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Motivation: regularized loss minimization

Assume we want to solve the Lasso problem:
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Motivation: regularized loss minimization

Assume we want to solve the Lasso problem:
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or the ridge regression problem:
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loss
Our goal: solve regularized loss minimization problems as fast as we can.
@ Problem is deterministic optimization
@ But a good solution leads to stochastic algorithm called proximal
Stochastic Dual Coordinate Ascent (Prox-SDCA).
@ We show: fast convergence of SDCA for many regularized loss
minimization problems in machine learning.
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@ Loss Minimization with Ly Regularization

dual formulation

o Dual Coordinate Ascent (DCA) and Stochastic Gradient Descent
e fast convergence Properties of SDCA

e the importance of randomization

@ General regularization

e duality
e Prox-SDCA algorithm
e fast convergence and comparison to other methods

@ Highlevel proof ideas
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Loss Minimization with L, Regularization

n

_ A
min P(w) := - Z@(w—rfﬁz) + 5““’“2 .
=1
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Loss Minimization with L, Regularization

n

- IS w0 e+ Al
n%nP(w) = | ;@(w ;) + 5 Jwl*] -
Examples:
| ¢i(2) | Lipschitz | smooth
SVM max{0,1 — y;z} v X
Logistic regression log(1 + exp(—yiz)) v v
Abs-loss regression |z — il v X
Square-loss regression (z — yi)2 X 4
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Dual Formulation

Primal problem:

A
Wy = argmlnP [ Z@ w’ ;) 2||w||2]

Dual problem:

A
a, = max D(« Z -5 ( 041—5

a€eR”

n 2
1
i=1

and the convex conjugate (dual) is defined as:

¢ila) = sup(az — ¢i(2)).
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Relationship of Primal and Dual Solutions

Weak duality: P(w) > D(«) for all w and «
Strong duality: P(w,) = D(cw) with the relationship

1 n
Wy = v Za*,i “Tiy Qg = —¢§(UJ*TI¢)-
i
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Relationship of Primal and Dual Solutions

Weak duality: P(w) > D(«) for all w and «
Strong duality: P(w,) = D(cw) with the relationship

1 n
Wy = v Za*,i “Tiy Qg = —¢§(UJ*TI¢)-
i

Duality gap: for any w and «:

P(w) — D(a) > P(w) ;P(w*) .

Vv
duality gap primal sub-optimality

Shalev-Shwartz & Zhang (Rutgers) SDCA 6 /31



Example: Linear Support Vector Machine

@ Primal formulation:

1 @ A
P(w) = - ZmaX(O, 1-— wTﬁUz‘yz’) + 5”“’”%
i=1

@ Dual formulation:

2
,ogy; € 10,1].
2

n
E QT Y;
i=1

1 1
D(a) = %Zai% o2
i=1

@ Relationship:

n
1
Wy = ~— E Qly T4
An 4 '
=1
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Dual Coordinate Ascent (DCA)

Solve the dual problem using coordinate ascent

D
max D(a),

and keep the corresponding primal solution using the relationship
1 n
i=1

o DCA: At each iteration, optimize D(«) w.r.t. a single coordinate,
while the rest of the coordinates are kept in tact.

@ Stochastic Dual Coordinate Ascent (SDCA): Choose the updated
coordinate uniformly at random
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Dual Coordinate Ascent (DCA)

Solve the dual problem using coordinate ascent

D
max D(a),

and keep the corresponding primal solution using the relationship
1 n
i=1

o DCA: At each iteration, optimize D(«) w.r.t. a single coordinate,
while the rest of the coordinates are kept in tact.

@ Stochastic Dual Coordinate Ascent (SDCA): Choose the updated
coordinate uniformly at random

SMO (John Platt), Liblinear (Hsieh et al) etc implemented DCA.
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SDCA vs. SGD — update rule

Stochastic Gradient Descent (SGD) update rule:

@ (w Ta;)
Wt = (1 1) - BT 2

SDCA update rule:

1. A= argmaxD(a(t) + A e;)
AeR
2wt = 0 4 D

An

Z;

@ Rather similar update rules.
@ SDCA has several advantages:

e Stopping criterion: duality gap smaller than a value
e No need to tune learning rate
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SDCA vs. SGD — update rule — Example

SVM with the hinge loss: ¢;(w) = max{0,1 — y;w ' x;}

SGD update rule:

1y; v/ w® < 1]

Wt = (1 - 1) 0 2

T

SDCA update rule:

T,,(t—1)

. l—yiz,w B B
1. A; = y; max <O,m1n (1, HZH%/(An) Ty az(‘t 1))) _ az(t 1)
1L oD =a® £ Aje;

9. wlt+) = @ 4 B
An
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SDCA vs. SGD — experimental observations

@ On CCAT dataset, A = 107, smoothed loss

0 SDCA
—+—SDCA-Perm
107" —SGD
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SDCA vs. SGD — experimental observations

@ On CCAT dataset, A = 107, smoothed loss

0 SDCA
—+—SDCA-Perm
10k —SGD

The convergence of SDCA is shockingly fast! How to explain this?
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SDCA vs. SGD — experimental observations

@ On CCAT dataset, A = 107°, hinge-loss

0 SDCA
—+—SDCA-Perm
107"k —SGD

How to understand the convergence behavior?
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SDCA vs. SGD — Current analysis is unsatisfactory

How many iterations are required to guarantee P(w®)) < P(w*) + ¢ ?

e For SGD: O (i)
o For SDCA:
o Hsieh et al. (ICML 2008), following Luo and Tseng (1992):
O (L log(1/€)), but, v can be arbitrarily small
o Shalev-Schwartz and Tewari (2009), Nesterov (2010):
O(n/e) for general n-dimensional coordinate ascent
Can apply it to the dual problem
Resulting rate is slower than SGD

And, the analysis does not hold for logistic regression (it requires smooth
dual)

e Analysis is for dual sub-optimality
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SDCA vs. SGD — Current analysis is unsatisfactory

How many iterations are required to guarantee P(w®)) < P(w*) + ¢ ?

e For SGD: O (&)
e For SDCA:
o Hsieh et al. (ICML 2008), following Luo and Tseng (1992):
O (L log(1/€)), but, v can be arbitrarily small
o Shalev-Schwartz and Tewari (2009), Nesterov (2010):
O(n/e) for general n-dimensional coordinate ascent
Can apply it to the dual problem
Resulting rate is slower than SGD
And, the analysis does not hold for logistic regression (it requires smooth
dual)
e Analysis is for dual sub-optimality
o What we need: duality gap and primal sub-optimality
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Dual vs. Primal sub-optimality

Good dual sub-optimality does not imply good primal sub-optimality!
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Dual vs. Primal sub-optimality

Good dual sub-optimality does not imply good primal sub-optimality!

Take data which is linearly separable using a vector wy

Set A = 2¢/|lwo||* and use the hinge-loss

P(w*) < P(wg) =€

Take dual solution 0 and the corresponding primal solution w(0) =0
D(0)=0 = D(a*)—D(0)=Pw*)—D(0) <e

P(w(0)) — P(w*)=1—P(w*) >1—¢

Conclusion: it is important to study the convergence of duality gap.
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Our Results: to achieve € accuracy

e For (1/7)-smooth loss:

@ For L-Lipschitz loss:

- L2

@ For “almost smooth” loss functions (e.g. the hinge-loss):

0+ sz

where v > 0 is a data dependent quantity
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Compare to Batch Gradient Descent Algorithm

Number of examples needed needed to achieve € accuracy:

@ (1/v)-smooth loss:
e Batch GD: O(n -1/(y\)log(1/e))
o SDCA: O(n+1/(~vA)log(1/e))

@ L-Lipschitz loss:

o Batch GD: O(n - L?/()e))
o SDCA: O(n + L?/(Xe))
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Compare to Batch Gradient Descent Algorithm

Number of examples needed needed to achieve € accuracy:

@ (1/v)-smooth loss:
e Batch GD: O(n -1/(y\)log(1/e))
o SDCA: O(n+1/(~vA)log(1/e))

@ L-Lipschitz loss:

o Batch GD: O(n - L?/()e))
o SDCA: O(n + L?/(Xe))

The gain of SDCA over batch algorithm is significant when n is large.
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SDCA vs. DCA — Randomization is Crucial!

@ On CCAT dataset, A\ = 10, smoothed hinge-loss

10 T T T T T T : "
. 0 SDCA
~ —— DCA-Cyclic

10k N —+— SDCA-Perm}
° AN - - -Bound

107

10°F

107

10°F

10°

0
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0 SDCA
—— DCA-Cyclic
107 N —»— SDCA-Perm(|
° AN - - -Bound

Randomization is crucial!

@ In particular, the bound of Luo and Tseng holds for cyclic order, hence
must be inferior to our bound
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Smoothing the hinge-loss

0 z>1
plr) =< 1—-x—7/2 z<1—vy

%(1 —-z)?  ow.
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Smoothing the hinge-loss

o Mild effect on 0-1 error
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Smoothing the hinge-loss

@ Improves training time

astro-ph

CCAT

covl

—-0.000
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——7-0.100
a —1=1.000

—7=0.000

@ Duality gap as a function of runtime for different smoothing parameters
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Additional related work

e Collins et al (2008): For smooth loss, similar bound to ours (for
smooth loss) but for a more complicated algorithm (Exponentiated
Gradient on dual)

o Lacoste-Julien, Jaggi, Schmidt, Pletscher (preprint on Arxiv):

e Study Frank-Wolfe algorithm for the dual of structured prediction
problems.

e Boils down to SDCA for the case of binary hinge-loss.

e Same bound as our bound for the Lipschitz case

@ Le Roux, Schmidt, Bach (NIPS 2012): A variant of SGD for smooth
loss and finite sample. Also obtain log(1/e).
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Proximal SDCA for General Regularizer

Want to solve:

min P(w) = [i Z oi( X w) + /\g(w)] ;

where X; are matrices; g(-) is strongly convex.
Examples:

o Multi-class logistic loss

K
bi( X, w) = lnz exp(w' Xig) —w' Xy,
/=1

o L1 — Lo regularization

1 o
g(w) = §IIwH§ + 3 llwlh
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Dual Formulation

Primal: .
min P(w) := [; S (X w) + Ag<w>] ,
i=1
Dual:
1< 1S
max D(a) := [n Z —¢; (—ay) — A\g ()\n ZXlozl)]
i=1 1=1

with the relationship

1 n
=Vg' | D Xioi |-
Prox-SDCA: extension of SDCA for arbitrarily strongly convex g(w).
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Prox-SDCA

Dual:
1 n
moz?xD [ Z —¢; (—a) (U)] ;U= ;Xiozi.
1=
Assume g(w) is strongly convex in norm || - ||p with dual norm || - ||p
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Prox-SDCA

Dual:
1 n
moz?xD [ Z —¢; (—a) (’U)] , U= n ;Xiozi.
1=
Assume g(w) is strongly convex in norm || - ||p with dual norm || - ||p

For each «, and the corresponding v and w, define prox-dual

[ Z —¢; (—(ai + Aay))

D

upper bound of g*(-)
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Prox-SDCA

Dual:
1 n
moz?xD [ Z —¢; (—a) (’U)] , U= n ;Xiozi.
1=
Assume g(w) is strongly convex in norm || - ||p with dual norm || - ||p

For each «, and the corresponding v and w, define prox-dual

[ Z —¢; (—(ai + Aay))

D

upper bound of g*(-)

Prox-SDCA: randomly pick i and update Aq; by maximizing D).
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Example: L; — Ly Regularized Logistic Regression

Primal:

1o v, A
P(w)= -3 I+ e XY 4+ ZwTw tolfuls
=1

oiw) Ag(w)
Dual: with o;Y; € [0, 1]
1 « A
D(e) = z;:ain In(a;Y;) — (1v— 0iYi) In(1 — a;Y;) == trunc(v, a /N3
= 7 (—au)

1 n
st. v = o Zz_; ; Xi; w = trunc(v, o /A)

where
uj —90 ifu; >0
trunc(u, d); = ¢ 0 if Juj] <6
uj+0 ifu; <—0
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Proximal-SDCA for L;-L, Regularization

Algorithm:
Keep dual a and v = (A\n) ™1 Y, au X;
@ Randomly pick ¢

o Find A; by approximately maximizing:
—¢f (o + Ay) — trunc(v, o /0) " X Ay — —HX [22A2,

where ¢; (a; + A) = (a; + A)Y In((as + A)Y:) + (1= (ai + A)Yi) In(1 — (a; + A)Yi)
e a=a+A4;- ¢
e v=v+(An)"tA; X;.
Let w = trunc(v,o/)\).
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Proximal-SDCA for L;-L- Regularization

Algorithm:
Keep dual a and v = (A\n) ™1 Y, au X;
@ Randomly pick ¢

o Find A; by approximately maximizing:
—¢f (o + Ay) — trunc(v, o /0) " X Ay — —HX [22A2,

where ¢; (a; + A) = (a; + A)Y In((as + A)Y:) + (1= (ai + A)Yi) In(1 — (a; + A)Yi)
e a=a+A4;- ¢
e v=v+(An)"tA; X;.
Let w = trunc(v,o/)\).

Closely related to Lin Xiao (2010): Dual Averaging Method for
Regularized Stochastic Learning and Online Optimization

Shalev-Shwartz & Zhang (Rutgers) SDCA 26 / 31



Convergence rate

The same as the non-proximal version of SDCA: number of iterations
needed to achieve € accuracy

e For (1/7)-smooth loss:

@ For L-Lipschitz loss:
~ L2
19) -
<n + Ae)

e asymptotically faster rate for “almost smooth” loss functions (e.g. the
hinge-loss)
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Solving L; with Smooth Loss

Assume we want to solve L; regularization to accuracy € with smooth ¢;:

1 n
=3 6iw) + allul).

=1

Apply Prox-SDCA with extra term 0.5)||wl|3, where A = O(e):

@ number of iterations needed is O(n + 1/e).
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Solving L; with Smooth Loss

Assume we want to solve L; regularization to accuracy € with smooth ¢;:

1 n
LS buw) + ol
=1
Apply Prox-SDCA with extra term 0.5)||wl|3, where A = O(e):
@ number of iterations needed is O(n + 1/e).
Compare to Dual Averaging SGD (Xiao):

@ number of iterations needed is O(1/¢).
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Solving L; with Smooth Loss

Assume we want to solve L; regularization to accuracy € with smooth ¢;:

1 &
2 o 0iw) + ol
Apply Prox-SDCA with extra term 0.5)||wl|3, where A = O(e):
@ number of iterations needed is O(n + 1/e).
Compare to Dual Averaging SGD (Xiao):
@ number of iterations needed is O(1/¢).
Compare to batch accelerated proximal gradient (Nesterov):
@ number of iterations needed is O(n/./e).

Prox-SDCA wins in the statistically interesting regime: € > Q(1/n?)
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Analysis of SDCA: Highlevel Idea

@ Main lemma: for any t and s € [0, 1],

E[D(a") - D(al V)] = >

-~

R )

n

~
dual suboptimality improvement duality gap

Improvement of dual can be estimated from duality gap
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Analysis of SDCA: Highlevel Idea

@ Main lemma: for any t and s € [0, 1],

E[D(Y) - D@t V)] >  EP(uD) - Dlat- ) - (2)° &

-~

dual suboptimality improvement duali:; gap
Improvement of dual can be estimated from duality gap
o G) = O(1) for Lipschitz losses:

E[D(a®) ~ D(a)] > B[P - D(at-1)) - 2 (2)°

5
n
e With appropriate s, G®) < 0 for smooth losses

E[D(a®)) — D(a{t=D)] > 2

n

E[P(w!"Y) = D(a"" V)]
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Proof Idea: smooth loss

e Main lemma: for any ¢t and s € [0, 1],

E[D(a®) = D(a® V)] > = E[P(w* V) = D(a*"D)]

S
n
@ Bounding dual sub-optimality: the above lemma yields

E[D(a) — D@ "V)] = > E[D(a) ~ D(a V)],

which implies linear convergence of dual sub-optimality
@ Bounding duality gap: Summing the inequality for iterations
To+1,...,T and choosing a random t € {T + 1,...,T} yields,

n

< ST—Tp) E[D(a!™)) = D(a{T))]

E |(P(w!"V) = D(al"1))
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@ Prox-SDCA algorithm:
@ solves loss minimization problems with regularization such as Ly or Lo
@ Works very well in practice

e it is important to use SDCA, which is superior to cyclic DCA:
@ one cannot just randomize the order once and apply cyclic DCA
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@ solves loss minimization problems with regularization such as Ly or Lo
@ Works very well in practice
e it is important to use SDCA, which is superior to cyclic DCA:
@ one cannot just randomize the order once and apply cyclic DCA
@ Our analysis shows that SDCA is superior to traditional methods in
many interesting scenarios
o What we learn:

e goal is to solve a determnistic optimization problem
e but good solution leads to a truly stochastic algorithm
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@ Prox-SDCA algorithm:
@ solves loss minimization problems with regularization such as Ly or Lo
@ Works very well in practice
e it is important to use SDCA, which is superior to cyclic DCA:
@ one cannot just randomize the order once and apply cyclic DCA
@ Our analysis shows that SDCA is superior to traditional methods in
many interesting scenarios
o What we learn:

e goal is to solve a determnistic optimization problem
e but good solution leads to a truly stochastic algorithm

Final question: is there a determnistic algorithm with similar fast
convergence properites?
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