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Rant

Why do we call it “SGD”?

Hypothesis: “Gradient Descent” became “Stochastic Gradient Descent”

Yann? Leon?

But it’s not a “Descent” method!
The search directions are no longer necessarily “Descent” directions for F .

A Modest Suggestion: Stochastic Gradient Methods.
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Motivation

Why study old, slow, simple algorithms?

Often suitable for machine learning and big-data applications.

Often a good fit for modern computers (multicore, NUMA, clusters):
Parallel, asynchronous versions are possible.

(Fairly) easy to implement.

Interesting new analysis, tied to plausible models of parallel
computation and data access.

“Asynchronicity is the key to speedup on modern architectures,” says Bill
Gropp (SIAM CS&E Plenary, Feb 2013).
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Kaczmarz for Ax = b.

Consider linear equations Ax = b, where the equations are consistent and
matrix A is m × n, not necessarily square or full rank. Write

A =


aTi
aT2
...

aTm

 , where ‖ai‖2 = 1, i = 1, 2, . . . ,m.

Iteration j of Randomized Kaczmarz:

Select row index ij ∈ {1, 2, . . . ,m} randomly with equal probability.

Set
xj+1 ← xj − (aTij xj − bij )aij .
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Relationship to SG

Randomized Kaczmarz is equivalent to applying SG to

f (x) :=
1

2m

m∑
i=1

(aTi x − bi )
2 =

1

2m
‖Ax − b‖22 =

1

m

m∑
i=1

fi (x)

with steplength αk ≡ 1.

However, it is a special case of SG, since the individual gradient estimates

∇fi (x) = ai (aTi x − bi )

approach zero as x → x∗. (The “variance” in the gradient estimate
shrinks to zero.)
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Randomized Kaczmarz Convergence: Linear Rate

Assume A scaled so that ‖ai‖ = 1 for all i . λmin,nz denotes minimum
nonzero eigenvalue of ATA. P(·) is projection onto solution set.

1

2
‖xj+1 − P(xj+1)‖2 ≤ 1

2
‖xj − aij (aTij xj − bij )− P(xj)‖2

=
1

2
‖xj − P(xj)‖2 −

1

2
(aTij xj − bij )

2.

Taking expectations:

E

[
1

2
‖xj+1 − P(xj+1)‖2 | xj

]
≤ 1

2
‖xj − P(xj)‖2 −

1

2
E
[
(aTij xj − bij )

2
]

=
1

2
‖xj − P(xj)‖2 −

1

2m
‖Axj − b‖2

≤
(

1− λmin,nz

m

)
1

2
‖xj − P(xj)‖2.

Strohmer and Vershynin (2009)
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Asynchronous Random Kaczmarz (Liu, Wright, 2014)

Assumes that x is stored in shared memory, accessible to all cores.

Each core runs a simple process, repeating indefinitely:

Choose index i ∈ {1, 2, . . . ,m} uniformly at random;

Choose component t ∈ supp(ai ) uniformly at random;

Read the supp(ai )-components of x (from shared memory), needed to
evaluate aTi x ;

Update the t component of x :

(x)t ← (x)t − γ‖ai‖0(ai )t(aTi x − bi )

for some step size γ (a unitary operation);

Note that x can be updated by other cores between the time it is read and
the time that the update is performed.

Differs from basic Random Kaczmarz in that each update is using slightly
outdated information.
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AsyRK: Global View

From a “central” viewpoint, aggregating the actions of the individual
cores, we have the following: At each iteration j :

Select ij from {1, 2, . . . ,m} with equal probability;

Select tj from the support of aij with equal probability;

Update component tj :

xj+1 = xj − γ‖aij‖0(aTij xk(j) − bij )Etj aij ,

where

k(j) is some iterate prior to j but no more than τ cycles old:
j − k(j) ≤ τ ;

Et is the n × n matrix of all zeros, except for 1 in the (t, t) location.

Assumes consistent reading, that is, the xk(j) used to evaluate the residual
is an x that actually existed at some point in the shared memory.

(This condition may be violated if more than one update happens to the
supp(aij )-components of x while they are being read.)
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AsyRK Analysis: A Key Element

Key parameters:

µ := maxi=1,2,...,m ‖ai‖0 (maximum nonzero row count);

α := maxi ,t ‖ai‖0‖AEtai‖ ≤ µ‖A‖.

Idea of analysis: Choose some ρ > 1 and choose steplength γ small
enough that

ρ−1E(‖Axj − b‖2) ≤ E(‖Axj+1 − b‖2) ≤ ρE(‖Axj − b‖2).

Not too much change to the residual at each iteration. Hence, don’t pay
too much of a price for using outdated information in the asynchronous
algorithm.

But don’t want γ to be too tiny, otherwise overall progress is too slow.
Strike a balance.
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Main Theorem

Theorem

Choose any ρ > 1 and define γ via the following:

ψ = µ+
2λmaxτρ

τ

m

γ ≤ min

{
1

ψ
,

m(ρ− 1)

2λmaxρτ+1
, m

√
ρ− 1

ρτ (mα2 + λ2maxτρ
τ )

}

Then have

ρ−1E(‖Axj − b‖2) ≤ E(‖Axj+1 − b‖2) ≤ ρE(‖Axj − b‖2)

E(‖xj+1 − P(xj+1)‖2) ≤
(

1− λmin,nzγ

mµ
(2− γψ)

)
E(‖xj − P(xj)‖2),

A particular choice of ρ leads to simplified results, in a reasonable regime.
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A Particular Choice

Corollary

Assume
2eλmax(τ + 1) ≤ m

and set ρ = 1 + 2eλmax/m. Can show that γ = 1/ψ for this case, so
expected convergence is

E(‖xj+1 − P(xj+1)‖2) ≤
(

1− λmin,nz

m(µ+ 1)

)
E(‖xj − P(xj)‖2).

In the regime 2eλmax(τ + 1) ≤ m considered here the delay τ doesn’t
really interfere with convergence rate.
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High-Probability Result

Obtained with Markov inequality.

AsyRK with the choices of ρ and γ above converges to precision ε with
probability at least 1− η in

K ≥ m(µ+ 1)

λmin,nz

∣∣∣∣log
‖x0 − P(x0)‖2

ηε

∣∣∣∣ iterations.
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Discussion

For random matrices A with unit rows, we have λmax ≈ (1 + O(m/n)),
with high probability, so that τ = O(m) = O(n).

Conditions on τ are less strict than for asynchronous random algorithms
for optimization problems. (Typically τ = O(n1/4) or τ = O(n1/2) for
coordinate descent methods.)
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Complexity Comparisons

δ is fractional sparsity of the matrix A;

RK is regular (serial) randomized Kaczmarz;

AsySCD is an asynchronous stochastic coordinate descent method
applied to (1/2)‖Ax − b‖2;

Lmax is max diagonal of ATA; Lres is max row norm of ATA;

algorithms RK AsySCD AsyRK

# ops/iter. O(δn) min{O(δ2mn), O(n)} O(δn)
rate (iter) 1− λmin/m 1− λmin/(2nLmax) 1− λmin/(m(µ+ 1))
# procs 1 O

(√
nLmax/Lres

)
O (m/λmax)

rate (runtime) 1− O
(
λmin
δmn

)
1− O

(
λmin

n1.5Lres min{δ2m, 1}

)
1− O

(
λmin

δ2n2λmax

)
Comparing runtimes, we see that for normalized “random” matrices
(λmax = O(1), Lres = O(1)):

AsyRK faster than RK unless m < δn.

AsyRK faster than AsySCD unless δ > O(n−1/4).

Sparsity is better for AsyRK.
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AsyRK: Near-Linear Speedup

Run on an Intel Xeon 40-core machine. Used one socket — 10 cores).1

Say more about the implementation - epochs with shuffling in between.

Sparse Gaussian random matrix A ∈ Rm×n with m = 100000 and
n = 80000, sparsity δ = .001.

See linear speedup in the number of cores.
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1Programming becomes much trickier to exploit nonuniform memory access
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AsyRK: Near-Linear Speedup

Sparse Gaussian random matrix A ∈ Rm×n with m = 100000 and
n = 80000, sparsity δ = .003.

See slight dropoff from linear speedup for this slightly less-sparse problem.
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Experiment: Comparison with AsySCD

Compare of running time and number of epochs (matrix-vector
multiplications) on 10 cores, to attain a residual of 10−5.

synthetic data size (MB) running time (sec) epochs

m n δ AsySCD AsyRK AsySCD AsyRK

80k 100k 0.0005 43 39. 3.6 199 195
80k 100k 0.001 84 170. 7.6 267 284
80k 100k 0.003 244 1279. 18.4 275 232

500k 1000k 0.00005 282 54. 5.8 19 19
500k 1000k 0.0001 550 198. 10.4 24 30
500k 1000k 0.0002 1086 734. 15.0 29 31

Per-iteration complexity of a coordunate-descent method is much higher,
due to lower sparsity of ATA.
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RK vs Conjugate Gradient

We compare serial implementations of RK and CG. (The benefits of
multicore implementation are similar for both.) Random A, δ = .1.
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CG does better in the more ill-conditioned case, probably due to nice
distribution of dominant eigenvalues of ATA. (Note slower convergence in
later stages.) RK is competitive in the well-conditioned case.
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Overview

1 Motivation

2 Asynchronous Random Kaczmarz

3 Asynchronous Parallel Stochastic Proximal Coordinate Descent
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4 Application: Extreme Linear Programming
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Asynchronous Parallel Stochastic Proximal Coordinate
Descent Algorithm (AsySPCD)

min
x

: F (x) := f (x) + g(x) (1)

f (·) : Rn 7→ R is convex and differentiable;

g(·) : Rn 7→ R ∪ {+∞} is a proper closed convex real value extended
function;

g(x) is separable: g(x) =
∑n

i=1 gi ((x)i ), gi (·) : R 7→ R ∪ {+∞}.

Instances of g(x):

Unconstrained: g(x) = constant.

Box constrained: g(x) =
∑n

i=1 1[ai ,bi ]((x)i ) where 1[ai ,bi ] is an
indicator function for [ai , bi ];

`p norm regularization: g(x) = ‖x‖pp where p ≥ 1.
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Instances

Problems that fit this framework include the following:

least squares: minx
1
2‖Ax − b‖2;

LASSO: minx
1
2‖Ax − b‖2 + λ‖x‖1;

support vector machine (SVM) with squared hinge loss:

min
w

C
∑
i

max{yi (xT
i w − b), 0}2 +

1

2
‖w‖2

support vector machine: dual form with bias term:

min
0≤α≤C1

1

2

∑
i ,j

αiαjyiyjK (xi , xj)−
∑
i

αi .
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Instances (continued)

logistic regression with `p norm regularization (p = 1, 2):

min
x

1

n

∑
i

log(1 + exp(−yix
T
i w)) + λ‖w‖pp

semi-supervised learning (Tikhonov Regularization)

min
f

∑
i∈{labeled data}

(fi − yi )
2 + λf TLf

where L is the Laplacian matrix.

relaxed linear program:

min
x≥0

cT x s.t. Ax = b ⇒ min
x≥0

cT x + λ‖Ax − b‖2
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Stochastic Proximal Coordinate Descent SPCD

Define prox-operator Ph for a convex function h:

Ph(y) = arg min
x

1

2
‖x − y‖2 + h(x).

(It’s nonexpansive: ‖Ph(y)− Ph(z)‖ ≤ ‖y − z‖.)

Repeat: Select a coordinate i and compute the coordinate gradient;

(x)i ← Pγgi ((x)i − α∇i f (x)︸ ︷︷ ︸
coordinate gradient

),

for some step length α.
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Prox-Operator Examples

Prox-operators can be executed efficiently in many cases.

Examples:

g(x) = |x |: soft thresholding operation

Pλg (z) = sgn(z) max{|z | − λ, 0}.

g(x) = 1[a,b]: projection operation

Pλg (z) = arg min
x∈[a,b]

1

2
‖x − z‖2 = mid(a, b, z).
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Local View of AsySPCD

Steplength depends on Lmax: component Lipschitz constant (“max
diagonal of Hessian”)

‖∇f (x + tej)−∇f (x)‖∞ ≤ Lmax|t| ∀x ∈ Rn, t ∈ R, j = 1, 2, . . . , n.

All processors run a stochastic coordinate descent process concurrently
and without synchronization:

Select a coordinate i ∈ {1, 2, . . . , n} uniformly at random;

Read “x” from the shared memory and compute the i gradient
component using “x”:

di ← ∇i f (x);

Update “x” in the shared memory by the proximal operation,
performed atomically:

(x)i ← P(γ/Lmax)gi

(
(x)i −

γ

Lmax
di

)
,

for some steplength γ > 0.
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Global View of AsySPCD

Aggregate the actions of the individual cores against a central clock.
Iteration j :

Choose i(j) ∈ {1, 2, · · · , n} uniformly at random;

Read components of x from shared memory needed to compute
∇i(j)f , denoting the local version of x by x̂j ;

Update compoment i(j) of x (atomically):

(xj+1)i(j) ← P(γ/Lmax)gi(j)

(
(xj)i(j) −

γ

Lmax
∇i(j)f (x̂j)

)
.

Note that x̂j may not never appear in shared memory at any point in time.
The elements of x may have been updated repeatedly during reading of x̂j ,
which means that the components of x̂j may have different “ages.”

We call this phenomenon inconsistent read.
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Consistent Read vs. Inconsistent Read
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Consistent vs Inconsistent

Most recent analyses of multicore coordinate descent algorithms have used
some sort of consistent-read assumption or a synchronization step, though
computational results usually are obtained without enforcing these
conditions.

A notable exception is Bertsekas and Tsitsiklis (1989), who describe
analyze an asynchronous coordinate method for fixed-point problem
x = q(x). over a separable closed convex feasible region. Linear
convergence is established if the component ages are bounded and q is a
maximum-norm contraction.

To apply this approach to our problem can define (for some α > 0)

q(x) := Pαg (x − α∇f (x)).

When applied to minimization of a convex quadratic, the contraction
condition amounts to a diagonal dominance condition on ∇2f — a
stronger condition than strong convexity, and stronger than what we
assume here.
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Expressing Read-Inconsistency

The difference between x̂j and xj is expressed in terms of the “missed
updates:”

xj = x̂j +
∑

t∈K(j)

(xt+1 − xt)

where K (j) defines the iterate set of updates missed in reading x̂j .

Here we assume τ to be the upper bound of ages of all elements in K (j)
for all j :

τ ≥ j −min{t | t ∈ K (j)}.

Example: our assumptions would be satisfied with τ = 10 when

x100 = x̂100 +
∑

t∈{91,95,98,99}

(xt+1 − xt)

τ is related strongly to the number of cores / processors that can be used
in the computation. The number of updates we would expect to miss
between reading and updating x is about equal to the number of cores.
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Notation

Lmax: component Lipschitz constant (“max diagonal of Hessian”)

‖∇f (x + tej)−∇f (x)‖∞ ≤ Lmax|t| ∀x ∈ Rn, t ∈ R, i ;

Lres: restricted Lipschitz constant (“max row-norm of Hessian”)

‖∇f (x + tei )−∇f (x)‖ ≤ Lres|t| ∀x ∈ Rn, t ∈ R, i ;

Λ := Lres/Lmax measures the degree of diagonal dominance. It’s 1 for
separable f , 2 for convex quadratic f with diagonally dominant
Hessian,

√
n for general quadratic.

S : the solution set of (1);
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Key to Analysis

Recall iteration:

(xj+1)i(j) = P(γ/Lmax)gi(j)

(
(xj)i(j) −

γ

Lmax
∇i(j)f (x̂j)

)
.

Choose some ρ > 1 and choose γ so that

E(‖xj − xj−1‖2) ≤ ρE(‖xj+1 − xj‖2) “ρ-condition”.

Not too much change in the gradient over each iteration, so not too much
price to pay for using inexact information, in the asynchronous setting.

Want to choose γ small enough to satisfy this property but large enough
to get a better convergence rate.
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Main Assumption: Optimal Strong Convexity (OSC)

Optimal strong convexity parameter l > 0

F (x)− F (PS(x)) ≥ l

2
‖x − PS(x)‖2

for all x ∈ domF .

Weaker than usual strong convexity — allows nonunique solutions, for a
start. Examples:

F (x) = f (Ax) with strongly convex f .

(Can add an indicator function for a closed convex set, or a convex
regularizer like ‖x‖pp to this.)

Squared hinge loss: F (x) =
∑

k max(aTk x − bk , 0)2;
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An OSC (but not strongly convex) function:
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Main Theorem: OSC yields a Linear Rate

Theorem

For any ρ > 1 + 4/
√

n, define

θ :=
ρ(τ+1)/2 − ρ1/2

ρ1/2 − 1
θ′ :=

ρ(τ+1) − ρ
ρ− 1

ψ := 1 +
τθ′

n
+

Λθ√
n
.

and choose

γ ≤ min

{
1

ψ
,

√
n(1− ρ−1)− 4

4(1 + θ)Λ

}
.

Then the “ρ-condition” is satisfied at all j , and we have

E‖xj − PS(xj)‖2 + 2γ(EF (xj)− F ∗)

≤
(

1− l

n(l + γ−1)

)j (
‖x0 − PS(x0)‖2 + 2γ(F (x0)− F ∗)

)
.
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Notes on the Result

Rate depends intuitively on the various quantities involved:

Smaller γ ⇒ slower rate;

Smaller l ⇒ slower rate;

Larger Λ = Lres/Lmax implies smaller γ and thus slower rate.

Larger delay τ ⇒ slower rate.

Dependence on ρ is a but more complicated, but best to choose ρ near its
lower bound.
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Special Case

Corollary

Consider the regime in which τ satisfies

4eΛ(τ + 1)2 ≤
√

n,

and define

ρ =

(
1 +

4eΛ(τ + 1)√
n

)2

.

Thus we can choose γ = 1
2 , and the rate simplifies to:

E(F (xj)−F ∗) ≤
(

1− l

n(l + 2Lmax)

)j

(Lmax‖x0−PS(x0)‖2 + F (x0)−F ∗).

If the diagonal dominance properties are good (Λ ∼ 1) we have τ ∼ n1/4.

In earlier work, with consistent read and no regularization, get τ ∼ n1/2.
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General Convex (without OSC): Sublinear Rate

Theorem

Define ψ and γ as in the main theorem, have

E(F (xj)− F ∗) ≤ n(Lmaxγ
−1‖x0 − PS(x0)‖2 + 2(F (x0)− F ∗))

2(j + n)
.

Roughly ”1/j” behavior (sublinear rate)

Corollary

Assuming 4eΛ(τ + 1)2 ≤
√

n and setting ρ and γ = 1/2 as above, we have

E(F (xj)− F ∗) ≤ n(Lmax‖x0 − PS(x0)‖2 + F (x0)− F ∗)

j + n
.
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Diagonalicity

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 40 / 56



Computational Experiments

Implemented on a 40-core Intel Xeon, containing 4 sockets × 10 cores.

We don’t do “sampling with replacement” as in the algorithm described
above. Rather, each thread/core is assign a subset of gradient
components, and sweeps through these in order: “sampling without
replacement.”

The order of indices is shuffled periodically - either between every pass, or
less frequently.
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Unconstrained: 4-socket, 40-core Intel Xeon

min
x

‖Ax − b‖2 + 0.5‖x‖2

where A ∈ Rm×n is a Gaussian random matrix (m = 6000, n = 20000,
data size≈3GB, columns are normalized to 1). Λ ≈ 2.2. Choose γ = 1.
3-4 seconds to achieve the accuracy 10−5 on 40 cores.

5 10 15 20 25 30 35 40

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Synthetic Unconstrained QP: n = 20000 p = 10

# epochs

re
s
id

u
a
l

 

 

thread= 1
thread=10
thread=20
thread=30
thread=40

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

Synthetic Unconstrained QP: n = 20000

threads

s
p
e
e
d
u
p

 

 

Ideal
AsySCD−DW
Global Locking
Syn−GD

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 42 / 56



Constrained: 4-socket, 40-core Intel Xeon

min
x≥0

(x − z)T (ATA + 0.5I )(x − z) ,

where A ∈ Rm×n is a Gaussian random matrix (m = 6000, n = 20000,
columns are normalized to 1) and z is a Gaussian random vector.
Lres/Lmax ≈ 2.2. Choose γ = 1.
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Experiments: 1-socket, 10-core Intel Xeon

min
x

1

2
‖Ax − b‖2 + λ‖x‖1,

where A ∈ Rm×n is a Gaussian random matrix (m = 12000, n = 20000,
data size≈3GB),b = A ∗ sprandn(n, 1, 20) + 0.01 ∗ randn(n, 1), and
λ = 0.2

√
m log(n). Lres/Lmax ≈ 2.2. Choose γ = 1.
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Extreme Linear Programming

State-of-the-art solvers for large linear programs (LPs) are based on
simplex and interior-point methods. An alternative approach based on

augmented Lagrangian / proximal-point

iterative solvers for the bounded-QP subproblems (SOR, CG)

were studied in the late 1980s

O. L. Mangasarian and R. DeLeone, “Serial and Parallel Solution of
Large-Scale Linear Program by Augmented Lagrangian Successive
Overrelaxations,” 1987.

S. J. Wright, “Implementing Proximal-Point Methods for Linear
Programming,” JOTA, 1990

These showed some promise on random, highly degenerate problems, but
were terrible on the netlib test set and other problems arising in practice.
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But this approach has potential appeal for:

Cases in which only crude approximate LP solutions are needed.

No matrix factorizations or multiplications are required. (Thus may
be good for special problems, at extreme scale.)

Multicore implementation is easy, when asynchronous solver is used
on the QP subproblems.
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Basics of the Approach

Primal-dual pair:
min
x

cT x s.t. Ax = b, x ≥ 0

max
u

bTu s.t. ATu ≤ c.

“Proximal method of multipliers” subproblem is a bound-constrained
convex QP:

x(β) := arg min
x≥0

cT x − ūT (Ax − b) +
β

2
‖Ax − b‖2 +

1

2β
‖x − x̄‖22,

where (x̄ , ū) is an estimate of the primal-dual solution and β is a penalty
parameter.

Can solve a sequence of these, with updates to ū and x̄ , and possible
increases in β, in the familiar style of augmented Lagrangian.
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A Perturbation Result

Make use of Renegar’s measures δP and δD of relative distance to primal
and dual infeasibility.

Theorem

Suppose that δP and δD are both positive, and let (x∗, u∗) be any
primal-dual solution pair. If we define C∗ := max(‖x∗ − x̄‖, ‖u∗ − ū‖),
then the unique solution x(β) of the QP subproblem satisfies

‖Ax(β)− b‖ ≤ (1/β)(1 +
√

2)C∗, ‖x(β)− x∗‖ ≤
√

6C∗.

If in addition we have

β ≥ 10C∗
‖d‖min(δP , δD)

,

then

|cT x∗ − cT x(β)| ≤ 1

β

[
25C∗

2δPδD
+ 6C 2

∗ +
√

6‖x̄‖C∗
]
.
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LP Rounding Approximations

There are numerous NP-hard problems for which approximate solutions can
be found using linear programming followed by rounding. Typical process:

Construct a MIP formulation;

Relax to an LP (replace binary variables by [0, 1] intervals);

Solve the LP approximately;

Use LP solution to construct a feasible MIP solution (“rounding”).

Examples: Vertex cover, set cover, set packing, multiway cut, maximal
independent set.
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Vertex Cover

Given a graph with edge set E , vertex set V , seek a subset of vertices such
that every edge touches the subset. Cost to select a vertex v is cv .

Binary programming formulation:

min
∑
v∈V

cvxv s.t. xu + xv ≥ 1 for (u, v) ∈ E ; xv ∈ {0, 1} for all v ∈ V .

Relax the binary constraint to xv ∈ [0, 1] to get an LP. Very large, but
matrix A is highly sparse and structured.
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Vertex Cover (Amazon): 4-socket, 40-core Intel Xeon
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Vertex Cover (DBLP): 4-socket, 40-core Intel Xeon
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Running Time

Problem 1 core 40 cores

QP 98.4 3.03
QPc 59.7 1.82
Amazon 17.1 1.25
DBLP 11.5 .91

Table: Runtimes (s) for the four test problems on 1 and 40 cores.
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Sample Results

instance vertex cover multiway cuts

n size(A) n size(A)

frb59-26-1 126K 616K 1.3M 3.6M
Amazon 203K 956K 6.8M 21.3 M
DBLP 146K 770K 10.7M 33.7M
Google+ 82K 1.5M 7.6M 24.1M

Table: Problem Sizes
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Computation Times (Seconds)

Run on 32 cores Intel machine for max of one hour. Compared with Cplex
IP and LP solvers. Times shown for reaching solutions of similar quality.

instance Cplex IP Cplex LP Us

frb59-26-1 VC - 5.1 0.65
Amazon VC 44 22 4.7
DBLP VC 23 21 3.2

Google+ VC - 62 6.2
frb59-26-1 MC 54 360 29
Amazon MC - - 131
DBLP MC - - 158

Google+ MC - - 570

(Cplex IP sometimes faster than LP because the IP preprocessing can
drastically simplify the problem, for some data sets.)
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Conclusions

Old methods are interesting again, because of modern computers and
modern applications (particularly in machine learning).

We can analyze asynchronous parallel algorithms, with a computing
model that approximates reality pretty well. (There are other models.)

FIN
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