = 1, 1/2 ≤ κ∗ ≤ 1
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Sparse and low-rank case

a surprising gap. while a nonconvex problem can recover the model from very few
measurements (on order of the degrees of freedom), combined convex penalties
requires much more measurements.

m
6

O (nr)

?

X0 is not a minimizer of

min. ‖X‖∗ + λ‖X‖1,2

s.t. G(X) = G(X0)

X � 0

gap

O
(

k log n
k
+ kr

)

6
X0 is the unique minimizer of

min. rank(X) + λ‖X‖0,2 + λ‖XT‖0,2

s.t. G(X) = G(X0)

r(2k − r) true “degrees of freedom”
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summary of recovery results, for X ∈ Rn×n, supported over a k × k submatrix.

nonconvex approaches are optimal up to a logarithmic factor, while convex
approaches perform poorly.

Setting Nonconvex sufficient m Convex required m
General model O(max{rk, k log n

k
}) Ω(rn)

PSD, arbitrary rank O(max{rk, k log n
k
}) Ω(rn)

PSD, rank 1 O(k log n
k
) Ω(min{k2, n})
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Numerical experiments

grayscale shows probability of success over 25 runs for each case. recovery using
f(X) = Tr(X) + λ‖X‖1. X0 is PSD, rank 1, k = 8. n ranges up to 80.
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Numerical experiments

grayscale shows probability of success over 25 runs for each case. recovery using
f(X) = Tr(X) + λ‖X‖1,2 with PSD constraint. X0 is PSD, rank 1, k = 7, n
ranges up to 60.
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Summary

• regularizers for recovery of a model known to have several structures
simultaneously

• result: combined convex penalty requires many more generic measurements than
degrees of freedom

• contrast with card vs ℓ1, rank vs ‖ · ‖∗, . . .
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Future work

• recovery error and phase transition

• can we directly define atoms and take convex hulls to find better norm in some
cases?

• partial relaxation

• other applications

• other measurement models, e.g., phase retrieval measurements 〈aiaTi ,X〉 = b′i
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