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Gromov-Witten potential:

Fx(gs,9) = 2939—2 | Z Cg,ﬁqﬁ
g=>0 BEH(X)

qﬁ-I-ﬁ — qﬁqﬁ

Hypersurfaces in Toric Varieties

i : X — Z hypersurface in a (reflexive) toric variety 2,
X €| —Kz| and Hy(X) ~ Hy(2).

Convex obstruction bundle (Givental; Lian, Liu and Yau) :

Cos=[_ &)
[Mo,0(Z,8)]v"

Ezample :

Z=1P(0(-1,-1) ® O(-1, 1) ® O—TFy)

> UV W fape(Z:) = 0.
a,b,c>0,a+b+c=3 ’

Toric Threefolds

i) X ~ Total space (O(—1) & O(-1)-P?!);

/T —M—Q,O(X: 18) A Mg,o(Pl, d)
v =
27, pt B = o.(d[IP))

Concave Obstruction Bundle (Givental; Lian, Liu and Yau) :

(Mg,0(X,8)]"i (Mg 0(PL,d)]vir

Viz,p = H'(Z, 7 (0(-1) @ O(-1)))



Manin (genus zero), Faber and Pandharipande (all g) :

oo d

Fx(gs,9) = 1
S Ed(Qsin‘—tg’é)2

1) X ~ Total space (O(Kg)—S), S toric del Pezzo surface;

/ T HQ,O(X& ﬂ) A M_Q,O(Sr '7)
g =
f B = .1, v € Ha(S)

Y¥—5

Co,8 = /_ 1= /___ e(V)
[Mg,0(X,8)}V*" (M 4,0(S,7)]¥é"

Ve,p) = H'(Z, [ O(Ks))

2. Localization

One of the main tools for computing GW invariants: localization
w.r.t a torus action (Kontsevich, Graber and Pandharipande.) Works
for

i) Hypersurfaces X C Z for g = 0.

T x Ho,o(z: )3)—’7\/-70,0(3: B)
Tx Z—Z =
T x V-V

i1) Noncompact toric threefolds X for all g > 0.

T x Hg,O(-B:- ﬂ)_)Hg,O(B? ﬁ)
Tx X-X =
T x V-V

B =1P!, S (as discussed above)



[M]%" € AT(M) equivariant virtuaL@ cycle

iz : E < M connected components d)f the fixed locus in appropriate
moduli space |

[E]v"" = if ([M]%") induced virtual ;cycle

NZ7 virtual normal bundle

Atiyah-Bott localization on M (Graqber and Pandharipande)
er (ZnV)
C(Q 8) = Z /”]mr eT(Nmr

Ezxample :

PO-1,-)& O(-él, —1) ® O—TFy)

Z




3. The Problem

Extremal transitions (Clemens): 1-parameter family of CY threefolds Y,
so that

i) Y, smooth for u # 0

i%) Yp has ordinary double points Py, ..., P,

i41) Yo admits a smooth crepant resolution X —Yj

conifolds

Yo
n— 0 / \mall resolution

Y, x

Topology Change: [Li],[Ls],.-.,[Ly] € H3(Y) vanishing cycles subject

to r relations

RU2(X) =AY (V)= (v—7) AMYX) =hYYNY) +r



Note that in going from X to Y we are ’lqising’ curve classes and ’gaining’
3-cycles. :

Gromov-Witten potentials

x (95, 4x) Zgzg 2N CoalX)a%

g=0 aGHz(X)
Fy(gs,qv) Zgzg 2 Y G
g=0 BEH2(Y)

Imprecise Question : What is the relatiém (if any) between Fx(gs,qx)
and Fy (gs,qv) ? |
Using symplectic techniques, Li and Rudn proved the following result

Cup¥)= 3 CyalX)

QGH2(X)$¢’(C¥)=ﬁ :
¢ : Ho(X)—Hy(Y) (inducedg by symplectic cut)
Large N duality suggests a differenit answer: the contributions of
the “missing” curve classes to Fx(gs,q¢ )g) is encoded in a subtle way in
the vanishing cycles L,,...,L,. We havé} to regard them as D — branes

and quantize them.



4. Conifold Transition (Gopakumar and Vafa)

X = Total space (O(—1) & O(-1)—P?)

Y,CC zy+zw=up

=

conifold

L~ 0 / waﬂ resolution
52

3 T~
S TN T~

Y, ~T*s? X ~ O(-1)}+0(-1)

Hy(X) ~ Z generated by the 0-section C = o(IP') which is a (-1, —1)
curve on X; H3(X) =0

H3(Y) ~ Z generated by the vanishing cycle [L]; if 4 € IR, u > 0 can
choose a lagrangian representative L = Y N{z =7, z = W} =~ S5

Ho(Y) =0

oo d

Fx(gs,9) = 1
X(g Q) ;d(zsingéh)

Fy =0
How can we recover Fx(gs,q) out of the data (Y, L)?

Gopakumar and Vafa: U(N) Chern-Simons theory on L = §2

E—L rank N complex vector bundle, A € A(FE) unitary connection



Physicists refer to (E,L) as "N D-bra.n%es wrapped on L’; in fact L is

'promoted’ to a K-homology cycle.

k | 2
Scs(4) = fL Tr (AdA + §A3)

Witten, Reshetikhin-Turaev — quantum CS invariant which can be for-

mally written

Zn k(L) = / ge"SCS(A)
AB)/G

Large N expansion of CS theory: thereé is a formal series Fog(k,A) so

that

_27r
T k+ N’

Rm(n A:eﬁm%)%mznum, VN, k

Geometric large N duality:

Fx(gs,q) = ch;; (9s,9)

The GW invariants of X are encoded in CS theory on L! (Quite striking

if we remember the definition of Fx(gs, q))



5. Hypersurfaces in Toric Varieties

Extremal transition

ZOX

D
Z, Z smooth compact toric varieties
Assumption : The ODP’s of Y; are fixed points of the torus action on Z

Z=P(O(-1,-1)® O(-1,-1) & O-TF))

!
Yy: (UZ1Z4+ V2225 — pW)W? + > USVOW® fupe(Z:) = 0
a,b,c>0,a+b+c=3

P={Z1=23=U=V =0}
p—0 = two ODP’s
Po={Zy=2,=U=V =0}

U=v=0 P 2 I:D Fl [ ]

| |
[T

Z = (Toric) Blow-up of £ along {U =V = 0}



Topology change: hb1(X) = AL1(Y) + 1, A123(X) = A}M2(Y) -1
Exceptional curves ej,es C X, [e1] — [egj = 0 in Hy(X)

Vanishing cycles Ly, Ly ~ 83, [L1] + [Lz] =0 in H3(Y)

v

Lt
BEH>(X) n=1

- ¥ 2“ diaP
YEH(Y) n=

= Y % 32 4%

How can we recover FC )(qx) using the tiiata (Y,L1,Ly) 7

Chern-Simons theory:
Ey=L; xCV U(N) bundle on L, = 53
Ep =Ly xCY U(N) bundle on L, = S

with levels k;, k2 = formal series

Fos(eu ) = 3 (g2l 4 2
cs(r1, A1, _d= d(2sind—'2°’~) d§(2sin432)

This%does not reproduce Fix(gs, gx), bfut
FG’S(KJI = K2 = gs:/\l’ = \g = Qe)

represents the contribution of the two lexceptional curves ej, ey (plus

multicovers) to Fx(gs, ¢x)-



What is Missing ?
There are holomorphic bordered Riemann surfaces in Y ’ending’ on the

lagrangian cycles Li, Ls.

Witten (1991) — In the presence of such surfaces, the CS theory must be
corrected by ’open string instanton effects’.
Suppose we have a single rigid disc D with boundary I' = 0D on a

lagrangian sphere L. Then the CS action should be corrected to

™

S(A) = 5’“— /L Tr (AdA + §A3) + giqdfnvr
8

where V¢ is the holonomy of A about the knot I' and

9 = ¢—(symplectic area of D)

(in the following we will think of g4 as a formal variable.)

This yields a correction of the CS free energy

In Z=InZcs +1n (e%fTrVF)



where ( ) denotes CS expectation value| This formula can be given a

rigorous construction (as a formal series) as follows

e;f—’]}[‘Vp (Z

n—O

: qd \
= Cn R)(Tr
> S cutmmeate

oo

where (TrgVr) is physicist notation for lthe U (N) Jones polynomial of
the knot I' in the representation R.
Remarks:

i) In general D will not be rigid a.nci isolated (can have families)

i1) Even if D is rigid, one has to tal{.e into account multicovers

i11) Higher genus bordered surfaces
How can we obtain numerical results taiking into account all these as-
pects? :

Solution |

Concrete algorithm for building S,-n;t(A) based on localization with
respect to the torus action ([DFGi], [DF;Gii], {DF}).
Previous work: | |

e closed strings — Kontsevich, Grabeér and Pandharipande

e open strings — Katz and Liu, Li ;a,nd Song, Graber and Zaslow
(different context) |

Let L =L, ULs and B € Hy(Y, L).



e Mox(Y, L; ) moduli ’space’ of stable 'open string’ maps f : o ,—Y,
f(0Zg 1) C L. Ey p genus 0 bordered Riemann surface with ~ boundary
components
e virtual O-cycle [Mo x(Y, L; B)]**" and orientation
These are standard ingredients, but this is not a standard counting prob-
lem. Exotic aspects:

i) The result of the open string ’counting problem’ has to be a series
in holonomy variables rather than rational numbers.

it) In the presence of families of maps f : Xy s—(Y, L), how does
one choose the right holonomy variables (the boundaries may move and
deform in L) ?
The Plan (Ideal world) :
e Torus action TxY —Y preserving L = Tx M, (Y, L; B)—M, 1(Y, L; B)
e Fixed configuration of invariant surfaces in ¥ with boundary on L
(discs and/or cylinders) = fixed set of holonomy variables V;

e Localization formula:

i [Mon(Y, L, ﬂ)]mr)

[MOh Y L, ﬁ)]vzr Zz'* ( eT(Néir)



Then to each fixed locus ¢ C My (Y, L) we assign

i) An instanton factor gj5t®

4¢) A monomial in holonomy variables [T, (TrV;™ )k
i11) A local coefficient Cp (=) = f[E]m e
e The final step :

S(A) = Scs(A) + Sinst(A)

= Scs(4) + Z gh—2 Z Z Co,3(Z) x (inst factor) x (hol factor)
h=1 BeH2(Y,L) E

and evaluate

1nZQ = InZE) + I (eSimeetn))

Real life :

e For generic smooth Y, no T-action ! Must take a degenerate limit

of Y =Y, of the form
Y9 (UZ124+V 2323 — pW)W?2 =0
Special representatives of vanishing cycles Ly, Lo
rytzw=4p, =Yy, z=wW

in affine toric coordinates (u assumed real and positive.)




e Y% is reducible and nonreduced = Mo (Y39, L, ) not well-
behaved. Must work with the moduli space Mo x(Z, L, 8) of open string
maps

f:2Xor—Z, f(0%p) C L
¢ Convex obstruction bundle for open strings
VPMon(Z,L,8); Vi, .5 =H (Zon f"O(Kz))s

Remark : No rigorous construction for Mg ,{Z, L, 8), [Mo r(Z, L, B)]**"
and V°P. Can perform explicit computations by using only the fixed loci
Z (Katz and Liu, Li and Song, Graber and Zaslow)

e Configuration of invariant discs in Z with boundary on L




Invariant open string maps

Sum over all such maps as explained above =

- |
Sinst(A) = Z gh—2 Z Z Co,5(8) x (inst factor) x (hol factor)
h=1  BeH(V,L) E

anc(,g) = angg +1n <eS""“(A)>
There is a unique formal power series Fég) (95, Gop, K1,2, A1,2) so that

2 —
ngg) (gss Qop, K1,2 = m, A1, = eN‘/_lm’z) = lnzgg)

Large N duality conjecture

There exists a duality map of the form

Ki=Ke=gs M=A=0 qop=dop(dx) av =av(qx)

so that

f;(P)(QY) + gffﬁg)(gs, Qops K1[25 A1,2) = -7:;(?)(‘2}()




Objections :

e By construction, S;,s:(A) is a formal series with coefficients in R
(the fraction field of the representation ring of T') since Cp g(E) € Rr.
.F)(?)(gs,qx),fl(,p)(gs,qy) have coefficients in Q !

e In order to evaluate knot and link invariants in CS theory, we have
to specify the framing. A priori, there is no obvious choice, so is there a

discrete ambiguity in .7-'}53) (955 Gopy ®1,2, A1,2) 7

Solution :

o There is a canonical choice of framing variables p; € Rr (!) de-
pending on the weights of the T action on Z.

e Refined duality conjecture

F(ax) = Y. Copdxr Cop= > CosE)
BEH,(X) ECMo.0(X,8) :

Fx(fo)(QY)= Z Condy, Coqn= Z Co~(E)
YEH2(Y) ECMo,0(Y;7)



For geometric reasons we may have to truncate the coefficients 50,3, Co,y

to a sum over geometrically accessible fixed loci

geometrically accessible

4

e

This yields F)(g )(qx)tr, F}(fO) (gy )¢r with| coefficients in Ry. Then can
check that the conjecture holds!

f'§9 Mgy )er + 92 F D (gs, Gop, k1|2, A1,2) = F O (ax)er




e For a “clever” choice of weights,

FO@x)e =FQax),  FOlay)e = FO (gv)

Then the conjecture holds in the original form

-F}(P)(gs,QY) + fﬁ?,’(gs, Qopy £1,2, A1,2) =
2(qh + g2 + g3) + 36qs — 2(¢1g2 + G14s + G2G3) + 126(q1 + G2 + G3)qa

9 1 1 4 e
G+ B+ B+3) - (FHR+360) + -0 +126(@ + G2 + B)@3
2 4 4 3
—~ e e — 2 - 207
+ 36(q1G2 + G133 + G2G3)Gs + 6G1G203 + -2—7"? + 24145 + T&?Eﬁ
+ 2178(G1G2 + §183)32 — 14451520391 — 4G5 G023 + 1528G
20

+126(71% + 113)8] + 10870t + 50147

+

where dx = (51, 32: 631 64)) Ejl = Qe-
Precise agreement with the genus zero GW expansion of X computed

from mirror symmetry.



Concluding Remarks

e This is not a proof of the duality|construction. The open string

enumerative data Mo »(Z, L; §), [Ho,h(%i' , L; B)]V*" have not been rigor-
ously constructed. Very likely need squilectic techniques (Fukaya, Oh).
Recent progress made by C.-C. M. Liu.

e Interesting connection between ]joca.liza.tion and Chern-Simons
theory. Should be better understood.

e Same techniques apply to extremal transitions between (noncom-
pact) toric CY threefolds. In that case one can check duality for all
genus amplitudes.

e Qur approach is perhaps too “equivariant”. Works only when the
ODP’s are fixed under torus action on ambient toric variety. However
most transitions are not of this type =| must find an extension of the

present formalism (symplectic geometry [7)
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