
Asynchronous parallel stochastic Kaczmarz and
stochastic coordinate descent algorithms

Ji Liu and Stephen Wright

University of Wisconsin-Madison

February 2014

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 1 / 56

Collaborators

Victor Bittorf (UW-Madison)
Yijun Huang
Chris Ré (UW-Madison → Stanford)
Krishna Sridhar (UW-Madison → GraphLab)

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 2 / 56

Rant

Why do we call it “SGD”?

Hypothesis: “Gradient Descent” became “Stochastic Gradient Descent”

Yann? Leon?

But it’s not a “Descent” method!
The search directions are no longer necessarily “Descent” directions for F .

A Modest Suggestion: Stochastic Gradient Methods.

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 3 / 56

1 Motivation

2 Asynchronous Random Kaczmarz

3 Asynchronous Parallel Stochastic Proximal Coordinate Descent
Algorithm with Inconsistent Read (AsySPCD)

4 Application: Extreme Linear Programming

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 4 / 56

Motivation

Why study old, slow, simple algorithms?

Often suitable for machine learning and big-data applications.

Often a good fit for modern computers (multicore, NUMA, clusters):
Parallel, asynchronous versions are possible.

(Fairly) easy to implement.

Interesting new analysis, tied to plausible models of parallel
computation and data access.

“Asynchronicity is the key to speedup on modern architectures,” says Bill
Gropp (SIAM CS&E Plenary, Feb 2013).

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 5 / 56

Kaczmarz for Ax = b.

Consider linear equations Ax = b, where the equations are consistent and
matrix A is m × n, not necessarily square or full rank. Write

A =

aTi
aT2
...

aTm

 , where ‖ai‖2 = 1, i = 1, 2, . . . ,m.

Iteration j of Randomized Kaczmarz:

Select row index ij ∈ {1, 2, . . . ,m} randomly with equal probability.

Set
xj+1 ← xj − (aTij xj − bij)aij .

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 6 / 56

Relationship to SG

Randomized Kaczmarz is equivalent to applying SG to

f (x) :=
1

2m

m∑
i=1

(aTi x − bi)
2 =

1

2m
‖Ax − b‖22 =

1

m

m∑
i=1

fi (x)

with steplength αk ≡ 1.

However, it is a special case of SG, since the individual gradient estimates

∇fi (x) = ai (aTi x − bi)

approach zero as x → x∗. (The “variance” in the gradient estimate
shrinks to zero.)

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 7 / 56

Randomized Kaczmarz Convergence: Linear Rate

Assume A scaled so that ‖ai‖ = 1 for all i . λmin,nz denotes minimum
nonzero eigenvalue of ATA. P(·) is projection onto solution set.

1

2
‖xj+1 − P(xj+1)‖2 ≤ 1

2
‖xj − aij (aTij xj − bij)− P(xj)‖2

=
1

2
‖xj − P(xj)‖2 −

1

2
(aTij xj − bij)

2.

Taking expectations:

E

[
1

2
‖xj+1 − P(xj+1)‖2 | xj

]
≤ 1

2
‖xj − P(xj)‖2 −

1

2
E
[
(aTij xj − bij)

2
]

=
1

2
‖xj − P(xj)‖2 −

1

2m
‖Axj − b‖2

≤
(

1− λmin,nz

m

)
1

2
‖xj − P(xj)‖2.

Strohmer and Vershynin (2009)
Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 8 / 56

Asynchronous Random Kaczmarz (Liu, Wright, 2014)

Assumes that x is stored in shared memory, accessible to all cores.

Each core runs a simple process, repeating indefinitely:

Choose index i ∈ {1, 2, . . . ,m} uniformly at random;

Choose component t ∈ supp(ai) uniformly at random;

Read the supp(ai)-components of x (from shared memory), needed to
evaluate aTi x ;

Update the t component of x :

(x)t ← (x)t − γ‖ai‖0(ai)t(aTi x − bi)

for some step size γ (a unitary operation);

Note that x can be updated by other cores between the time it is read and
the time that the update is performed.

Differs from basic Random Kaczmarz in that each update is using slightly
outdated information.

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 9 / 56

AsyRK: Global View

From a “central” viewpoint, aggregating the actions of the individual
cores, we have the following: At each iteration j :

Select ij from {1, 2, . . . ,m} with equal probability;

Select tj from the support of aij with equal probability;

Update component tj :

xj+1 = xj − γ‖aij‖0(aTij xk(j) − bij)Etj aij ,

where

k(j) is some iterate prior to j but no more than τ cycles old:
j − k(j) ≤ τ ;

Et is the n × n matrix of all zeros, except for 1 in the (t, t) location.

Assumes consistent reading, that is, the xk(j) used to evaluate the residual
is an x that actually existed at some point in the shared memory.

(This condition may be violated if more than one update happens to the
supp(aij)-components of x while they are being read.)

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 10 / 56

AsyRK Analysis: A Key Element

Key parameters:

µ := maxi=1,2,...,m ‖ai‖0 (maximum nonzero row count);

α := maxi ,t ‖ai‖0‖AEtai‖ ≤ µ‖A‖.

Idea of analysis: Choose some ρ > 1 and choose steplength γ small
enough that

ρ−1E(‖Axj − b‖2) ≤ E(‖Axj+1 − b‖2) ≤ ρE(‖Axj − b‖2).

Not too much change to the residual at each iteration. Hence, don’t pay
too much of a price for using outdated information in the asynchronous
algorithm.

But don’t want γ to be too tiny, otherwise overall progress is too slow.
Strike a balance.

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 11 / 56

Main Theorem

Theorem

Choose any ρ > 1 and define γ via the following:

ψ = µ+
2λmaxτρ

τ

m

γ ≤ min

{
1

ψ
,

m(ρ− 1)

2λmaxρτ+1
, m

√
ρ− 1

ρτ (mα2 + λ2maxτρ
τ)

}

Then have

ρ−1E(‖Axj − b‖2) ≤ E(‖Axj+1 − b‖2) ≤ ρE(‖Axj − b‖2)

E(‖xj+1 − P(xj+1)‖2) ≤
(

1− λmin,nzγ

mµ
(2− γψ)

)
E(‖xj − P(xj)‖2),

A particular choice of ρ leads to simplified results, in a reasonable regime.

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 12 / 56

A Particular Choice

Corollary

Assume
2eλmax(τ + 1) ≤ m

and set ρ = 1 + 2eλmax/m. Can show that γ = 1/ψ for this case, so
expected convergence is

E(‖xj+1 − P(xj+1)‖2) ≤
(

1− λmin,nz

m(µ+ 1)

)
E(‖xj − P(xj)‖2).

In the regime 2eλmax(τ + 1) ≤ m considered here the delay τ doesn’t
really interfere with convergence rate.

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 13 / 56

High-Probability Result

Obtained with Markov inequality.

AsyRK with the choices of ρ and γ above converges to precision ε with
probability at least 1− η in

K ≥ m(µ+ 1)

λmin,nz

∣∣∣∣log
‖x0 − P(x0)‖2

ηε

∣∣∣∣ iterations.

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 14 / 56

Discussion

For random matrices A with unit rows, we have λmax ≈ (1 + O(m/n)),
with high probability, so that τ = O(m) = O(n).

Conditions on τ are less strict than for asynchronous random algorithms
for optimization problems. (Typically τ = O(n1/4) or τ = O(n1/2) for
coordinate descent methods.)

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 15 / 56

Complexity Comparisons

δ is fractional sparsity of the matrix A;

RK is regular (serial) randomized Kaczmarz;

AsySCD is an asynchronous stochastic coordinate descent method
applied to (1/2)‖Ax − b‖2;

Lmax is max diagonal of ATA; Lres is max row norm of ATA;

algorithms RK AsySCD AsyRK

ops/iter. O(δn) min{O(δ2mn), O(n)} O(δn)
rate (iter) 1− λmin/m 1− λmin/(2nLmax) 1− λmin/(m(µ+ 1))
procs 1 O

(√
nLmax/Lres

)
O (m/λmax)

rate (runtime) 1− O
(
λmin
δmn

)
1− O

(
λmin

n1.5Lres min{δ2m, 1}

)
1− O

(
λmin

δ2n2λmax

)
Comparing runtimes, we see that for normalized “random” matrices
(λmax = O(1), Lres = O(1)):

AsyRK faster than RK unless m < δn.

AsyRK faster than AsySCD unless δ > O(n−1/4).

Sparsity is better for AsyRK.
Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 16 / 56

AsyRK: Near-Linear Speedup

Run on an Intel Xeon 40-core machine. Used one socket — 10 cores).1

Say more about the implementation - epochs with shuffling in between.

Sparse Gaussian random matrix A ∈ Rm×n with m = 100000 and
n = 80000, sparsity δ = .001.

See linear speedup in the number of cores.

50 100 150 200 250 300 350 400

10
−8

10
−6

10
−4

10
−2

10
0

m = 80000 n = 100000 sparsity = 0.001

epochs

re
s
id

u
a

l

thread= 1

thread= 2

thread= 4

thread= 8

thread=10

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

m = 80000 n = 100000 sparsity = 0.001

threads

s
p
e
e
d
u
p

Ideal

AsyRK

1Programming becomes much trickier to exploit nonuniform memory access
(NUMA) across multiple sockets: see later!Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 17 / 56

AsyRK: Near-Linear Speedup

Sparse Gaussian random matrix A ∈ Rm×n with m = 100000 and
n = 80000, sparsity δ = .003.

See slight dropoff from linear speedup for this slightly less-sparse problem.

50 100 150 200 250 300 350

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

m = 80000 n = 100000 sparsity = 0.003

epochs

re
s
id

u
a

l

thread= 1

thread= 2

thread= 4

thread= 8

thread=10

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

m = 80000 n = 100000 sparsity = 0.003

threads

s
p
e
e
d
u
p

Ideal

AsyRK

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 18 / 56

Experiment: Comparison with AsySCD

Compare of running time and number of epochs (matrix-vector
multiplications) on 10 cores, to attain a residual of 10−5.

synthetic data size (MB) running time (sec) epochs

m n δ AsySCD AsyRK AsySCD AsyRK

80k 100k 0.0005 43 39. 3.6 199 195
80k 100k 0.001 84 170. 7.6 267 284
80k 100k 0.003 244 1279. 18.4 275 232

500k 1000k 0.00005 282 54. 5.8 19 19
500k 1000k 0.0001 550 198. 10.4 24 30
500k 1000k 0.0002 1086 734. 15.0 29 31

Per-iteration complexity of a coordunate-descent method is much higher,
due to lower sparsity of ATA.

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 19 / 56

RK vs Conjugate Gradient

We compare serial implementations of RK and CG. (The benefits of
multicore implementation are similar for both.) Random A, δ = .1.

0.5 1 1.5 2 2.5 3

x 10
8

10
−8

10
−6

10
−4

10
−2

10
0

m=1000, n=500, λ
min

(A
T
A)=0.06937, λ

max
(A

T
A)=6.156

of Operations

||
A

x
−

b
||

CG
RK

0.5 1 1.5 2 2.5 3

x 10
8

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

m=2000, n=500, λ
min

(A
T
A)=0.5616, λ

max
(A

T
A)=10.7

of Operations

||
A

x
−

b
||

CG
RK

CG does better in the more ill-conditioned case, probably due to nice
distribution of dominant eigenvalues of ATA. (Note slower convergence in
later stages.) RK is competitive in the well-conditioned case.

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 20 / 56

Overview

1 Motivation

2 Asynchronous Random Kaczmarz

3 Asynchronous Parallel Stochastic Proximal Coordinate Descent
Algorithm with Inconsistent Read (AsySPCD)

4 Application: Extreme Linear Programming

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 21 / 56

Asynchronous Parallel Stochastic Proximal Coordinate
Descent Algorithm (AsySPCD)

min
x

: F (x) := f (x) + g(x) (1)

f (·) : Rn 7→ R is convex and differentiable;

g(·) : Rn 7→ R ∪ {+∞} is a proper closed convex real value extended
function;

g(x) is separable: g(x) =
∑n

i=1 gi ((x)i), gi (·) : R 7→ R ∪ {+∞}.

Instances of g(x):

Unconstrained: g(x) = constant.

Box constrained: g(x) =
∑n

i=1 1[ai ,bi]((x)i) where 1[ai ,bi] is an
indicator function for [ai , bi];

`p norm regularization: g(x) = ‖x‖pp where p ≥ 1.

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 22 / 56

Instances

Problems that fit this framework include the following:

least squares: minx
1
2‖Ax − b‖2;

LASSO: minx
1
2‖Ax − b‖2 + λ‖x‖1;

support vector machine (SVM) with squared hinge loss:

min
w

C
∑
i

max{yi (xT
i w − b), 0}2 +

1

2
‖w‖2

support vector machine: dual form with bias term:

min
0≤α≤C1

1

2

∑
i ,j

αiαjyiyjK (xi , xj)−
∑
i

αi .

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 23 / 56

Instances (continued)

logistic regression with `p norm regularization (p = 1, 2):

min
x

1

n

∑
i

log(1 + exp(−yix
T
i w)) + λ‖w‖pp

semi-supervised learning (Tikhonov Regularization)

min
f

∑
i∈{labeled data}

(fi − yi)
2 + λf TLf

where L is the Laplacian matrix.

relaxed linear program:

min
x≥0

cT x s.t. Ax = b ⇒ min
x≥0

cT x + λ‖Ax − b‖2

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 24 / 56

Stochastic Proximal Coordinate Descent SPCD

Define prox-operator Ph for a convex function h:

Ph(y) = arg min
x

1

2
‖x − y‖2 + h(x).

(It’s nonexpansive: ‖Ph(y)− Ph(z)‖ ≤ ‖y − z‖.)

Repeat: Select a coordinate i and compute the coordinate gradient;

(x)i ← Pγgi ((x)i − α∇i f (x)︸ ︷︷ ︸
coordinate gradient

),

for some step length α.

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 25 / 56

Prox-Operator Examples

Prox-operators can be executed efficiently in many cases.

Examples:

g(x) = |x |: soft thresholding operation

Pλg (z) = sgn(z) max{|z | − λ, 0}.

g(x) = 1[a,b]: projection operation

Pλg (z) = arg min
x∈[a,b]

1

2
‖x − z‖2 = mid(a, b, z).

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 26 / 56

Local View of AsySPCD

Steplength depends on Lmax: component Lipschitz constant (“max
diagonal of Hessian”)

‖∇f (x + tej)−∇f (x)‖∞ ≤ Lmax|t| ∀x ∈ Rn, t ∈ R, j = 1, 2, . . . , n.

All processors run a stochastic coordinate descent process concurrently
and without synchronization:

Select a coordinate i ∈ {1, 2, . . . , n} uniformly at random;

Read “x” from the shared memory and compute the i gradient
component using “x”:

di ← ∇i f (x);

Update “x” in the shared memory by the proximal operation,
performed atomically:

(x)i ← P(γ/Lmax)gi

(
(x)i −

γ

Lmax
di

)
,

for some steplength γ > 0.

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 27 / 56

Global View of AsySPCD

Aggregate the actions of the individual cores against a central clock.
Iteration j :

Choose i(j) ∈ {1, 2, · · · , n} uniformly at random;

Read components of x from shared memory needed to compute
∇i(j)f , denoting the local version of x by x̂j ;

Update compoment i(j) of x (atomically):

(xj+1)i(j) ← P(γ/Lmax)gi(j)

(
(xj)i(j) −

γ

Lmax
∇i(j)f (x̂j)

)
.

Note that x̂j may not never appear in shared memory at any point in time.
The elements of x may have been updated repeatedly during reading of x̂j ,
which means that the components of x̂j may have different “ages.”

We call this phenomenon inconsistent read.

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 28 / 56

Consistent Read vs. Inconsistent Read

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 29 / 56

Consistent vs Inconsistent

Most recent analyses of multicore coordinate descent algorithms have used
some sort of consistent-read assumption or a synchronization step, though
computational results usually are obtained without enforcing these
conditions.

A notable exception is Bertsekas and Tsitsiklis (1989), who describe
analyze an asynchronous coordinate method for fixed-point problem
x = q(x). over a separable closed convex feasible region. Linear
convergence is established if the component ages are bounded and q is a
maximum-norm contraction.

To apply this approach to our problem can define (for some α > 0)

q(x) := Pαg (x − α∇f (x)).

When applied to minimization of a convex quadratic, the contraction
condition amounts to a diagonal dominance condition on ∇2f — a
stronger condition than strong convexity, and stronger than what we
assume here.

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 30 / 56

Expressing Read-Inconsistency

The difference between x̂j and xj is expressed in terms of the “missed
updates:”

xj = x̂j +
∑

t∈K(j)

(xt+1 − xt)

where K (j) defines the iterate set of updates missed in reading x̂j .

Here we assume τ to be the upper bound of ages of all elements in K (j)
for all j :

τ ≥ j −min{t | t ∈ K (j)}.

Example: our assumptions would be satisfied with τ = 10 when

x100 = x̂100 +
∑

t∈{91,95,98,99}

(xt+1 − xt)

τ is related strongly to the number of cores / processors that can be used
in the computation. The number of updates we would expect to miss
between reading and updating x is about equal to the number of cores.

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 31 / 56

Notation

Lmax: component Lipschitz constant (“max diagonal of Hessian”)

‖∇f (x + tej)−∇f (x)‖∞ ≤ Lmax|t| ∀x ∈ Rn, t ∈ R, i ;

Lres: restricted Lipschitz constant (“max row-norm of Hessian”)

‖∇f (x + tei)−∇f (x)‖ ≤ Lres|t| ∀x ∈ Rn, t ∈ R, i ;

Λ := Lres/Lmax measures the degree of diagonal dominance. It’s 1 for
separable f , 2 for convex quadratic f with diagonally dominant
Hessian,

√
n for general quadratic.

S : the solution set of (1);

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 32 / 56

Key to Analysis

Recall iteration:

(xj+1)i(j) = P(γ/Lmax)gi(j)

(
(xj)i(j) −

γ

Lmax
∇i(j)f (x̂j)

)
.

Choose some ρ > 1 and choose γ so that

E(‖xj − xj−1‖2) ≤ ρE(‖xj+1 − xj‖2) “ρ-condition”.

Not too much change in the gradient over each iteration, so not too much
price to pay for using inexact information, in the asynchronous setting.

Want to choose γ small enough to satisfy this property but large enough
to get a better convergence rate.

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 33 / 56

Main Assumption: Optimal Strong Convexity (OSC)

Optimal strong convexity parameter l > 0

F (x)− F (PS(x)) ≥ l

2
‖x − PS(x)‖2

for all x ∈ domF .

Weaker than usual strong convexity — allows nonunique solutions, for a
start. Examples:

F (x) = f (Ax) with strongly convex f .

(Can add an indicator function for a closed convex set, or a convex
regularizer like ‖x‖pp to this.)

Squared hinge loss: F (x) =
∑

k max(aTk x − bk , 0)2;

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 34 / 56

An OSC (but not strongly convex) function:

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 35 / 56

Main Theorem: OSC yields a Linear Rate

Theorem

For any ρ > 1 + 4/
√

n, define

θ :=
ρ(τ+1)/2 − ρ1/2

ρ1/2 − 1
θ′ :=

ρ(τ+1) − ρ
ρ− 1

ψ := 1 +
τθ′

n
+

Λθ√
n
.

and choose

γ ≤ min

{
1

ψ
,

√
n(1− ρ−1)− 4

4(1 + θ)Λ

}
.

Then the “ρ-condition” is satisfied at all j , and we have

E‖xj − PS(xj)‖2 + 2γ(EF (xj)− F ∗)

≤
(

1− l

n(l + γ−1)

)j (
‖x0 − PS(x0)‖2 + 2γ(F (x0)− F ∗)

)
.

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 36 / 56

Notes on the Result

Rate depends intuitively on the various quantities involved:

Smaller γ ⇒ slower rate;

Smaller l ⇒ slower rate;

Larger Λ = Lres/Lmax implies smaller γ and thus slower rate.

Larger delay τ ⇒ slower rate.

Dependence on ρ is a but more complicated, but best to choose ρ near its
lower bound.

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 37 / 56

Special Case

Corollary

Consider the regime in which τ satisfies

4eΛ(τ + 1)2 ≤
√

n,

and define

ρ =

(
1 +

4eΛ(τ + 1)√
n

)2

.

Thus we can choose γ = 1
2 , and the rate simplifies to:

E(F (xj)−F ∗) ≤
(

1− l

n(l + 2Lmax)

)j

(Lmax‖x0−PS(x0)‖2 + F (x0)−F ∗).

If the diagonal dominance properties are good (Λ ∼ 1) we have τ ∼ n1/4.

In earlier work, with consistent read and no regularization, get τ ∼ n1/2.

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 38 / 56

General Convex (without OSC): Sublinear Rate

Theorem

Define ψ and γ as in the main theorem, have

E(F (xj)− F ∗) ≤ n(Lmaxγ
−1‖x0 − PS(x0)‖2 + 2(F (x0)− F ∗))

2(j + n)
.

Roughly ”1/j” behavior (sublinear rate)

Corollary

Assuming 4eΛ(τ + 1)2 ≤
√

n and setting ρ and γ = 1/2 as above, we have

E(F (xj)− F ∗) ≤ n(Lmax‖x0 − PS(x0)‖2 + F (x0)− F ∗)

j + n
.

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 39 / 56

Diagonalicity

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 40 / 56

Computational Experiments

Implemented on a 40-core Intel Xeon, containing 4 sockets × 10 cores.

We don’t do “sampling with replacement” as in the algorithm described
above. Rather, each thread/core is assign a subset of gradient
components, and sweeps through these in order: “sampling without
replacement.”

The order of indices is shuffled periodically - either between every pass, or
less frequently.

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 41 / 56

Unconstrained: 4-socket, 40-core Intel Xeon

min
x

‖Ax − b‖2 + 0.5‖x‖2

where A ∈ Rm×n is a Gaussian random matrix (m = 6000, n = 20000,
data size≈3GB, columns are normalized to 1). Λ ≈ 2.2. Choose γ = 1.
3-4 seconds to achieve the accuracy 10−5 on 40 cores.

5 10 15 20 25 30 35 40

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Synthetic Unconstrained QP: n = 20000 p = 10

epochs

re
s
id

u
a
l

thread= 1
thread=10
thread=20
thread=30
thread=40

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

Synthetic Unconstrained QP: n = 20000

threads

s
p
e
e
d
u
p

Ideal
AsySCD−DW
Global Locking
Syn−GD

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 42 / 56

Constrained: 4-socket, 40-core Intel Xeon

min
x≥0

(x − z)T (ATA + 0.5I)(x − z) ,

where A ∈ Rm×n is a Gaussian random matrix (m = 6000, n = 20000,
columns are normalized to 1) and z is a Gaussian random vector.
Lres/Lmax ≈ 2.2. Choose γ = 1.

2 4 6 8 10 12 14 16 18 20 22

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Synthetic Constrained QP: n = 20000 p = 10

epochs

re
s
id

u
a
l

thread= 1
thread=10
thread=20
thread=30
thread=40

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

Synthetic Constrained QP: n = 20000

threads

s
p
e
e
d
u
p

Ideal
AsySCD−DW
Global Locking

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 43 / 56

Experiments: 1-socket, 10-core Intel Xeon

min
x

1

2
‖Ax − b‖2 + λ‖x‖1,

where A ∈ Rm×n is a Gaussian random matrix (m = 12000, n = 20000,
data size≈3GB),b = A ∗ sprandn(n, 1, 20) + 0.01 ∗ randn(n, 1), and
λ = 0.2

√
m log(n). Lres/Lmax ≈ 2.2. Choose γ = 1.

20 40 60 80 100 120 140 160 180 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m = 12000 n = 20000 sparsity = 20 σ = 0.01

epochs

O
b
je

c
ti
v
e

thread= 1
thread= 2
thread= 4
thread= 8
thread=10

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

m = 12000 n = 20000 sparsity = 20 σ = 0.01

threads

s
p
e
e
d
u
p

Ideal
AsySPCD

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 44 / 56

Extreme Linear Programming

State-of-the-art solvers for large linear programs (LPs) are based on
simplex and interior-point methods. An alternative approach based on

augmented Lagrangian / proximal-point

iterative solvers for the bounded-QP subproblems (SOR, CG)

were studied in the late 1980s

O. L. Mangasarian and R. DeLeone, “Serial and Parallel Solution of
Large-Scale Linear Program by Augmented Lagrangian Successive
Overrelaxations,” 1987.

S. J. Wright, “Implementing Proximal-Point Methods for Linear
Programming,” JOTA, 1990

These showed some promise on random, highly degenerate problems, but
were terrible on the netlib test set and other problems arising in practice.

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 45 / 56

But this approach has potential appeal for:

Cases in which only crude approximate LP solutions are needed.

No matrix factorizations or multiplications are required. (Thus may
be good for special problems, at extreme scale.)

Multicore implementation is easy, when asynchronous solver is used
on the QP subproblems.

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 46 / 56

Basics of the Approach

Primal-dual pair:
min
x

cT x s.t. Ax = b, x ≥ 0

max
u

bTu s.t. ATu ≤ c.

“Proximal method of multipliers” subproblem is a bound-constrained
convex QP:

x(β) := arg min
x≥0

cT x − ūT (Ax − b) +
β

2
‖Ax − b‖2 +

1

2β
‖x − x̄‖22,

where (x̄ , ū) is an estimate of the primal-dual solution and β is a penalty
parameter.

Can solve a sequence of these, with updates to ū and x̄ , and possible
increases in β, in the familiar style of augmented Lagrangian.

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 47 / 56

A Perturbation Result

Make use of Renegar’s measures δP and δD of relative distance to primal
and dual infeasibility.

Theorem

Suppose that δP and δD are both positive, and let (x∗, u∗) be any
primal-dual solution pair. If we define C∗ := max(‖x∗ − x̄‖, ‖u∗ − ū‖),
then the unique solution x(β) of the QP subproblem satisfies

‖Ax(β)− b‖ ≤ (1/β)(1 +
√

2)C∗, ‖x(β)− x∗‖ ≤
√

6C∗.

If in addition we have

β ≥ 10C∗
‖d‖min(δP , δD)

,

then

|cT x∗ − cT x(β)| ≤ 1

β

[
25C∗

2δPδD
+ 6C 2

∗ +
√

6‖x̄‖C∗
]
.

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 48 / 56

LP Rounding Approximations

There are numerous NP-hard problems for which approximate solutions can
be found using linear programming followed by rounding. Typical process:

Construct a MIP formulation;

Relax to an LP (replace binary variables by [0, 1] intervals);

Solve the LP approximately;

Use LP solution to construct a feasible MIP solution (“rounding”).

Examples: Vertex cover, set cover, set packing, multiway cut, maximal
independent set.

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 49 / 56

Vertex Cover

Given a graph with edge set E , vertex set V , seek a subset of vertices such
that every edge touches the subset. Cost to select a vertex v is cv .

Binary programming formulation:

min
∑
v∈V

cvxv s.t. xu + xv ≥ 1 for (u, v) ∈ E ; xv ∈ {0, 1} for all v ∈ V .

Relax the binary constraint to xv ∈ [0, 1] to get an LP. Very large, but
matrix A is highly sparse and structured.

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 50 / 56

Vertex Cover (Amazon): 4-socket, 40-core Intel Xeon

10 20 30 40 50 60 70

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Amazon: n = 561050 p = 10

epochs

re
s
id

u
a
l

thread= 1

thread=10

thread=20

thread=30

thread=40

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

Amazon: n = 561050

threads

s
p
e
e
d
u
p

Ideal
AsySCD−DW
Global Locking

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 51 / 56

Vertex Cover (DBLP): 4-socket, 40-core Intel Xeon

5 10 15 20 25 30 35 40

10
−3

10
−2

10
−1

10
0

10
1

10
2

DBLP: n = 520891 p = 10

epochs

re
s
id

u
a
l

thread= 1

thread=10

thread=20

thread=30

thread=40

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

DBLP: n = 520891

threads

s
p
e
e
d
u
p

Ideal
AsySCD−DW
Global Locking

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 52 / 56

Running Time

Problem 1 core 40 cores

QP 98.4 3.03
QPc 59.7 1.82
Amazon 17.1 1.25
DBLP 11.5 .91

Table: Runtimes (s) for the four test problems on 1 and 40 cores.

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 53 / 56

Sample Results

instance vertex cover multiway cuts

n size(A) n size(A)

frb59-26-1 126K 616K 1.3M 3.6M
Amazon 203K 956K 6.8M 21.3 M
DBLP 146K 770K 10.7M 33.7M
Google+ 82K 1.5M 7.6M 24.1M

Table: Problem Sizes

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 54 / 56

Computation Times (Seconds)

Run on 32 cores Intel machine for max of one hour. Compared with Cplex
IP and LP solvers. Times shown for reaching solutions of similar quality.

instance Cplex IP Cplex LP Us

frb59-26-1 VC - 5.1 0.65
Amazon VC 44 22 4.7
DBLP VC 23 21 3.2

Google+ VC - 62 6.2
frb59-26-1 MC 54 360 29
Amazon MC - - 131
DBLP MC - - 158

Google+ MC - - 570

(Cplex IP sometimes faster than LP because the IP preprocessing can
drastically simplify the problem, for some data sets.)

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 55 / 56

Conclusions

Old methods are interesting again, because of modern computers and
modern applications (particularly in machine learning).

We can analyze asynchronous parallel algorithms, with a computing
model that approximates reality pretty well. (There are other models.)

FIN

Liu, Wright (UW-Madison) Asynchronous Stochastic Optimization February 2014 56 / 56

	Motivation
	Asynchronous Random Kaczmarz
	Asynchronous Parallel Stochastic Proximal Coordinate Descent Algorithm with Inconsistent Read (AsySPCD)
	Application: Extreme Linear Programming

