
Sparse optimization in high dimensions: Efficient
algorithms, statistical recovery and optimality

Alekh Agarwal
Microsoft Research

Joint work with Sahand Negahban and Martin Wainwright

Introduction

Sparse optimization:

θ∗ = arg min
θ∈Rd

EP [`(θ; z)] = arg min
θ
L(θ),

such that θ∗ is s-sparse

Loss function ` is convex

P unknown, can sample from it

High dimensional setup: n� d

Want computationally efficient algorithms with (near) optimal
statistical recovery

Introduction

Sparse optimization:

θ∗ = arg min
θ∈Rd

EP [`(θ; z)] = arg min
θ
L(θ),

such that θ∗ is s-sparse

Loss function ` is convex

P unknown, can sample from it

High dimensional setup: n� d

Want computationally efficient algorithms with (near) optimal
statistical recovery

Introduction

Sparse optimization:

θ∗ = arg min
θ∈Rd

EP [`(θ; z)] = arg min
θ
L(θ),

such that θ∗ is s-sparse

Loss function ` is convex

P unknown, can sample from it

High dimensional setup: n� d

Want computationally efficient algorithms with (near) optimal
statistical recovery

Example 1 : Computational genomics

1

−1

1 C C G T A G A

A G C T A C T

A C C G T G T

signn nn=

S

SC

X

d

y θ∗

Predict disease susceptibility from genome

Depends on very few genes, θ∗ is sparse

Sparse logistic regression:

θ∗ = arg min
θ

EP [log(1 + exp(−yθT x))].

Example 1 : Computational genomics

1

−1

1 C C G T A G A

A G C T A C T

A C C G T G T

signn nn=

S

SC

X

d

y θ∗

Predict disease susceptibility from genome

Depends on very few genes, θ∗ is sparse

Sparse logistic regression:

θ∗ = arg min
θ

EP [log(1 + exp(−yθT x))].

Example 2 : Compressed sensing

y X w

n × dn

S

SC

θ∗

= +

Recover unknown signal θ∗ from noisy measurements

Sparse linear regression:

θ∗ = arg min
θ

EP [(y − θT x)2].

Outline

M-estimation approach (batch optimization, SAA)

Projected gradient descent
Global linear convergence
Statistical precision

Stochastic optimization approach (SA)

RADAR algorithm
Convergence guarantee
Optimality

Approach 1: M-estimation (batch optimization)

Draw n i.i.d. samples

Obtain θ̂n

θ̂n = arg min
‖θ‖1≤ρ

1

n

n∑
i=1

`(θ; zi)︸ ︷︷ ︸
Ln(θ)

Examples:

Sparse logistic regression:

θ̂n = arg min
‖θ‖1≤ρ

1

n
log(1 + exp(−yiθ

T xi))

Sparse linear regression:

θ̂n = arg min
‖θ‖1≤ρ

1

n
(yi − θT xi)

2

Approach 1: M-estimation (batch optimization)

Draw n i.i.d. samples

Obtain θ̂n

θ̂n = arg min
‖θ‖1≤ρ

1

n

n∑
i=1

`(θ; zi)︸ ︷︷ ︸
Ln(θ)

Examples:

Sparse logistic regression:

θ̂n = arg min
‖θ‖1≤ρ

1

n
log(1 + exp(−yiθ

T xi))

Sparse linear regression:

θ̂n = arg min
‖θ‖1≤ρ

1

n
(yi − θT xi)

2

M estimation: statistics and computation

Statistical arguments for consistency, θ̂n → θ∗

Convex optimization to compute θ̂n, when ` is convex

Can optimization for θ̂n benefit from similar assumptions useful in
statistical analysis?

M estimation: statistics and computation

Statistical arguments for consistency, θ̂n → θ∗

Convex optimization to compute θ̂n, when ` is convex

Can optimization for θ̂n benefit from similar assumptions useful in
statistical analysis?

Projected Gradient Descent in high-dimensions

B1(ρ)

θt

θt+1

θt − 1
γu
∇Ln(θt)

Iterate:

θt+1 = ΠB1(ρ)

{
θt − 1

γu
∇Ln(θt)

}
B1(ρ) = {θ | ‖θ‖1 ≤ ρ}.

Known convergence results

Convergence measured in ‖θt − θ̂‖
Ln smooth: sublinear convergence O(1/t)

Ln smooth and strongly convex: linear convergence O(κt)

5 10 15 20 25 30 35 40
−12

−10

−8

−6

−4

−2

0

lo
g
(‖
θ
t
−

θ̂‖
)

Iteration count

Illustration of convergence rates

sublinear
linear

Globally linear rates obtained in practice

50 100 150
−10

−8

−6

−4

−2

0

2

Iteration Count

lo
g(
‖θ

t
−

θ̂‖
)
(r
es
ca
le
d
)

n = 2500

p= 5000
p=10000
p=20000

Similar phenomenon for many other problems

No smoothness or curvature in high dimensions

Ln(θ; Zn
1) =

1

n

n∑
i=1

(yi − xT
i θ)2, xi

i .i .d .∼ N (0,Σ).

−5

0

5

−5

0

5
0

5

10

15

20

25

No Smoothness:
λmax(XTX/n) & λmax(Σ) + d

n with
high probability.

No Strong Convexity:
λmin(XTX/n) = 0. Hessian
rank-deficient when d > n.

Restricted Strong Convexity and Smoothness

Definition (Strong Convexity)

Ln satisfies strong convexity condition with γ if for all θ, θ
′ ∈ BR(ρ):

Ln(θ
′
)−

{
Ln(θ) + 〈∇Ln(θ), θ

′ − θ〉
}

︸ ︷︷ ︸
First-order Taylor approx.

≥ γ

2
‖θ′ − θ‖2

2︸ ︷︷ ︸
Lower curvature

Does not hold when d � n

θ

γ
2‖θ − θ

′‖2
θ
′

Restricted Strong Convexity

Definition (Restricted Strong Convexity)

Ln satisfies RSC condition with (γ, τ`) if for all θ, θ
′ ∈ BR(ρ):

Ln(θ
′
)−

{
Ln(θ) + 〈∇Ln(θ), θ

′ − θ〉
}

︸ ︷︷ ︸
First-order Taylor approx.

≥ γ

2
‖θ′ − θ‖2

2︸ ︷︷ ︸
Lower curvature

− τ`‖θ
′ − θ‖2

1︸ ︷︷ ︸
Tolerance

Same as strong convexity apart from the τ`‖θ
′ − θ‖2

1 tolerance.

Can hold even when d � n

RSC for sparse linear regression:

‖X (θ − θ′)‖2
2

n
≥ γ

2
‖θ − θ′‖2

2 − τ`‖θ − θ
′‖2

1, for all θ, θ
′ ∈ B1(ρ).

Related to Restricted Eigenvalue (RE) conditions (Bickel, Ritov and
Tsybakov, 2009; van de Geer and Buhlmann, 2009)

Satisfied w.h.p. for anisotropic random designs

Restricted Strong Convexity

Definition (Restricted Strong Convexity)

Ln satisfies RSC condition with (γ, τ`) if for all θ, θ
′ ∈ BR(ρ):

Ln(θ
′
)−

{
Ln(θ) + 〈∇Ln(θ), θ

′ − θ〉
}

︸ ︷︷ ︸
First-order Taylor approx.

≥ γ

2
‖θ′ − θ‖2

2︸ ︷︷ ︸
Lower curvature

− τ`‖θ
′ − θ‖2

1︸ ︷︷ ︸
Tolerance

RSC for sparse linear regression:

‖X (θ − θ′)‖2
2

n
≥ γ

2
‖θ − θ′‖2

2 − τ`‖θ − θ
′‖2

1, for all θ, θ
′ ∈ B1(ρ).

Related to Restricted Eigenvalue (RE) conditions (Bickel, Ritov and
Tsybakov, 2009; van de Geer and Buhlmann, 2009)

Satisfied w.h.p. for anisotropic random designs

Restricted Smoothness

Definition (Restricted SMoothness)

Ln satisfies RSM condition with (γu, τu) if for all θ, θ
′ ∈ BR(ρ):

Ln(θ
′
)−

{
Ln(θ) + 〈∇Ln(θ), θ

′ − θ〉
}

︸ ︷︷ ︸
First-order Taylor approx.

≤ γu
2
‖θ′ − θ‖2

2︸ ︷︷ ︸
Upper Curvature

+ τu‖θ
′ − θ‖2

1︸ ︷︷ ︸
Tolerance

RSM for sparse linear regression:

‖X (θ − θ′)‖2
2

n
≤ γ

2
‖θ − θ′‖2

2 + τ`‖θ − θ
′‖2

1, for all θ, θ
′ ∈ B1(ρ).

Restricted Smoothness

Definition (Restricted SMoothness)

Ln satisfies RSM condition with (γu, τu) if for all θ, θ
′ ∈ BR(ρ):

Ln(θ
′
)−

{
Ln(θ) + 〈∇Ln(θ), θ

′ − θ〉
}

︸ ︷︷ ︸
First-order Taylor approx.

≤ γu
2
‖θ′ − θ‖2

2︸ ︷︷ ︸
Upper Curvature

+ τu‖θ
′ − θ‖2

1︸ ︷︷ ︸
Tolerance

RSM for sparse linear regression:

‖X (θ − θ′)‖2
2

n
≤ γ

2
‖θ − θ′‖2

2 + τ`‖θ − θ
′‖2

1, for all θ, θ
′ ∈ B1(ρ).

Linear convergence of gradient descent

Optimization problem:

θ̂ ∈ arg min
‖θ‖1≤ρ

{
1

n

n∑
i=1

L(θ; Zi)

}

Statistical error: εstat = θ̂ − θ∗

Theorem (A., Negahban, Wainwright ’10)

Suppose that the loss function Ln satisfies (RSC) and (RSM)
assumptions. Then there is a contraction factor κ ∈ (0, 1) and a
tolerance ε2(εstat)

‖θt − θ̂‖2
2 ≤ κt‖θ0 − θ̂‖2 + ε2(εstat) for all iterations t=0,1,2,. . .

Global linear convergence to an accuracy ε2(εstat)

Linear convergence of gradient descent

Optimization problem:

θ̂ ∈ arg min
‖θ‖1≤ρ

{
1

n

n∑
i=1

L(θ; Zi)

}

Statistical error: εstat = θ̂ − θ∗

Theorem (A., Negahban, Wainwright ’10)

Suppose that the loss function Ln satisfies (RSC) and (RSM)
assumptions. Then there is a contraction factor κ ∈ (0, 1) and a
tolerance ε2(εstat)

‖θt − θ̂‖2
2 ≤ κt‖θ0 − θ̂‖2 + ε2(εstat) for all iterations t=0,1,2,. . .

Global linear convergence to an accuracy ε2(εstat)

Convergence to statistical precision

θ∗ θ̂

ε
stat

εstat := ‖θ̂ − θ∗‖2.

Aim to recover true model θ∗.

Define εstat := ‖θ̂ − θ∗‖2.

We will guarantee ε(εstat) = o(εstat).

Convergence to statistical precision

ε2(ε
stat
)

θt

θ∗ θ̂

ε
stat

θt is a bad estimator if ε(εstat)� εstat.

Aim to recover true model θ∗.

Define εstat := ‖θ̂ − θ∗‖2.

We will guarantee ε(εstat) = o(εstat).

Convergence to statistical precision

ε2(ε
stat
) = o(ε

stat
)

θ∗ θ̂

ε
stat

θt

θt as good as θ̂ if ε(εstat) = o(εstat).

Aim to recover true model θ∗.

Define εstat := ‖θ̂ − θ∗‖2.

We will guarantee ε(εstat) = o(εstat).

Sparse linear regression

Random design: xi
iid∼ N (0,Σ), yi = xT

i θ
∗ + wi

θ∗ is s-sparse

(RSC) and (RSM) hold w.h.p.

Corollary (A., Negahban, Wainwright ’10)

The projected gradient iterates with ρ = ‖θ∗‖1 satisfy

‖θt − θ̂‖2
2 ≤ κt‖θ0 − θ̂‖2

2 + c
s log d

n︸ ︷︷ ︸
o(1)

‖θ̂ − θ∗‖2
2.

κ improves with sample size

Results extend to approximate sparsity

Convergence rates depend on sample size

20 40 60 80
−10

−8

−6

−4

−2

0

2

Iteration Count

lo
g(
‖θ

t
−

θ̂‖
)
(r
es
ca
le
d
)

p = 20000

α= 1
α=1.25
α= 5
α= 25

n = αs log d

Convergence plots: with fixed sample size

50 100 150
−10

−8

−6

−4

−2

0

2

Iteration Count

lo
g(
‖θ

t
−

θ̂‖
)
(r
es
ca
le
d
)

n = 2500

p= 5000
p=10000
p=20000

Convergence plots: with rescaled sample size

50 100 150
−10

−8

−6

−4

−2

0

2

Iteration Count

lo
g(
‖θ

t
−

θ̂‖
)
(r
es
ca
le
d
)

α = 16.3069

p= 5000
p=10000
p=20000

n = αs log d

Net computational complexity of batch optimization

Similar linear convergence for other first order methods (e.g.: Xiao
and Zhang (2011))

Convergence rate captures number of iterations

Each iteration has complexity O(nd)

One pass over data at each iteration

Cam we do better?

Can we have a linear time algorithm?

Net computational complexity of batch optimization

Similar linear convergence for other first order methods (e.g.: Xiao
and Zhang (2011))

Convergence rate captures number of iterations

Each iteration has complexity O(nd)

One pass over data at each iteration

Cam we do better?

Can we have a linear time algorithm?

Net computational complexity of batch optimization

Similar linear convergence for other first order methods (e.g.: Xiao
and Zhang (2011))

Convergence rate captures number of iterations

Each iteration has complexity O(nd)

One pass over data at each iteration

Cam we do better?

Can we have a linear time algorithm?

Approach 2: Stochastic optimization

Directly minimize EP [`(θ; z)]

Use samples to obtain gradient estimates

θt+1 = θt − αt∇`(θt ; zt)

Stop after one pass over data

Statistically, often competitive with batch (that is,
‖θn − θ∗‖2 ≈ ‖θ̂n − θ∗‖2)

Precise rates depend on the problem structure

Approach 2: Stochastic optimization

Directly minimize EP [`(θ; z)]

Use samples to obtain gradient estimates

θt+1 = θt − αt∇`(θt ; zt)

Stop after one pass over data

Statistically, often competitive with batch (that is,
‖θn − θ∗‖2 ≈ ‖θ̂n − θ∗‖2)

Precise rates depend on the problem structure

Structural assumptions

θ∗ is s-sparse

Make additional structural assumptions on L(θ) = EP [`(θ; z)]

L is Locally Lipschitz
L is Locally strongly convex (LSC)

Locally Lipschitz functions

Definition (Locally Lipschitz function)

L is locally G -Lipschitz in `1-norm, meaning that

|L(θ)− L(θ̃)| ≤ G‖θ − θ̃‖1,

if ‖θ − θ∗‖1 ≤ R and ‖θ̃ − θ∗‖1 ≤ R.

Globally Lipschitz Locally Lipschitz

Locally strongly convex functions

Definition (Locally strongly convex function)

There is a constant γ > 0 such that

L(θ̃) ≥ L(θ) + 〈∇L(θ), θ̃ − θ〉+
γ

2
‖θ − θ̃‖2

2,

if ‖θ‖1 ≤ R and ‖θ̃‖1 ≤ R

Locally Strongly convex Globally strongly convex

Stochastic optimization and structural conditions

Method Sparsity LSC Convergence

SGD O
(
d
T

)
Mirror descent/RDA/FOBOS/COMID O

(√
s2log d

T

)
Our Method O

(
s log d
T

)

Some previous methods

All methods based on observing g t such that E[g t] ∈ ∂L(θt)

Stochastic gradient descent: based on `2 distances, exploits LSC

θt+1 = arg min
θ
〈g t , θ〉+

1

2αt
‖θ − θt‖2

2

Stochastic dual averaging: based on `p distances, exploits
sparstity when p ≈ 1

θt+1 = arg min
θ

t∑
s=1

〈g s , θ〉+
1

2αt
‖θ‖2

p

Need to reconcile the geometries for exploiting both structures

Some previous methods

All methods based on observing g t such that E[g t] ∈ ∂L(θt)

Stochastic gradient descent: based on `2 distances, exploits LSC

θt+1 = arg min
θ
〈g t , θ〉+

1

2αt
‖θ − θt‖2

2

Stochastic dual averaging: based on `p distances, exploits
sparstity when p ≈ 1

θt+1 = arg min
θ

t∑
s=1

〈g s , θ〉+
1

2αt
‖θ‖2

p

Need to reconcile the geometries for exploiting both structures

RADAR algorithm: outline

Based on Juditsky and Nesterov (2011)

Recall the minimization problem: minθ E[`(θ; z)]

Algorithm proceeds over K epochs

At epoch i , solve the regularized problem:

min
θ∈Ωi

E[`(θ; z)] + λi‖θ‖1

where Ωi = θ ∈ Rd : ‖θ − yi‖2
p ≤ R2

i

RADAR algorithm: First epoch

Require: R1 such that ‖θ∗‖1 ≤ R1

Perform stochastic dual averaging with p = 2log d
2log d−1 ≈ 1

Initialize θ1 = 0, y1 = 0

Observe g t where E[g t] ∈ ∂L(θt) and
νt ∈ ∂‖θt‖1

Update

µt+1 = µt + g t + λ1ν
t

θt+1 = arg min
‖θ‖p≤R1

〈θ, µt+1〉+
1

2αt
‖θ‖2

p

θ∗

y1 = 0

R1

RADAR algorithm: First epoch

Require: R1 such that ‖θ∗‖1 ≤ R1

Perform stochastic dual averaging with p = 2log d
2log d−1 ≈ 1

Initialize θ1 = 0, y1 = 0

Observe g t where E[g t] ∈ ∂L(θt) and
νt ∈ ∂‖θt‖1

Update

µt+1 = µt + g t + λ1ν
t

θt+1 = arg min
‖θ‖p≤R1

〈θ, µt+1〉+
1

2αt
‖θ‖2

p

θ∗

y1 = 0

R1

RADAR algorithm: First epoch

Require: R1 such that ‖θ∗‖1 ≤ R1

Perform stochastic dual averaging with p = 2log d
2log d−1 ≈ 1

Initialize θ1 = 0, y1 = 0

Observe g t where E[g t] ∈ ∂L(θt) and
νt ∈ ∂‖θt‖1

Update

µt+1 = µt + g t + λ1ν
t

θt+1 = arg min
‖θ‖p≤R1

〈θ, µt+1〉+
1

2αt
‖θ‖2

p

θ∗

y1 = 0

R1

RADAR algorithm: First epoch

Require: R1 such that ‖θ∗‖1 ≤ R1

Perform stochastic dual averaging with p = 2log d
2log d−1 ≈ 1

Initialize θ1 = 0, y1 = 0

Observe g t where E[g t] ∈ ∂L(θt) and
νt ∈ ∂‖θt‖1

Update

µt+1 = µt + g t + λ1ν
t

θt+1 = arg min
‖θ‖p≤R1

〈θ, µt+1〉+
1

2αt
‖θ‖2

p

θ∗

y1 = 0

R1

RADAR algorithm: First epoch

Require: R1 such that ‖θ∗‖1 ≤ R1

Perform stochastic dual averaging with p = 2log d
2log d−1 ≈ 1

Initialize θ1 = 0, y1 = 0

Observe g t where E[g t] ∈ ∂L(θt) and
νt ∈ ∂‖θt‖1

Update

µt+1 = µt + g t + λ1ν
t

θt+1 = arg min
‖θ‖p≤R1

〈θ, µt+1〉+
1

2αt
‖θ‖2

p

R2

y1 = 0

R1

θ∗

Initializing next epoch

Update y2 = θ̄T
Update R2

2 = R2
1/2

Update λ2 = λ1/
√

2

Initialize θ1 = y2 for next epoch

Now use updates

µt+1 = µt + g t + λ2ν
t

θt+1 = arg min
‖θ−y2‖p≤R2

〈θ, µt+1〉+
1

2αt
‖θ − y2‖2

p

Each step still O(d)

θ∗y2

R2

Initializing next epoch

Update y2 = θ̄T
Update R2

2 = R2
1/2

Update λ2 = λ1/
√

2

Initialize θ1 = y2 for next epoch

Now use updates

µt+1 = µt + g t + λ2ν
t

θt+1 = arg min
‖θ−y2‖p≤R2

〈θ, µt+1〉+
1

2αt
‖θ − y2‖2

p

Each step still O(d)

θ∗y2

R2

Initializing next epoch

Update y2 = θ̄T
Update R2

2 = R2
1/2

Update λ2 = λ1/
√

2

Initialize θ1 = y2 for next epoch

Now use updates

µt+1 = µt + g t + λ2ν
t

θt+1 = arg min
‖θ−y2‖p≤R2

〈θ, µt+1〉+
1

2αt
‖θ − y2‖2

p

Each step still O(d)

θ∗y2

R2

Convergence rate for exact sparsity

Theorem (A., Negahban and Wainwright ’12)

Suppose the expected loss is G-Lipschitz and γ-strongly convex. Suppose
θ∗ has at most s non-zero entries. With probability at least
1− 6 exp(−δlog d/12)

‖θ̄T − θ∗‖2
2 ≤ c

G 2 + σ2(1 + δ)

γ2

s log d

T
.

Logarithmic scaling in d

Error decays as 1/T

Results extend to approximately sparse problems

Similar result for the method of Juditsky and Nesterov (2011)
applied with a fixed λ

Convergence rate for exact sparsity

Theorem (A., Negahban and Wainwright ’12)

Suppose the expected loss is G-Lipschitz and γ-strongly convex. Suppose
θ∗ has at most s non-zero entries. With probability at least
1− 6 exp(−δlog d/12)

‖θ̄T − θ∗‖2
2 ≤ c

G 2 + σ2(1 + δ)

γ2

s log d

T
.

Logarithmic scaling in d

Error decays as 1/T

Results extend to approximately sparse problems

Similar result for the method of Juditsky and Nesterov (2011)
applied with a fixed λ

Optimality of results

Error of O
(
s log d
γ2T

)
after T iterations

Stochastic gradients computed with one sample

T iterations ≡ T samples

Information-theoretic limit: Error Ω
(
s log d
γ2T

)
after observing T

samples for any possible method

We obtain the best possible error in linear time

Optimality of results

Error of O
(
s log d
γ2T

)
after T iterations

Stochastic gradients computed with one sample

T iterations ≡ T samples

Information-theoretic limit: Error Ω
(
s log d
γ2T

)
after observing T

samples for any possible method

We obtain the best possible error in linear time

Simulation results

Performed simulations for sparse linear regression

Compared to classical benchmarks: RDA, SGD

Evaluated several versions: RADAR, EDA, RADAR-Const

Results averaged over 5 random trials

Simulation results

0 0.5 1 1.5 2

x 10
4

0

1

2

3

4

5

6

Iterations

‖θ
t
−

θ
∗ ‖

2 2

Error vs. iterations

RADAR
SGD
RDA

0 0.5 1 1.5 2

x 10
4

0

1

2

3

4

5

6

Iterations
‖θ

t
−

θ
∗ ‖

2 2

Error vs. iterations

RADAR
SGD
RDA

d = 20000 d = 40000

Simulation results

0 0.5 1 1.5 2

x 10
4

0

1

2

3

4

5

Iterations

‖θ
t
−

θ
∗ ‖

2 2

Error vs. iterations

RADAR
EDA
RADAR-CONST

0 0.5 1 1.5 2

x 10
4

0

1

2

3

4

5

Iterations
‖θ

t
−

θ
∗ ‖

2 2

Error vs. iterations

RADAR
EDA
RADAR-CONST

d = 20000 d = 40000

Intuition

Convergence rate of 1/
√

t within each epoch

Re-centering and shrinking of set boosts convergence speed at each
epoch

Error halved after each epoch

Epoch lengths double— initial epochs negligible

Fast convergence at later epochs due to small set

High regularization initially, little at the end leads to (aprpox.)
sparsity all along

Conclusions

Optimization algorithms for sparse, high-dimensional problems

Exploit structure for fast optimization convergence

Effective for optimization to statistical accuracy

Computational and statistical optimality

Extensions to group sparsity, low-rank etc.

Similar extensions for mirror descent, accelerated methods (Hazan
and Kale (2011), Ghadimi and Lan (2012))

Possible extensions to distributed settings

More details can be found in

Fast global convergence of gradient methods for high dimensional
statistical recovery, A., Negahban and Wainwright,
http://arxiv.org/abs/1104.4824.

Stochastic optimization and sparse statistical recovery: An optimal
algorithm for high dimensions, A., Negahban and Wainwright,
http://arxiv.org/abs/1207.4421.

Thank You

