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Motivation: regularized loss minimization

Assume we want to solve the Lasso problem:

min
w

[
1

n

n∑
i=1

(w>xi − yi)2 + λ‖w‖1

]

or the ridge regression problem:

min
w

 1

n

n∑
i=1

(w>xi − yi)2

︸ ︷︷ ︸
loss

+
λ

2
‖w‖22︸ ︷︷ ︸

regularization


Our goal: solve regularized loss minimization problems as fast as we can.

Problem is deterministic optimization

But a good solution leads to stochastic algorithm called proximal
Stochastic Dual Coordinate Ascent (Prox-SDCA).

We show: fast convergence of SDCA for many regularized loss
minimization problems in machine learning.
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Outline

Loss Minimization with L2 Regularization

dual formulation
Dual Coordinate Ascent (DCA) and Stochastic Gradient Descent
fast convergence Properties of SDCA
the importance of randomization

General regularization

duality
Prox-SDCA algorithm
fast convergence and comparison to other methods

Highlevel proof ideas
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Loss Minimization with L2 Regularization

min
w
P (w) :=

[
1

n

n∑
i=1

φi(w
>xi) +

λ

2
‖w‖2

]
.

Examples:
φi(z) Lipschitz smooth

SVM max{0, 1− yiz} 3 7

Logistic regression log(1 + exp(−yiz)) 3 3

Abs-loss regression |z − yi| 3 7

Square-loss regression (z − yi)2 7 3
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Dual Formulation

Primal problem:

w∗ = arg min
w
P (w) :=

[
1

n

n∑
i=1

φi(w
>xi) +

λ

2
‖w‖2

]

Dual problem:

α∗ = max
α∈Rn

D(α) :=

 1

n

n∑
i=1

−φ∗i (−αi)−
λ

2

∥∥∥∥∥ 1
λn

n∑
i=1

αixi

∥∥∥∥∥
2
 ,

and the convex conjugate (dual) is defined as:

φ∗i (a) = sup
z

(az − φi(z)).
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Relationship of Primal and Dual Solutions

Weak duality: P (w) ≥ D(α) for all w and α
Strong duality: P (w∗) = D(α∗) with the relationship

w∗ =
1

λn

n∑
i=1

α∗,i · xi, α∗ i = −φ′i(w>∗ xi).

Duality gap: for any w and α:

P (w)−D(α)︸ ︷︷ ︸
duality gap

≥ P (w)− P (w∗)︸ ︷︷ ︸
primal sub-optimality

.
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Example: Linear Support Vector Machine

Primal formulation:

P (w) =
1

n

n∑
i=1

max(0, 1− w>xiyi) +
λ

2
‖w‖22

Dual formulation:

D(α) =
1

n

n∑
i=1

αiyi −
1

2λn2

∥∥∥∥∥
n∑
i=1

αixiyi

∥∥∥∥∥
2

2

, αiyi ∈ [0, 1].

Relationship:

w∗ =
1

λn

n∑
i=1

α∗,ixi
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Dual Coordinate Ascent (DCA)

Solve the dual problem using coordinate ascent

max
α∈Rn

D(α),

and keep the corresponding primal solution using the relationship

w =
1

λn

n∑
i=1

αixi.

DCA: At each iteration, optimize D(α) w.r.t. a single coordinate,
while the rest of the coordinates are kept in tact.

Stochastic Dual Coordinate Ascent (SDCA): Choose the updated
coordinate uniformly at random

SMO (John Platt), Liblinear (Hsieh et al) etc implemented DCA.
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SDCA vs. SGD — update rule

Stochastic Gradient Descent (SGD) update rule:

w(t+1) =
(
1− 1

t

)
w(t) − φ′i(w

(t)>xi)

λ t
xi

SDCA update rule:

1. ∆i = argmax
∆∈R

D(α(t) + ∆i ei)

2. w(t+1) = w(t) +
∆i

λn
xi

Rather similar update rules.

SDCA has several advantages:

Stopping criterion: duality gap smaller than a value
No need to tune learning rate
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SDCA vs. SGD — update rule — Example

SVM with the hinge loss: φi(w) = max{0, 1− yiw>xi}

SGD update rule:

w(t+1) =
(
1− 1

t

)
w(t) − 1[yi x

>
i w

(t) < 1]

λ t
xi

SDCA update rule:

1. ∆i = yi max

(
0,min

(
1,

1− yi x>i w(t−1)

‖xi‖22/(λn)
+ yi α

(t−1)
i

))
− α(t−1)

i

1. α(t+1) = α(t) + ∆i ei

2. w(t+1) = w(t) +
∆i

λn
xi
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SDCA vs. SGD — experimental observations

On CCAT dataset, λ = 10−6, smoothed loss
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The convergence of SDCA is shockingly fast! How to explain this?
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SDCA vs. SGD — experimental observations

On CCAT dataset, λ = 10−5, hinge-loss
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How to understand the convergence behavior?
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SDCA vs. SGD — Current analysis is unsatisfactory

How many iterations are required to guarantee P (w(t)) ≤ P (w∗) + ε ?

For SGD: Õ
(

1
λ ε

)
For SDCA:

Hsieh et al. (ICML 2008), following Luo and Tseng (1992):
O
(
1
ν log(1/ε)

)
, but, ν can be arbitrarily small

Shalev-Schwartz and Tewari (2009), Nesterov (2010):

O(n/ε) for general n-dimensional coordinate ascent
Can apply it to the dual problem
Resulting rate is slower than SGD
And, the analysis does not hold for logistic regression (it requires smooth
dual)

Analysis is for dual sub-optimality

What we need: duality gap and primal sub-optimality
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Dual vs. Primal sub-optimality

Good dual sub-optimality does not imply good primal sub-optimality!

Take data which is linearly separable using a vector w0

Set λ = 2ε/‖w0‖2 and use the hinge-loss

P (w∗) ≤ P (w0) = ε

Take dual solution 0 and the corresponding primal solution w(0) = 0

D(0) = 0 ⇒ D(α∗)−D(0) = P (w∗)−D(0) ≤ ε
P (w(0))− P (w∗) = 1− P (w∗) ≥ 1− ε

Conclusion: it is important to study the convergence of duality gap.
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Our Results: to achieve ε accuracy

For (1/γ)-smooth loss:

Õ

((
n+

1

γλ

)
log

1

ε

)
For L-Lipschitz loss:

Õ

(
n+

L2

λ ε

)
For “almost smooth” loss functions (e.g. the hinge-loss):

Õ

(
n+

L

λ (ε/L)1/(1+ν)

)
where ν > 0 is a data dependent quantity
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Compare to Batch Gradient Descent Algorithm

Number of examples needed needed to achieve ε accuracy:

(1/γ)-smooth loss:

Batch GD: Õ(n · 1/(γλ) log(1/ε))
SDCA: Õ(n+ 1/(γλ) log(1/ε))

L-Lipschitz loss:

Batch GD: Õ(n · L2/(λε))
SDCA: Õ(n+ L2/(λε))

The gain of SDCA over batch algorithm is significant when n is large.
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SDCA vs. DCA — Randomization is Crucial!

On CCAT dataset, λ = 10−4, smoothed hinge-loss
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Randomization is crucial!

In particular, the bound of Luo and Tseng holds for cyclic order, hence
must be inferior to our bound
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Smoothing the hinge-loss

φ(x) =


0 x > 1

1− x− γ/2 x < 1− γ
1

2γ (1− x)2 o.w.
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Smoothing the hinge-loss

Mild effect on 0-1 error
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Smoothing the hinge-loss

Improves training time

astro-ph CCAT cov1
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Additional related work

Collins et al (2008): For smooth loss, similar bound to ours (for
smooth loss) but for a more complicated algorithm (Exponentiated
Gradient on dual)

Lacoste-Julien, Jaggi, Schmidt, Pletscher (preprint on Arxiv):

Study Frank-Wolfe algorithm for the dual of structured prediction
problems.
Boils down to SDCA for the case of binary hinge-loss.
Same bound as our bound for the Lipschitz case

Le Roux, Schmidt, Bach (NIPS 2012): A variant of SGD for smooth
loss and finite sample. Also obtain log(1/ε).
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Proximal SDCA for General Regularizer

Want to solve:

min
w
P (w) :=

[
1

n

n∑
i=1

φi(X
>
i w) + λg(w)

]
,

where Xi are matrices; g(·) is strongly convex.
Examples:

Multi-class logistic loss

φi(X
>
i w) = ln

K∑
`=1

exp(w>Xi,`)− w>Xi,yi .

L1 − L2 regularization

g(w) =
1

2
‖w‖22 +

σ

λ
‖w‖1
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Dual Formulation

Primal:

min
w
P (w) :=

[
1

n

n∑
i=1

φi(X
>
i w) + λg(w)

]
,

Dual:

max
α

D(α) :=

[
1

n

n∑
i=1

−φ∗i (−αi)− λg∗
(

1

λn

n∑
i=1

Xiαi

)]

with the relationship

w = ∇g∗
(

1

λn

n∑
i=1

Xiαi

)
.

Prox-SDCA: extension of SDCA for arbitrarily strongly convex g(w).
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Prox-SDCA

Dual:

max
α

D(α) :=

[
1

n

n∑
i=1

−φ∗i (−αi)− λg∗(v)

]
, v =

1

λn

n∑
i=1

Xiαi.

Assume g(w) is strongly convex in norm ‖ · ‖P with dual norm ‖ · ‖D.

For each α, and the corresponding v and w, define prox-dual

D̃α(∆α) =

[
1

n

n∑
i=1

−φ∗i (−(αi + ∆αi))

−λ

g∗(v) +∇g∗(v)>
1

λn

n∑
i=1

Xi∆αi +
1

2

∥∥∥∥∥ 1

λn

n∑
i=1

Xi∆αi

∥∥∥∥∥
2

D︸ ︷︷ ︸
upper bound of g∗(·)




Prox-SDCA: randomly pick i and update ∆αi by maximizing D̃α(·).
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Example: L1 − L2 Regularized Logistic Regression

Primal:

P (w) =
1

n

n∑
i=1

ln(1 + e−w
>XiYi)︸ ︷︷ ︸

φi(w)

+
λ

2
w>w + σ‖w‖1︸ ︷︷ ︸

λg(w)

.

Dual: with αiYi ∈ [0, 1]

D(α) =
1

n

n∑
i=1

−αiYi ln(αiYi)− (1− αiYi) ln(1− αiYi)︸ ︷︷ ︸
φ∗i (−αi)

−λ
2
‖trunc(v, σ/λ)‖22

s.t. v =
1

λn

n∑
i=1

αiXi; w = trunc(v, σ/λ)

where

trunc(u, δ)j =


uj − δ if uj > δ

0 if |uj | ≤ δ
uj + δ if uj < −δ
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Proximal-SDCA for L1-L2 Regularization

Algorithm:

Keep dual α and v = (λn)−1
∑

i αiXi

Randomly pick i

Find ∆i by approximately maximizing:

−φ∗i (αi + ∆i)− trunc(v, σ/λ)>Xi ∆i −
1

2λn
‖Xi‖22∆2

i ,

where φ∗i (αi + ∆) = (αi + ∆)Yi ln((αi + ∆)Yi) + (1− (αi + ∆)Yi) ln(1− (αi + ∆)Yi)

α = α+ ∆i · ei
v = v + (λn)−1∆i ·Xi.

Let w = trunc(v, σ/λ).

Closely related to Lin Xiao (2010): Dual Averaging Method for
Regularized Stochastic Learning and Online Optimization
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where φ∗i (αi + ∆) = (αi + ∆)Yi ln((αi + ∆)Yi) + (1− (αi + ∆)Yi) ln(1− (αi + ∆)Yi)

α = α+ ∆i · ei
v = v + (λn)−1∆i ·Xi.

Let w = trunc(v, σ/λ).

Closely related to Lin Xiao (2010): Dual Averaging Method for
Regularized Stochastic Learning and Online Optimization
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Convergence rate

The same as the non-proximal version of SDCA: number of iterations
needed to achieve ε accuracy

For (1/γ)-smooth loss:

Õ

((
n+

1

γλ

)
log

1

ε

)
For L-Lipschitz loss:

Õ

(
n+

L2

λ ε

)
asymptotically faster rate for “almost smooth” loss functions (e.g. the
hinge-loss)
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Solving L1 with Smooth Loss

Assume we want to solve L1 regularization to accuracy ε with smooth φi:

1

n

n∑
i=1

φi(w) + σ‖w‖1.

Apply Prox-SDCA with extra term 0.5λ‖w‖22, where λ = O(ε):

number of iterations needed is Õ(n+ 1/ε).

Compare to Dual Averaging SGD (Xiao):

number of iterations needed is Õ(1/ε2).

Compare to batch accelerated proximal gradient (Nesterov):

number of iterations needed is Õ(n/
√
ε).

Prox-SDCA wins in the statistically interesting regime: ε > Ω(1/n2)
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Analysis of SDCA: Highlevel Idea

Main lemma: for any t and s ∈ [0, 1],

E[D(α(t))−D(α(t−1))]︸ ︷︷ ︸
dual suboptimality improvement

≥ s

n
E[P (w(t−1))−D(α(t−1))]︸ ︷︷ ︸

duality gap

−
( s
n

)2 G(t)

2λ

Improvement of dual can be estimated from duality gap

G(t) = O(1) for Lipschitz losses:

E[D(α(t))−D(α(t−1))] ≥ s

n
E[P (w(t−1))−D(α(t−1))]− A

λ

( s
n

)2

With appropriate s, G(t) ≤ 0 for smooth losses

E[D(α(t))−D(α(t−1))] ≥ s

n
E[P (w(t−1))−D(α(t−1))]
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Proof Idea: smooth loss

Main lemma: for any t and s ∈ [0, 1],

E[D(α(t))−D(α(t−1))] ≥ s

n
E[P (w(t−1))−D(α(t−1))]

Bounding dual sub-optimality: the above lemma yields

E[D(α(t))−D(α(t−1))] ≥ s

n
E[D(α∗)−D(α(t−1))],

which implies linear convergence of dual sub-optimality

Bounding duality gap: Summing the inequality for iterations
T0 + 1, . . . , T and choosing a random t ∈ {T0 + 1, . . . , T} yields,

E
[
(P (w(t−1))−D(α(t−1)))

]
≤ n

s(T − T0)
E[D(α(T ))−D(α(T0))]
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Summary

Prox-SDCA algorithm:

solves loss minimization problems with regularization such as L1 or L2

Works very well in practice

it is important to use SDCA, which is superior to cyclic DCA:
one cannot just randomize the order once and apply cyclic DCA

Our analysis shows that SDCA is superior to traditional methods in
many interesting scenarios

What we learn:

goal is to solve a determnistic optimization problem
but good solution leads to a truly stochastic algorithm

Final question: is there a determnistic algorithm with similar fast
convergence properites?
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