Recovery of Simultaneously Structured Models using Convex Optimization

Maryam Fazel University of Washington

Joint work with: Amin Jalali (UW), Samet Oymak and Babak Hassibi (Caltech) Yonina Eldar (Technion)

IPAM Workshop, 1/18/2013

Structured models

models with **low-dimensional structure** (low "degrees of freedom"), living in a high-dimensional ambient space

goal: recover/derive such a model from limited observations

applications: signal processing, machine learning, system identification, . . .

questions: are there suitable convex regularizers? how to quantify their performance?

Typical structured models

- sparse vector (compressed sensing, LASSO,...)
- group-sparse vectors (group LASSO)
- low-rank matrix (collaborative filtering, system identification, . . .)
- sparse *plus* low-rank matrix (graphical models with hidden variables, PCA with outliers)
- simultaneously sparse and low-rank (phase retrieval)

Typical structured models

- sparse vector (compressed sensing, LASSO,...)
- group-sparse vectors (group LASSO)
- low-rank matrix (collaborative filtering, system identification, . . .)
- sparse *plus* low-rank matrix (graphical models with hidden variables, PCA with outliers)
- simultaneously sparse and low-rank (phase retrieval)

Recovery of structured models

basic setup: unknown (structured) model $\mathbf{x}_0 \in \mathbf{R}^n$; we are given observations $\mathcal{G}(\mathbf{x}_0) = \mathbf{y}$ where $\mathcal{G} : \mathbf{R}^n \to \mathbf{R}^m$ is a linear map, $m \ll n$

goal: given \mathcal{G} , $\mathbf{y} \in \mathbf{R}^m$ (and structure type), find \mathbf{x}_0 .

for different structures, much recent research has focused on

- how to find desired model from underdetermined observations?
- how many measurements *m* suffice? (sample complexity)

for analysis, assume generic measurements \mathcal{G} : $m \times n$ measurement matrix with **i.i.d. Gaussian** entries.

Example: Sparse vectors and $\|\mathbf{x}\|_1$

generic measurements $\mathcal{G}: \mathbf{R}^n \to \mathbf{R}^m$. \mathbf{x}_0 is *k*-sparse.

non-convex program:

$$\begin{array}{ll} \text{minimize} & \|\mathbf{x}\|_0\\ \text{subject to} & \mathcal{G}(\mathbf{x}) = \mathcal{G}(\mathbf{x}_0) \end{array}$$

needs $\mathcal{O}(k)$ observations to exactly recover \mathbf{x}_0 with high probability (probability goes to 1 exponentially with m)

convex program:

minimize
$$\|\mathbf{x}\|_1$$

subject to $\mathcal{G}(\mathbf{x}) = \mathcal{G}(\mathbf{x}_0)$

needs $\mathcal{O}(k \log \frac{n}{k})$ observations for exact recovery w.h.p.

some past work: Candes, Romberg, Tao'04; Donoho'04; Tropp'04; Fuchs'04; . . .

Example: Low-rank matrices and $\|\mathbf{X}\|_*$

generic measurements $\mathcal{G}: \mathbf{R}^{n \times n} \to \mathbf{R}^m$. \mathbf{X}_0 is rank r.

non-convex program:

 $\begin{array}{ll} \mbox{minimize} & {\rm rank}({\bf X}) \\ \mbox{subject to} & \mathcal{G}({\bf X}) = \mathcal{G}({\bf X}_0) \end{array}$

needs $\mathcal{O}(nr)$ observations to exactly recovers \mathbf{X}_0 w.h.p

convex program:

minimize
$$\|\mathbf{X}\|_*$$

subject to $\mathcal{G}(\mathbf{X}) = \mathcal{G}(\mathbf{X}_0)$

also needs $\mathcal{O}(nr)$ observations for exact recovery w.h.p.

some past work: Fazel'01; Srebro'04; Recht,Fazel,Parrilo'07; Candes,Recht'08; Candes,Plan'09; Keshavan et al.'09; Negahban et al.'09,...

This talk: Simultaneous structures

- model of interest is known to be structured in *several* ways
- additional structures reduce degrees of freedom we hope for recovery with fewer observations

example: matrix is both (block-)sparse and low-rank: $\mathbf{X}_0 \in \mathbf{R}^{n \times n}$

- $\operatorname{rank}(\mathbf{X}_0) = r \text{ with } r \ll n$
- \mathbf{X}_0 supported over a $k \times k$ submatrix

Application: Sparse phase retrieval

phase retrieval: a classic signal processing/optics problem

recover signal \mathbf{x}_0 from linear *phaseless* measurements,

$$|\mathbf{a}_i^T \mathbf{x}_0| = b_i, \quad i = 1, \dots, m$$

reformulate as: find $\mathbf{X} = \mathbf{x}_0 \mathbf{x}_0^T$ s.t. $\langle \mathbf{a}_i \mathbf{a}_i^T, \mathbf{X} \rangle = b_i^2$

i.e., $\mathbf{X} \succeq 0$, $rank(\mathbf{X}) = 1$, $\mathcal{A}(\mathbf{X}) = b'$ [Candes,Eldar,Strohmer,Voroninski'11]

in applications, signal x_0 is also often **sparse**. then, X is rank-1 and (block-)sparse

xray

'combination of norms' recovery program

consider class of convex programs

$$\begin{array}{ll} \underset{\mathbf{x} \in \mathcal{C}}{\text{minimize}} & f(\mathbf{x}) = h(\|\mathbf{x}\|_{(1)}, \dots, \|\mathbf{x}\|_{(\tau)}) \\ \text{subject to} & \mathcal{G}(\mathbf{x}) = \mathcal{G}(\mathbf{x}_0), \end{array}$$

where $h : \mathbf{R}_+^{\tau} \to \mathbf{R}_+$ is increasing with respect to the order induced by \mathbf{R}_+^{τ} .

examples:

$$f(x) = \sum_{i=1}^{\tau} \lambda_i \|x\|_{(i)}$$

where $\lambda_i > 0$ are regularization parameters.

$$f(\mathbf{x}) = \max_{i=1,...,\tau} \frac{1}{\|\mathbf{x}_0\|_{(i)}} \|\mathbf{x}\|_{(i)}$$

Pareto optimal front

- sets of achievable objective values shrink as the number of measurements grows, always containing \mathbf{x}_0
- for \mathbf{x}_0 to be recoverable; for any $\underline{m} < m$, \mathbf{x}_0 is not on the Pareto optimal front.
- need at least m measurements

Our results

- theoretical analysis of general simultaneous structures
- performance of combined convex penalties, and a **fundamental limitation**
- special case of sparse and low-rank matrix problem
 - performance of convex vs nonconvex penalty, and a ${\bf gap}$

Decomposable norms

Definition. norm $\|\cdot\|$ is decomposable at \mathbf{x} if there exist

subspace $T \subset \mathbf{R}^n$ (support), vector $\mathbf{e} \in T$ (sign)

such that $\partial \|\mathbf{x}\| = \{\mathbf{z} \in \mathbf{R}^n : \mathcal{P}_T(\mathbf{z}) = \mathbf{e}, \|\mathcal{P}_{T^{\perp}}(\mathbf{z})\|_* \le 1\}$ and for all $\mathbf{y} \in T^{\perp}$, $\|\mathbf{y}\| = \sup_{\mathbf{z} \in T^{\perp}, \|\mathbf{z}\|^* \le 1} \langle \mathbf{y}, \mathbf{z} \rangle.$

[Candes,Recht'11;Wright et al.'12;Negahban et al.'09]

Simultaneously structured models

suppose norms $\{\|\cdot\|_{(i)}\}_{i=1}^{\tau}$ are decomposable at \mathbf{x}_0 . \mathbf{x}_0 is a *simultaneously structured object* with

• sign vectors \mathbf{e}_i , supports T_i , joint support $T_{\cap} = \bigcap_{i=1}^{\tau} T_i$

Lower bound on measurements for recovery

consider class of convex programs

minimize
$$f(\mathbf{x}) = h(\|\mathbf{x}\|_{(1)}, \dots, \|\mathbf{x}\|_{(\tau)})$$

subject to $\mathcal{G}(\mathbf{x}) = \mathcal{G}(\mathbf{x}_0),$

Theorem 1. program above *fails* to recover \mathbf{x}_0 with high probability if

$$m < \frac{n}{81} \inf_{\mathbf{g} \in \partial f(\mathbf{x}_0)} \frac{\|\mathcal{P}_{T_{\cap}}(\mathbf{g})\|_2^2}{\|\mathbf{g}\|_2^2}$$

Main result

Assumption. $\forall i \neq j$, let $\langle \mathbf{e}_{\cap,i}, \mathbf{e}_{\cap,j} \rangle \geq 0$.

Theorem 2. Suppose assumption holds. Then program above fails to recover \mathbf{x}_0 with high probability, if

$$m < \frac{\kappa \theta^2}{81\tau} \min_i \dim(T_i)$$

note: need measurements on the order of $\min_i \dim(T_i)$, rather than $\dim(T_{\cap})!$

can handle also additional cone constraints on \mathbf{x}_0 (affects the constant)

quantity $\kappa = \min_i \kappa_i$ where

$$\kappa_i = \frac{n}{\dim(T_i)} \frac{\|\mathbf{e}_i\|_2^2}{L_i^2},$$

and L is Lipschitz constant of the norm $L = \sup_{\mathbf{z}_1 \neq \mathbf{z}_2} \frac{\|\mathbf{z}_1\| - \|\mathbf{z}_2\|}{\|\mathbf{z}_1 - \mathbf{z}_2\|_2}$

examples. for ℓ_1 , $\ell_{1,2}$, and nuclear norm,

$$\kappa_1 = 1, \quad \kappa_{1,2} = 1, \quad 1/2 \le \kappa_* \le 1$$

Sparse and low-rank case

a surprising gap. while a nonconvex problem can recover the model from very few measurements (on order of the degrees of freedom), combined convex penalties requires much more measurements.

summary of recovery results, for $\mathbf{X} \in \mathbf{R}^{n \times n}$, supported over a $k \times k$ submatrix.

nonconvex approaches are optimal up to a logarithmic factor, while convex approaches perform poorly.

Setting	Nonconvex sufficient m	Convex required m
General model	$O(\max\{rk, k \log \frac{n}{k}\})$	$\Omega(rn)$
PSD, arbitrary rank	$O(\max\{rk, k \log \frac{n}{k}\})$	$\Omega(rn)$
PSD, rank 1	$O(k \log \frac{n}{k})$	$\Omega(\min\{k^2, n\})$

Numerical experiments

grayscale shows probability of success over 25 runs for each case. recovery using $f(\mathbf{X}) = \text{Tr}(\mathbf{X}) + \lambda \|\mathbf{X}\|_1$. \mathbf{X}_0 is PSD, rank 1, k = 8. n ranges up to 80.

Numerical experiments

grayscale shows probability of success over 25 runs for each case. recovery using $f(\mathbf{X}) = \text{Tr}(X) + \lambda \|\mathbf{X}\|_{1,2}$ with PSD constraint. \mathbf{X}_0 is PSD, rank 1, k = 7, n ranges up to 60.

Summary

- regularizers for recovery of a model known to have several structures simultaneously
- result: combined convex penalty requires many more generic measurements than degrees of freedom
- contrast with card vs ℓ_1 , rank vs $\|\cdot\|_*,\ldots$

Future work

- recovery error and phase transition
- can we directly define atoms and take convex hulls to find better norm in some cases?
- partial relaxation
- other applications
- other measurement models, e.g., phase retrieval measurements $\langle \mathbf{a}_i \mathbf{a}_i^T, \mathbf{X} \rangle = b'_i$

Reference

• "Simultaneously Structured Models with Application to Sparse and Low-rank Matrices",

Samet Oymak, Amin Jalali, Maryam Fazel, Yonina C. Eldar, Babak Hassibi. arXiv:1212.3753, Dec 2012.