Sparse optimization in high dimensions: Efficient algorithms, statistical recovery and optimality

Alekh Agarwal Microsoft Research

Joint work with Sahand Negahban and Martin Wainwright

• Sparse optimization:

$$heta^* = rg\min_{ heta \in \mathbb{R}^d} \mathbb{E}_{P}[\ell(heta; z)] = rg\min_{ heta} ar{\mathcal{L}}(heta),$$

such that θ^* is s-sparse

• Sparse optimization:

$$heta^* = rg\min_{ heta \in \mathbb{R}^d} \mathbb{E}_{m{
ho}}[\ell(heta;z)] = rg\min_{ heta} ar{\mathcal{L}}(heta),$$

such that θ^* is s-sparse

- Loss function ℓ is convex
- P unknown, can sample from it
- High dimensional setup: $n \ll d$

• Sparse optimization:

$$heta^* = rg\min_{ heta \in \mathbb{R}^d} \mathbb{E}_{\mathcal{P}}[\ell(heta; z)] = rg\min_{ heta} ar{\mathcal{L}}(heta),$$

such that θ^* is s-sparse

- Loss function ℓ is convex
- P unknown, can sample from it
- High dimensional setup: $n \ll d$

Want computationally efficient algorithms with (near) optimal statistical recovery

Example 1 : Computational genomics

- Predict disease susceptibility from genome
- Depends on very few genes, θ^* is sparse

Example 1 : Computational genomics

- Predict disease susceptibility from genome
- Depends on very few genes, θ^{\ast} is sparse
- Sparse logistic regression:

$$heta^* = rg\min_{ heta} \mathbb{E}_{\mathcal{P}}[\log(1 + \exp(-y heta^{ op}x))].$$

Example 2 : Compressed sensing

- Recover unknown signal θ^* from noisy measurements
- Sparse linear regression:

$$\theta^* = \arg\min_{\theta} \mathbb{E}_P[(y - \theta^T x)^2].$$

• *M*-estimation approach (batch optimization, SAA)

- Projected gradient descent
- Global linear convergence
- Statistical precision
- Stochastic optimization approach (SA)
 - RADAR algorithm
 - Convergence guarantee
 - Optimality

Approach 1: *M*-estimation (batch optimization)

- Draw *n* i.i.d. samples
- Obtain $\widehat{\theta}_n$

$$\widehat{\theta}_{n} = \arg\min_{\|\theta\|_{1} \leq \rho} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell(\theta; z_{i})}_{\mathcal{L}_{n}(\theta)}$$

Approach 1: *M*-estimation (batch optimization)

- Draw *n* i.i.d. samples
- Obtain $\hat{\theta}_n$

$$\widehat{\theta}_n = \arg\min_{\|\theta\|_1 \le \rho} \underbrace{\frac{1}{n} \sum_{i=1}^n \ell(\theta; z_i)}_{\mathcal{L}_n(\theta)}$$

• Examples:

• Sparse logistic regression:

$$\widehat{\theta}_{n} = \arg \min_{\|\theta\|_{1} \leq \rho} \frac{1}{n} \log(1 + \exp(-y_{i}\theta^{T}x_{i}))$$

• Sparse linear regression:

$$\widehat{\theta}_n = \arg\min_{\|\theta\|_1 \le \rho} \frac{1}{n} (y_i - \theta^T x_i)^2$$

- Statistical arguments for consistency, $\widehat{\theta}_{\mathbf{n}} \rightarrow \theta^{*}$
- Convex optimization to compute $\widehat{\theta}_n$, when ℓ is convex

- Statistical arguments for consistency, $\hat{\theta}_n \rightarrow \theta^*$
- Convex optimization to compute $\widehat{\theta}_n$, when ℓ is convex

Can optimization for $\hat{\theta}_n$ benefit from similar assumptions useful in statistical analysis?

Projected Gradient Descent in high-dimensions

Iterate:

$$\theta^{t+1} = \Pi_{\mathbb{B}_1(\rho)} \left\{ \theta^t - \frac{1}{\gamma_u} \nabla \mathcal{L}_n(\theta^t) \right\}$$

• $\mathbb{B}_1(\rho) = \{\theta \mid \|\theta\|_1 \le \rho\}.$

Known convergence results

- Convergence measured in $\|\theta^t \hat{\theta}\|$
- \mathcal{L}_n smooth: sublinear convergence $\mathcal{O}(1/t)$
- \mathcal{L}_n smooth and strongly convex: linear convergence $\mathcal{O}(\kappa^t)$

Globally linear rates obtained in practice

• Similar phenomenon for many other problems

No smoothness or curvature in high dimensions

Definition (Strong Convexity)

 \mathcal{L}_n satisfies strong convexity condition with γ if for all $\theta, \theta' \in \mathbb{B}_{\mathcal{R}}(\rho)$:

$$\mathcal{L}_{n}(\theta') - \underbrace{\left\{ \mathcal{L}_{n}(\theta) + \langle \nabla \mathcal{L}_{n}(\theta), \theta' - \theta \rangle \right\}}_{\text{First-order Taylor approx.}} \geq \underbrace{\frac{\gamma}{2} \|\theta' - \theta\|_{2}^{2}}_{\text{Lower curvature}}$$

• Does not hold when $d \gg n$

Definition (Restricted Strong Convexity)

 \mathcal{L}_n satisfies RSC condition with (γ, τ_ℓ) if for all $\theta, \theta' \in \mathbb{B}_{\mathcal{R}}(\rho)$:

$$\mathcal{L}_{n}(\theta') - \underbrace{\left\{ \mathcal{L}_{n}(\theta) + \langle \nabla \mathcal{L}_{n}(\theta), \theta' - \theta \rangle \right\}}_{\text{First-order Taylor approx.}} \geq \underbrace{\frac{\gamma}{2} \|\theta' - \theta\|_{2}^{2}}_{\text{Lower curvature}} - \underbrace{\frac{\tau_{\ell} \|\theta' - \theta\|_{1}^{2}}_{\text{Tolerance}}}_{\text{Tolerance}}$$

• Same as strong convexity apart from the $\tau_{\ell} \| \theta' - \theta \|_1^2$ tolerance.

• Can hold even when $d \gg n$

Definition (Restricted Strong Convexity)

 \mathcal{L}_n satisfies RSC condition with (γ, τ_ℓ) if for all $\theta, \theta' \in \mathbb{B}_{\mathcal{R}}(\rho)$:

$$\mathcal{L}_{n}(\theta') - \underbrace{\left\{ \mathcal{L}_{n}(\theta) + \langle \nabla \mathcal{L}_{n}(\theta), \theta' - \theta \rangle \right\}}_{\text{First-order Taylor approx.}} \geq \underbrace{\frac{\gamma}{2} \|\theta' - \theta\|_{2}^{2}}_{\text{Lower curvature}} - \underbrace{\frac{\tau_{\ell} \|\theta' - \theta\|_{1}^{2}}_{\text{Tolerance}}}_{\text{Tolerance}}$$

• RSC for sparse linear regression:

$$\frac{\|X(\theta-\theta^{'})\|_{2}^{2}}{n} \geq \frac{\gamma}{2}\|\theta-\theta^{'}\|_{2}^{2} - \tau_{\ell}\|\theta-\theta^{'}\|_{1}^{2}, \quad \text{for all } \theta, \theta^{'} \in \mathbb{B}_{1}(\rho).$$

- Related to Restricted Eigenvalue (RE) conditions (Bickel, Ritov and Tsybakov, 2009; van de Geer and Buhlmann, 2009)
- Satisfied w.h.p. for anisotropic random designs

Definition (Restricted SMoothness)

 \mathcal{L}_n satisfies RSM condition with (γ_u, τ_u) if for all $\theta, \theta' \in \mathbb{B}_{\mathcal{R}}(\rho)$:

$$\mathcal{L}_{n}(\theta') - \underbrace{\left\{ \mathcal{L}_{n}(\theta) + \langle \nabla \mathcal{L}_{n}(\theta), \theta' - \theta \rangle \right\}}_{\text{First-order Taylor approx.}} \leq \underbrace{\frac{\gamma_{u}}{2} \|\theta' - \theta\|_{2}^{2}}_{\text{Upper Curvature}} + \underbrace{\tau_{u} \|\theta' - \theta\|_{1}^{2}}_{\text{Tolerance}}$$

Definition (Restricted SMoothness)

 \mathcal{L}_n satisfies RSM condition with (γ_u, τ_u) if for all $\theta, \theta' \in \mathbb{B}_{\mathcal{R}}(\rho)$:

$$\mathcal{L}_{n}(\theta') - \underbrace{\left\{ \mathcal{L}_{n}(\theta) + \langle \nabla \mathcal{L}_{n}(\theta), \theta' - \theta \rangle \right\}}_{\text{First-order Taylor approx.}} \leq \underbrace{\frac{\gamma_{u}}{2} \|\theta' - \theta\|_{2}^{2}}_{\text{Upper Curvature}} + \underbrace{\tau_{u} \|\theta' - \theta\|_{1}^{2}}_{\text{Tolerance}}$$

• RSM for sparse linear regression:

$$\frac{\|X(\theta-\theta^{'})\|_{2}^{2}}{n} \leq \frac{\gamma}{2}\|\theta-\theta^{'}\|_{2}^{2} + \tau_{\ell}\|\theta-\theta^{'}\|_{1}^{2}, \quad \text{for all } \theta, \theta^{'} \in \mathbb{B}_{1}(\rho).$$

Linear convergence of gradient descent

Optimization problem:

$$\widehat{\theta} \in \arg\min_{\|\theta\|_1 \le \rho} \left\{ \frac{1}{n} \sum_{i=1}^n \mathcal{L}(\theta; Z_i) \right\}$$

• Statistical error:
$$\epsilon_{\text{stat}} = \widehat{\theta} - \theta^*$$

Theorem (A., Negahban, Wainwright '10)

Suppose that the loss function \mathcal{L}_n satisfies (RSC) and (RSM) assumptions. Then there is a contraction factor $\kappa \in (0, 1)$ and a tolerance $\epsilon^2(\epsilon_{stat})$

$$\|\theta^t - \widehat{\theta}\|_2^2 \leq \kappa^t \|\theta^0 - \widehat{\theta}\|^2 + \epsilon^2(\epsilon_{stat})$$
 for all iterations t=0,1,2,...

Linear convergence of gradient descent

Optimization problem:

$$\widehat{\theta} \in \arg\min_{\|\theta\|_1 \le \rho} \left\{ \frac{1}{n} \sum_{i=1}^n \mathcal{L}(\theta; Z_i) \right\}$$

• Statistical error:
$$\epsilon_{\text{stat}} = \widehat{\theta} - \theta^*$$

Theorem (A., Negahban, Wainwright '10)

Suppose that the loss function \mathcal{L}_n satisfies (RSC) and (RSM) assumptions. Then there is a contraction factor $\kappa \in (0, 1)$ and a tolerance $\epsilon^2(\epsilon_{stat})$

$$\|\theta^t - \widehat{\theta}\|_2^2 \leq \kappa^t \|\theta^0 - \widehat{\theta}\|^2 + \epsilon^2(\epsilon_{stat})$$
 for all iterations t=0,1,2,...

• Global linear convergence to an accuracy $\epsilon^2(\epsilon_{\text{stat}})$

- Aim to recover true model θ^* .
- Define $\epsilon_{\text{stat}} := \|\widehat{\theta} \theta^*\|_2$.
- We will guarantee $\epsilon(\epsilon_{\text{stat}}) = o(\epsilon_{\text{stat}})$.

Convergence to statistical precision

 θ^t is a bad estimator if $\epsilon(\epsilon_{\text{stat}}) \gg \epsilon_{\text{stat}}$.

- Aim to recover true model θ^* .
- Define $\epsilon_{\text{stat}} := \|\widehat{\theta} \theta^*\|_2$.
- We will guarantee $\epsilon(\epsilon_{\text{stat}}) = o(\epsilon_{\text{stat}})$.

Convergence to statistical precision

- Aim to recover true model θ^* .
- Define $\epsilon_{\text{stat}} := \|\widehat{\theta} \theta^*\|_2$.
- We will guarantee $\epsilon(\epsilon_{\text{stat}}) = o(\epsilon_{\text{stat}})$.

Sparse linear regression

- Random design: $x_i \stackrel{iid}{\sim} \mathcal{N}(0, \Sigma), y_i = x_i^T \theta^* + w_i$
- θ^* is *s*-sparse
- (RSC) and (RSM) hold w.h.p.

Corollary (A., Negahban, Wainwright '10)

The projected gradient iterates with $\rho = \|\theta^*\|_1$ satisfy

$$\|\theta^t - \widehat{\theta}\|_2^2 \le \kappa^t \|\theta^0 - \widehat{\theta}\|_2^2 + c \underbrace{\frac{s \log d}{n}}_{o(1)} \|\widehat{\theta} - \theta^*\|_2^2.$$

- κ improves with sample size
- Results extend to approximate sparsity

Convergence rates depend on sample size

Convergence plots: with fixed sample size

Convergence plots: with rescaled sample size

- Similar linear convergence for other first order methods (e.g.: Xiao and Zhang (2011))
- Convergence rate captures number of iterations
- Each iteration has complexity $\mathcal{O}(nd)$
- One pass over data at each iteration

- Similar linear convergence for other first order methods (e.g.: Xiao and Zhang (2011))
- Convergence rate captures number of iterations
- Each iteration has complexity $\mathcal{O}(nd)$
- One pass over data at each iteration
- Cam we do better?

- Similar linear convergence for other first order methods (e.g.: Xiao and Zhang (2011))
- Convergence rate captures number of iterations
- Each iteration has complexity $\mathcal{O}(nd)$
- One pass over data at each iteration
- Cam we do better?
- Can we have a linear time algorithm?

- Directly minimize $\mathbb{E}_{P}[\ell(\theta; z)]$
- Use samples to obtain gradient estimates

$$\theta^{t+1} = \theta^t - \alpha_t \nabla \ell(\theta^t; z_t)$$

- Directly minimize $\mathbb{E}_{P}[\ell(\theta; z)]$
- Use samples to obtain gradient estimates

$$\theta^{t+1} = \theta^t - \alpha_t \nabla \ell(\theta^t; z_t)$$

- Stop after one pass over data
- Statistically, often competitive with batch (that is, $\|\theta^n \theta^*\|^2 \approx \|\widehat{\theta}_n \theta^*\|^2$)
- Precise rates depend on the problem structure

- θ^* is *s*-sparse
- Make additional structural assumptions on $\overline{\mathcal{L}}(\theta) = \mathbb{E}_{P}[\ell(\theta; z)]$
 - $\bar{\mathcal{L}}$ is Locally Lipschitz
 - $\overline{\mathcal{L}}$ is Locally strongly convex (LSC)

Definition (Locally Lipschitz function)

 $\bar{\mathcal{L}}$ is locally G-Lipschitz in ℓ_1 -norm, meaning that

$$|ar{\mathcal{L}}(heta) - ar{\mathcal{L}}(ilde{ heta})| \leq G \| heta - ilde{ heta}\|_1,$$

if $\|\theta - \theta^*\|_1 \leq R$ and $\|\tilde{\theta} - \theta^*\|_1 \leq R$.

Definition (Locally strongly convex function)

There is a constant $\gamma > 0$ such that

$$ar{\mathcal{L}}(ilde{ heta}) \geq ar{\mathcal{L}}(heta) + \langle
abla ar{\mathcal{L}}(heta), ilde{ heta} - heta
angle + rac{\gamma}{2} \| heta - ilde{ heta} \|_2^2,$$

 $\text{if } \|\theta\|_1 \leq R \text{ and } \|\widetilde{\theta}\|_1 \leq R$

Locally Strongly convex

Globally strongly convex

Stochastic optimization and structural conditions

Method	Sparsity	LSC	Convergence
SGD	×	1	$\mathcal{O}\left(\frac{d}{T}\right)$
Mirror descent/RDA/FOBOS/COMID	1	×	$\mathcal{O}\left(\sqrt{\frac{\mathbf{s}^2 \log d}{T}}\right)$
Our Method	1	1	$\mathcal{O}\left(\frac{s\log d}{T}\right)$

Some previous methods

- All methods based on observing g^t such that $\mathbb{E}[g^t] \in \partial ar{\mathcal{L}}(heta^t)$
- Stochastic gradient descent: based on ℓ_2 distances, exploits LSC

$$\theta^{t+1} = \arg\min_{\theta} \langle g^t, \theta \rangle + \frac{1}{2\alpha_t} \|\theta - \theta^t\|_2^2$$

Some previous methods

- All methods based on observing g^t such that $\mathbb{E}[g^t] \in \partial \bar{\mathcal{L}}(\theta^t)$
- Stochastic gradient descent: based on ℓ_2 distances, exploits LSC

$$\theta^{t+1} = \arg\min_{\theta} \langle g^t, \theta \rangle + \frac{1}{2\alpha_t} \| \theta - \theta^t \|_2^2$$

• Stochastic dual averaging: based on ℓ_p distances, exploits sparstity when $p \approx 1$

$$\theta^{t+1} = \arg\min_{\theta} \sum_{s=1}^{t} \langle g^s, \theta \rangle + \frac{1}{2\alpha_t} \|\theta\|_{\rho}^2$$

Need to reconcile the geometries for exploiting both structures

- Based on Juditsky and Nesterov (2011)
- Recall the minimization problem: $\min_{\theta} \mathbb{E}[\ell(\theta; z)]$
- Algorithm proceeds over K epochs
- At epoch *i*, solve the regularized problem:

 $\min_{\theta \in \Omega_i} \mathbb{E}[\ell(\theta; z)] + \frac{\lambda_i}{\|\theta\|_1}$

• where $\Omega_i = \theta \in \mathbb{R}^d$: $\|\theta - y_i\|_p^2 \le R_i^2$

• Require: R_1 such that $\| heta^*\|_1 \leq R_1$

• Initialize
$$\theta^1 = 0$$
, $y_1 = 0$

- Observe g^t where $\mathbb{E}[g^t] \in \partial \overline{\mathcal{L}}(\theta^t)$ and $\nu^t \in \partial \|\theta^t\|_1$
- Update

$$\begin{split} \mu^{t+1} &= \mu^t + g^t + \lambda_1 \nu^t \\ \theta^{t+1} &= \arg\min_{\|\theta\|_p \le R_1} \langle \theta, \mu^{t+1} \rangle + \frac{1}{2\alpha_t} \|\theta\|_p^2 \end{split}$$

• Require: R_1 such that $\| heta^*\|_1 \leq R_1$

• Initialize
$$\theta^1 = 0$$
, $y_1 = 0$

- Observe g^t where $\mathbb{E}[g^t] \in \partial \overline{\mathcal{L}}(\theta^t)$ and $\nu^t \in \partial \|\theta^t\|_1$
- Update

$$\begin{split} \mu^{t+1} &= \mu^t + g^t + \lambda_1 \nu^t \\ \theta^{t+1} &= \arg \min_{\|\theta\|_p \le R_1} \langle \theta, \mu^{t+1} \rangle + \frac{1}{2\alpha_t} \|\theta\|_p^2 \end{split}$$

• Require: R_1 such that $\| heta^*\|_1 \leq R_1$

• Initialize
$$\theta^1 = 0$$
, $y_1 = 0$

- Observe g^t where $\mathbb{E}[g^t] \in \partial \overline{\mathcal{L}}(\theta^t)$ and $\nu^t \in \partial \|\theta^t\|_1$
- Update

$$\begin{split} \mu^{t+1} &= \mu^t + g^t + \lambda_1 \nu^t \\ \theta^{t+1} &= \arg\min_{\|\theta\|_p \le R_1} \langle \theta, \mu^{t+1} \rangle + \frac{1}{2\alpha_t} \|\theta\|_p^2 \end{split}$$

• Require: R_1 such that $\| heta^*\|_1 \leq R_1$

• Initialize
$$\theta^1 = 0$$
, $y_1 = 0$

- Observe g^t where $\mathbb{E}[g^t] \in \partial \overline{\mathcal{L}}(\theta^t)$ and $\nu^t \in \partial \|\theta^t\|_1$
- Update

$$\begin{split} \mu^{t+1} &= \mu^t + g^t + \lambda_1 \nu^t \\ \theta^{t+1} &= \arg\min_{\|\theta\|_p \le R_1} \langle \theta, \mu^{t+1} \rangle + \frac{1}{2\alpha_t} \|\theta\|_p^2 \end{split}$$

• Require: R_1 such that $\| heta^*\|_1 \leq R_1$

• Initialize
$$\theta^1 = 0$$
, $y_1 = 0$

- Observe g^t where $\mathbb{E}[g^t] \in \partial \overline{\mathcal{L}}(\theta^t)$ and $\nu^t \in \partial \|\theta^t\|_1$
- Update

$$\begin{split} \mu^{t+1} &= \mu^t + g^t + \lambda_1 \nu^t \\ \theta^{t+1} &= \arg\min_{\|\theta\|_p \le R_1} \langle \theta, \mu^{t+1} \rangle + \frac{1}{2\alpha_t} \|\theta\|_p^2 \end{split}$$

Initializing next epoch

- Update $y_2 = \bar{\theta}_T$
- Update $R_2^2 = R_1^2/2$
- Update $\lambda_2 = \lambda_1/\sqrt{2}$
- Initialize $\theta^1 = y_2$ for next epoch

Initializing next epoch

- Update $y_2 = \bar{\theta}_T$
- Update $R_2^2 = R_1^2/2$
- Update $\lambda_2 = \lambda_1/\sqrt{2}$
- Initialize $\theta^1 = y_2$ for next epoch
- Now use updates

$$\begin{split} \mu^{t+1} &= \mu^t + g^t + \lambda_2 \nu^t \\ \theta^{t+1} &= \arg \min_{\|\theta - y_2\|_p \le R_2} \langle \theta, \mu^{t+1} \rangle + \frac{1}{2\alpha_t} \|\theta - y_2\|_p^2 \end{split}$$

Initializing next epoch

- Update $y_2 = \bar{\theta}_T$
- Update $R_2^2 = R_1^2/2$
- Update $\lambda_2 = \lambda_1/\sqrt{2}$
- Initialize $\theta^1 = y_2$ for next epoch
- Now use updates

$$\begin{split} \mu^{t+1} &= \mu^t + g^t + \lambda_2 \nu^t \\ \theta^{t+1} &= \arg \min_{\|\theta - y_2\|_p \le R_2} \langle \theta, \mu^{t+1} \rangle + \frac{1}{2\alpha_t} \|\theta - y_2\|_p^2 \end{split}$$

Each step still $\mathcal{O}(d)$

Theorem (A., Negahban and Wainwright '12)

Suppose the expected loss is G-Lipschitz and γ -strongly convex. Suppose θ^* has at most s non-zero entries. With probability at least $1 - 6 \exp(-\delta \log d/12)$

$$\|\bar{\theta}_{\mathcal{T}} - \theta^*\|_2^2 \le c \, \frac{G^2 + \sigma^2(1+\delta)}{\gamma^2} \, \frac{\mathsf{slog} \, d}{\mathcal{T}}$$

- Logarithmic scaling in d
- Error decays as 1/T
- Results extend to approximately sparse problems

Theorem (A., Negahban and Wainwright '12)

Suppose the expected loss is G-Lipschitz and γ -strongly convex. Suppose θ^* has at most **s** non-zero entries. With probability at least $1 - 6 \exp(-\delta \log d/12)$

$$\|\bar{\theta}_{\mathcal{T}} - \theta^*\|_2^2 \le c \, \frac{G^2 + \sigma^2(1+\delta)}{\gamma^2} \, \frac{\mathsf{slog}\, d}{\mathcal{T}}$$

- Logarithmic scaling in d
- Error decays as 1/T
- Results extend to approximately sparse problems
- \bullet Similar result for the method of Juditsky and Nesterov (2011) applied with a fixed λ

- Error of $\mathcal{O}\left(\frac{s\log d}{\gamma^2 T}\right)$ after T iterations
- Stochastic gradients computed with one sample
- T iterations $\equiv T$ samples
- Information-theoretic limit: Error $\Omega\left(\frac{s\log d}{\gamma^2 T}\right)$ after observing T samples for any possible method

- Error of $\mathcal{O}\left(\frac{s\log d}{\gamma^2 T}\right)$ after T iterations
- Stochastic gradients computed with one sample
- T iterations $\equiv T$ samples
- Information-theoretic limit: Error $\Omega\left(\frac{s\log d}{\gamma^2 T}\right)$ after observing T samples for any possible method
- We obtain the best possible error in linear time

- Performed simulations for sparse linear regression
- Compared to classical benchmarks: RDA, SGD
- Evaluated several versions: RADAR, EDA, RADAR-Const
- Results averaged over 5 random trials

- Convergence rate of $1/\sqrt{t}$ within each epoch
- Re-centering and shrinking of set boosts convergence speed at each epoch
- Error halved after each epoch
- Epoch lengths double— initial epochs negligible
- Fast convergence at later epochs due to small set
- High regularization initially, little at the end leads to (aprpox.) sparsity all along

- Optimization algorithms for sparse, high-dimensional problems
- Exploit structure for fast optimization convergence
- Effective for optimization to statistical accuracy
- Computational and statistical optimality
- Extensions to group sparsity, low-rank etc.
- Similar extensions for mirror descent, accelerated methods (Hazan and Kale (2011), Ghadimi and Lan (2012))
- Possible extensions to distributed settings

More details can be found in

- Fast global convergence of gradient methods for high dimensional statistical recovery, A., Negahban and Wainwright, http://arxiv.org/abs/1104.4824.
- Stochastic optimization and sparse statistical recovery: An optimal algorithm for high dimensions, A., Negahban and Wainwright, http://arxiv.org/abs/1207.4421.

Thank You