Contact structures

and symplectic open books

Joint work with J.-P. Mohsen

Contact forms and structures

A contact form on a 2n + 1-manifold V is a 1-form α whose product with $(d\alpha)^n$ nowhere vanishes.

A tangent hyperplane field ξ on V is a contact structure if it is the kernel field of a contact form α . Thus $d\alpha$ induces a symplectic form on ξ at each point whose conformal class is independent of α .

A contact manifold is a manifold equipped with a contact structure.

The geometry of a contact form has two components:

- the contact structure $\xi = \ker \alpha$;
- the kernel of $d\alpha$, which is a line field transversal to ξ .

The unique vector field ∂_{α} in ker $d\alpha$ such that $\alpha(\partial_{\alpha}) = 1$ is called the *Reeb vector field* of α .

Examples

1) The staandard contact structure on \mathbb{R}^{2n+1} is given by

$$dz \sum_{i=1}^{n} x_i dy_i, \quad (x, y, z) \in \mathbf{R}^n \times \mathbf{R}^n \times \mathbf{R},$$

and is the universal local model.

2) Let V be an oriented real hypersurface in a complex manifold W. The complex hyperplanes of TW tangent to V form a (co) oriented hyperplane field ξ on V. If the Levi form

$$Q = d\alpha(., \sqrt{-1}.)|_{\xi}$$
 (where $\xi = \ker \alpha$)

is non-degenerate, ξ is a contact structure.. A typical case is when V is $strictly\ pseudoconvex,\ i.e.$, when Q is positive definite.

For instance, the complex hyperplanes tangent to the boundary of the unit ball in \mathbb{C}^{n+1} form the standard contact structure on \mathbb{S}^{2n+1} .

Automorphisms and stability

Theorem (Libermann 1959). For any contact structure ξ on a manifold V, projection $TV \to TV/\xi$ induces a one-to-one correspondence between vector fields preserving ξ and sections of TV/ξ .

Theorem (Gray 1959). On a closed manifold, every component of the space of contact structures is an isotopy class.

Two contact structures are *isotopic* is there exists a diffeomorphism isotopic to the identity that takes one to the other. isotope à l'identité qui envoie l'une sur l'autre par sa différentielle.

Corollary. On a closed manifold, contact structures form at most countably many isotopy classes.

Classification problem

Problem (Chern 1965). Which manifolds admit contact structures? More precisely, describe the space of contact structures inside the space of all tangent hyperplane fields equipped with a conformal symplectic structure.

Theorem (Gromov 1969). On any open manifold, each component of the space of tangent hyperplane fields equipped with a conformal symplectic structure contains exactly one component of the space of contact structures.

Theorem (Lutz-Martinet 1971). On a closed orientable three-dimensional manifold, each component of the space of oriented tangent plane fields contains a contact structure.

Summary presentation

F: a compact Stein manifold, with strictly pseudoconvex boundary $K = \partial F$;

 $\phi: F \to F$: a symplectic diffeomorphism equal to the identity near K;

 $\Sigma(F,\phi)$: the mapping torus of ϕ , that is

$$\Sigma(F,\phi) = (F \times [0,1])/\sim, \quad (p,1) \sim (\phi(p),0).$$

 $\partial \Sigma(F,\phi) = K \times \mathbf{S}^1$ — because $\phi = \mathrm{id}$ near $K - \mathrm{so}$

$$\overline{\Sigma}(F,\phi) = \Sigma(F,\phi) \cup_{\partial} (K \times \mathbf{D}^2)$$

is a closed manifold.

Theorem. $\overline{\Sigma}(F,\phi)$ is naturally a contact manifold and every closed contact manifold can be obtained in this way.

Stein manifolds

(F, J): a complex manifold.

A function $f: F \to \mathbf{R}$ is strictly plurisubharmonic if the 2-form

$$\omega_f = -dd^{\mathbf{c}}f$$
, where $d^{\mathbf{c}}f = (df \circ J)$,

satisfies $\omega_f(v, Jv) > 0$ for all $v \neq 0$.

(F, J) is a *Stein manifold* if it admits a positive, proper, and spsh function f for which ∂F is a regular level set.

Completion. Assume F is compact and extend ω_f to

$$\widetilde{F} = F \cup_{\partial} (\partial F \times [0, \infty))$$

by $\widetilde{\omega}_f(p, t) = e^t \omega_f(p), \ (p, t) \in \partial F \times [0, \infty).$

Theorem (Gromov-Eliashberg). The isotopy class of $\widetilde{\omega}_f$ on \widetilde{F} is independent of f.

Weinstein manifolds

 (F,ω) : a symplectic manifold.

A function $f: F \to \mathbf{R}$ is ω -convex if it admits a gradientlike vector field ν that expands ω exponentially, *i.e.*, satisfies $\nu \cdot \omega = \omega$.

 (F,ω) is a Weinstein manifold if it admits a positive, proper, and ω -convex Morse function f for which ∂F is a regular level set.

Example. Every Stein manifold is a Weinstein manifold: the gradient ∇f of any spsh function f with respect to the metric $\omega_f(., J.)$ satisfies

$$\nabla f \cdot \omega_f = d(\nabla f \vee \omega_f) = -dd^{\mathbf{c}} f = \omega_f.$$

Theorem (Eliashberg). Every Weinstein manifold is symplectically diffeomorphic to a Stein manifold.

Contactization

F: a compact Stein manifold;

$$K = \partial F$$
;

 $f: F \to [0, \infty)$: a strictly plurisubharmonic function which is constant on K;

$$\omega = \omega_f = -dd^{\mathbf{c}}f;$$

$$\beta = -d^{\mathbf{c}}f$$
 — so $d\beta = \omega$;

 γ : the (contact) form induced by β on K.

Lemma. The form

$$lpha = \left\{ egin{array}{ll} eta + d heta & on \ F imes {f S}^1, \ \gamma + r^2 \, d heta & on \ K imes {f D}^2, \end{array}
ight.$$

is a contact form on $\overline{\Sigma}(F, id)$.

Contactization of a diffeomorphism

 ϕ : a symplectic diffeomorphism of F equal to the identity near the boundary $K = \partial F$;

 $f: F \to [0, \infty)$: a strictly plurisubharmonic function;

 $\beta = -d^{\mathbf{c}}f$: a primitive of $\omega = -dd^{\mathbf{c}}f$.

 $\phi^*\omega = \omega$ so $\phi^*\beta - \beta$ is closed.

Assume that $\phi^*\beta - \beta = -dh$ is exact.

The 1-form $\alpha = \beta + dt$ is a contact form on $\widetilde{V} = F \times \mathbf{R}$ and is invariant under the transformation

$$(x,t) \mapsto (\phi(x), t + h(x)).$$

The quotient of V by this transformation is the mapping torus $\Sigma(F,\phi)$.

Since ϕ is the identity near K, we can glue $K \times \mathbf{D}^2$ as before.

Isotopy Lemma

 ϕ : a symplectic diffeomorphism of F equal to the identity near $K = \partial F$;

Lemma. We can deform ϕ through diffeomorphisms of the same type to a diffeomorphism ϕ_1 for which $\phi_1^*\beta - \beta$ is an exact form.

Proof. Let μ be the form $\phi^*\beta - \beta$ and η the vector field given by $\eta \vee \omega = \mu$. Since μ is closed, η preserves ω :

$$\eta \cdot \omega = d(\eta \vee \omega) = d\mu = 0.$$

Let ψ_t denote the flow of η . All the maps $\phi \circ \psi_t$ are symplectic diffeomorphisms equal to the identity near the boundary and $\phi_1 = \phi \circ \psi_1$ works.

Open books

V: a closed manifold.

An open book in V is a pair (K, θ) consisting of:

- a codimension 2 submanifold $K \subset V$ with trivial normal bundle;
- a fibration $\theta: V \setminus K \to \mathbf{S}^1$ which, in a neighborhood $K \times \mathbf{D}^2$ of K, is the normal angular coordinate.

Let (K, θ) be an open book and ν a vector field transversal to the fibers of θ and equal to ∂_{θ} near K.

If ϕ denotes the first return map of ν on an arbitrary fiber F of θ , then V can be identified with $\overline{\Sigma}(F,\phi)$.

Contact structures and open books

Definition. A contact structure ξ on V is supported by an open book (K, θ) if it is the kernel of a form α satisfying the following:

- α induces a contact form on K;
- $d\alpha$ induces a symplectic form on each fiber F of θ .
- the contact orientation of (K, α) coincides with the boundary orientation of the symplectic manifold $(F, d\alpha)$.

Theorem. Any contact structure on a closed 2n + 1-manifold is supported by an open book (K, θ) whose fibers are Weinstein manifolds and whose monodromy can be represented by a symplectic diffeomorphism.

Example: the Milnor fibration

 $p: (\mathbf{C}^n, 0) \to (\mathbf{C}, 0)$: a complex polynomial with an isolated critical point at 0; $H = p^{-1}(0)$ is a complex hypersurface with an isolated singularity at 0;

Theorem (Milnor+ ε). There exist a closed (smooth) ball $B \subset \mathbb{C}^n$ around 0 and a foliation of $B \setminus \{0\}$ by spc spheres S_r , where $r \in (0,1]$ and $S_1 = \partial B$, such that, for r sufficiently small, the following properties hold:

- the sphere S_r intersects H transversally along $K = H \cap S_r$;
- the map

$$\theta = \arg P : S_r \setminus K \to \mathbf{S}^1$$

is a fibration and (K, θ) is an open book;

• the open book (K, θ) supports the contact structure on S_r consisting of the complex hyperplanes tangent to S_r .

First reduction

 α : a contact form with kernel ξ ;

J: a $d\alpha$ -compatible almost complex structure on ξ ;

g: the metric $d\alpha(.,J)$, $|\xi \oplus^{\perp} \alpha^2|_{\ker d\alpha}$;

 $L = V \times \mathbf{C}$: the trivial Hermitian bundle with unitary connection given by the 1-form $-i\alpha$.

Lemma. Suppose there exist an open book (K, θ) and a neighborhood $N = K \times \mathbf{D}^2$ of $K = K \times \{0\}$ such that:

- θ is the normal angular coordinate in N;
- α induces a contact form on each submanifold $K_w = K \times \{w\}$ in N;
- $d\alpha$ induces a symplectic form on each fiber of θ in $V \setminus \text{Int } N$;
- the contact orientation of (K_w, α) , $w \in \mathbf{S}^1$, is the boundary orientation of $(F, d\alpha)$.

Then the contact structure $\xi = \ker \alpha$ is supported by (K, θ) .

Construction of functions

Theorem (Ibort-Martinez-Presas).

There exist constants $C, \delta > 0$ and smooth functions $s_k: V \to \mathbf{C}$, $k \geq 0$, with the following properties:

1) at each point $p \in V$,

$$|s_k| \le C,$$
 $|ds_k - iks_k \alpha| \le Ck^{1/2}$ and $|\overline{\partial}_{\xi} s_k| \le C;$

2) at each point p where $|s_k(p)| \leq \delta$,

$$|\partial_{\xi} s_k(p)| \ge \delta k^{1/2}$$
.

 $\partial_{\xi} s_k, \overline{\partial}_{\xi} s_k$ are the *J*-linear and *J*-antilinear parts of $ds_k \mid_{\xi}$.

The open book

Corollary. For $|w| \leq \delta$ the set $K_w = s_k^{-1}(w)$ is a contact submanifold. Moreover, the map $\arg s_k \colon V \setminus K_0 \to \mathbf{S}^1$ is a fibration and the fibers are transverse to the Reeb vector field ∂_{α} of α on the set where $|s_k| \geq \delta$.

Proof. $\xi \cap TK_w = \ker(ds_k | \xi)$ and $ds_k | \xi$ is surjective and almost J-linear. Therefore the intersection is transverse and $d\alpha$ is non-degenerate on $\xi \cap TK_w$.

On the other hand, $|ds_k(\partial_{\alpha}) - iks_k| \leq Ck^{1/2}$. So, for $|s_k| \geq \delta$ and k large, $ds_k(\partial_{\alpha})$ is close to iks_k , i.e., is non-zero and almost orthogonal to s_k . Therefore, the sets $s_k^{-1}(R_{\theta})$, where $R_{\theta} = \{re^{i\theta}, r > 0\}$, are submanifolds transverse to ∂_{α} .

The Weinstein structure

 (W, ω) : a closed integral symplectic manifold; L: a hermitian line bundle with a unitary connection whose curvature form is $-i\omega$;

 W_k : a symplectic submanifold Poincaré dual to $k[\omega]$ and obtained by Donaldson's construction.

Proposition. For k large, $(W \setminus W_k, \omega)$ is a Weinstein manifold.

Proof. $W_k = s_k^{-1}(0)$ where $s_k : W \to L^k$ can be assumed to satisfy $|\overline{\partial}_k s_k| \le \frac{1}{\sqrt{2}} |\partial_k s_k|$.

In the trivialization of L^k over $W \setminus W_k$ given by the unit section $s_k/|s_k|$, the connection is given by a 1-form $-i\lambda$ where $d\lambda = k\omega$.

The vector field $k\omega$ -dual to λ is gradientlike for $\log |s_k|$.

Construction of contact structures

Theorem (Bourgeois). If a closed manifold V admits a contact structure, then $V \times \mathbf{T}^2$ also does.

Proof. Let (K, θ) be a supporting open book for a given contact structure on V and let α denote the associated contact form. Choose a neighborhhood $\mathbf{D}^2 \times K$ of K in which θ is the normal angular coordinate and let r denote the normal radial coordinate.

Then set

$$\widetilde{\alpha} = f(r)(\cos\theta \, dx_1 - \sin\theta \, dx_2) + \alpha$$

where f(r) = r for $r \leq r_0$, f(r) = 1 for $r \geq 2r_0$, and $f'(r) \geq 0$.

For r_0 small enough, $\widetilde{\alpha}$ is a contact form.

Dehn-Seidel twists

The (right-handed) Dehn-Seidel twist τ in the unit cotangent space (U, ω_0) of \mathbf{S}^n is the composition of the following symplectomorphisms:

- the time π map of the geodesic flow of \mathbf{S}^n ;
- the differential of the antipodal map.

Thus, τ is the identity on ∂U .

 (F,ω) : a symplectic 2n-manifold; $\psi \colon \mathbf{S}^n \to F$: a Lagrangian embedding; $\psi \colon (U,\varepsilon\omega_0) \to (F,\omega)$: a symplectic extension of ψ .

au induces a Dehn-Seidel twist au_{ψ} in F with support in $\widetilde{\psi}(U)$.

Positive Lagrangian plumbing

 (F,ω) : a compact Weinstein 2n-manifold; $\widehat{\psi}: \mathbf{D}^n \to F$: a proper Lagrangian embedding.

There is a canonical way to attach a n-handle to (F, ω) along $\widehat{\psi}(\partial \mathbf{D}^n)$ so as to obtain a Weinstein manifold (F', ω') .

Moreover, $\widehat{\psi}$ extends to a Lagrangian embedding $\psi: \mathbf{S}^n \to F'$.

Proposition. Let $\phi: F \to F$ be a symplectic diffeomorphism with support in the interior and let $\phi' = \tau_{\psi} \circ \phi: F' \to F'$. There exists a diffeomorphism $\overline{\Sigma}(F,\phi) \to \overline{\Sigma}(F',\phi')$ which extends the inclusion $F \to F'$ and is a contact diffeomorphism.

Stabilization

 (K, θ) , (K', θ') : two symplectic open books in the same closed manifold V.

 (K', θ') is a *stabilization* of (K, θ) if it can be obtained from (K, θ) by a sequence of positive Lagrangian plumbings

Theorem.

- a) On a closed 3-manifold, two open books supporting the same contact structure have isotopic stabilizations.
- b) On a closed manifold of higher dimension, two open books supporting the same contact structure and obtained by the Donaldson-Presas construction have isotopic stabilizations.

Holomorphic fillability

A contact structure ξ on a closed manifold V is holomorphically fillable if there exists a compact Stein manifold W such that:

- V is the boundary of W;
- ξ is the field of complex hyperplanes tangent to $V = \partial W$.

Theorem. A contact structure on a closed manifold V is holomorphically fillable iff it is supported by an open book whose monodromy is a product of right-handed Dehn-Seidel twists.