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Minimizing finite average of convex functions

problem

minimize F (x)
def
=

1

n

n
∑

i=1

fi(x)

stochastic gradient method:

xk+1 = xk − ηk∇fik(xk)
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Minimizing finite average of convex functions

problem

minimize F (x)
def
=

1

n

n
∑

i=1

fi(x)

stochastic gradient method:

xk+1 = xk − ηk∇fik(xk)

two perspectives:

• stochastic optimization: a special case of minimizing Eξf(x, ξ)

• deterministic optimization: a randomized incremental gradient
method for a structured convex problem
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Mind the problem structure

stochastic optimization perspective:

• a general method used to solve a special case

• complexity theory: O( 1
ǫ2
) or O(1

ǫ
) with strong convexity

• recent improvements by Bach & Moulines
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Mind the problem structure

stochastic optimization perspective:

• a general method used to solve a special case

• complexity theory: O( 1
ǫ2
) or O(1

ǫ
) with strong convexity

• recent improvements by Bach & Moulines

deterministic optimization perspective:

• a special method for solving a structured problem

• sanity test: should at least beat full gradient methods:

complexity O(nL
µ
log 1

ǫ
) or O(n

√

L
µ
log 1

ǫ
)

• recent progresses: SAG and SVRG
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Stochastic average gradient (SAG)

• SAG method (Le Roux, Schmidt, Bach 2012)

xk+1 = xk −
αk

n

n
∑

i=1

g
(i)
k

where

g
(i)
k =

{

∇fi(xk) if i = ik

g
(i)
k−1 otherwise

• a randomized variant of incremental aggregated gradient (IAG)
of Blatt, Hero, & Gauchman (2007)

• complexity (gradient evaluations): O(max{n, L
µ
} log 1

ǫ
)

• need to store most recent gradient of each component, but can
be avoided for some structured problems
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Stochastic variance reduced gradient (SVRG)

• SVRG (Johnson & Zhang 2013, Mahdavi, Zhang & Jin 2013)

– update form

xk+1 = xk − η(∇fik(xk)−∇fik(x̃) +∇F (x̃))

– update x̃ periodically (every few passes)

• still a stochastic gradient method

E[∇fik(xk)−∇fik(x̃) +∇F (x̃)]

= ∇F (xk)−∇F (x̃) +∇F (x̃)

= ∇F (xk)

– expected update direction is the same as Efik(xk)
– variance can be diminishing if x̃ updated periodically

• complexity: O
(

(n+ L
µ
) log 1

ǫ

)

, cf. SAG: O(max{n, L
µ
} log 1

ǫ
)
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Stochastic variance reduced gradient (SVRG)

• computational cost per iteration:

– unlike SAG, no need to store gradients for each components

– need to compute two gradients at each iteration, and also
full gradient periodically (no more than three per epoch)

– for many structured problems, two gradients at each iteration
can be reduced to only one
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Stochastic variance reduced gradient (SVRG)

• computational cost per iteration:

– unlike SAG, no need to store gradients for each components

– need to compute two gradients at each iteration, and also
full gradient periodically (no more than three per epoch)

– for many structured problems, two gradients at each iteration
can be reduced to only one

• intuition of variance reduction

x̃ xk

∇fik (x̃) ∇fik (xk)

∇F (x̃)−∇fik (x̃)
∇F (x̃)−∇fik (x̃)

∇F (x̃)

∇F (xk)
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SAG vs SVRG

• SAG: more like a full gradient method?

xk+1 = xk−
η

n

n
∑

i=1

g
(i)
k , where g

(i)
k =

{

∇fi(xk) if i = ik

g
(i)
k−1 otherwise

each new stochastic gradient is weighted by η/n, but re-used in
many iterations

• SVRG: more like a stochastic gradient method?

xk+1 = xk − η(∇fik(xk)−∇fik(x̃) +∇F (x̃))

each new stochastic gradient is weighted by η, but only used
once and then discarded
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Contributions of this talk

• extend SVRG to minimization of composite objective functions

min
x∈Rd

P (x)
def
= F (x) +R(x), where F (x) =

1

n

n
∑

i=1

fi(x)

– each fi(x) is convex and smooth
– P (x) strongly convex
– R(x) convex and possibly nondifferentiable

• prove same complexity O
(

(n+ L
µ
) log 1

ǫ

)

• weighted sampling strategy to achieve O
(

(n+
Lavg

µ
) log 1

ǫ

)
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Problem statement and assumptions

min
x∈Rd

P (x)
def
= F (x) +R(x), where F (x) =

1

n

n
∑

i=1

fi(x)
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Problem statement and assumptions

min
x∈Rd

P (x)
def
= F (x) +R(x), where F (x) =

1

n

n
∑

i=1

fi(x)

assumptions:

• each fi(x) and R(x) are convex; fi(x) differentiable on dom(R)

• each fi(x) is smooth with Lipschitz constant L

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖

(which implies that ∇F (x) also has Lipschitz constant L)

• P (x) strongly convex: for all x ∈ dom(R) and y ∈ R
d,

P (y) ≥ P (x) + ξT (y − x) +
µ

2
‖y − x‖2, ∀ ξ ∈ ∂P (x)
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Proximal stochastic gradient (Prox-SG) method

• Prox-SG: for k = 1, 2, . . ., draw ik randomly from {1, . . . , n},

xk = argmin
x∈Rd

{

∇fik(xk−1)
Tx+

1

2η
‖x− xk−1‖

2 +R(x)

}

• with definition of proximal mapping

proxR(y) = argmin
x∈Rd

{

1

2
‖x− y‖2 +R(x)

}

Prox-SG can be written as

xk = proxηR
(

xk−1 − η∇fik(xk−1)
)

• complexity O( 1
µǫ
) (Duchi & Singer 2009, Langford et al. 2009)
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Prox-SVRG

• proceed in stages:

– update x̃ at beginning of each stage (every few passes)
– each iteration takes the form

xk = proxηR(xk−1 − ηvk)

where
vk = ∇fik(xk−1)−∇fik(x̃) +∇F (x̃)

• still a Prox-SG method, since

Evk = ∇F (xk−1)−∇F (x̃) +∇F (x̃) = ∇F (xk−1)

but with correction from gradients computed at x̃
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Prox-SVRG

input: x̃0, η, m
iterate: for s = 1, 2, . . .

x̃ = x̃s−1

ṽ = ∇F (x̃)

x0 = x̃

iterate: for k = 1, 2, . . . ,m

pick ik ∈ {1, . . . , n} uniformly at random

vk = ∇fik(xk−1)−∇fik(x̃) + ṽ

xk = proxηR(xk−1 − ηvk)

end

set x̃s =
1
m

∑m
k=1 xk

end
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Convergence analysis of Prox-SVRG

• theorem: suppose 0 < η ≤ 1/4L and m sufficiently large so
that

ρ =
1

µη(1− 4Lη)m
+

4Lη(m+ 1)

(1− 4Lη)m
< 1

then we have geometric convergence in expectation:

EP (x̃s)− P (x⋆) ≤ ρs[P (x̃0)− P (x⋆)]

• more concretely, if η = θ/L, then

ρ ≈
L/µ

θ(1− 4θ)m
+

4θ

1− 4θ

choosing θ = 0.1 and m = 100(L/µ) results in ρ = 5/6

• overall complexity: O
((

L
µ
+ n

)

log
(

1
ǫ

)

)
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Proof ideas

• define stochastic gradient mapping

gk =
1

η
(xk−1 − xk) =

1

η

(

xk−1 − proxηR(xk−1 − ηvk)
)

so that xk = xk−1 − ηgk

• similar as in classical analysis of stochastic gradient methods

‖xk − x⋆‖
2 = ‖xk−1 − ηgk − x⋆‖

2

= ‖xk−1 − x⋆‖
2 − 2ηgTk (xk−1 − x⋆) + η2‖gk‖

2

...

E‖xk − x⋆‖
2 ≤ ‖xk−1 − x⋆‖

2 − 2η (EP (xk)−P (x⋆)) + 2η2‖∆k‖
2

where ∆k = vk −∇F (xk−1)
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Assumptions for weighted sampling

min
x∈Rd

P (x)
def
= F (x) +R(x), where F (x) =

1

n

n
∑

i=1

fi(x)

assumptions: fi and R are convex, and

• each fi(x) is smooth with Lipschitz constant Li

‖∇fi(x)−∇fi(y)‖ ≤ Li‖x− y‖

• the average F (x) has Lipschitz constant L (≤ 1
n

∑n
i=1 Li)

‖∇F (x)−∇F (y)‖ ≤ L‖x− y‖

• P (x) strongly convex: for all x ∈ dom(R) and y ∈ R
d,

P (y) ≥ P (x) + ξT (y − x) +
µ

2
‖y − x‖2, ∀ ξ ∈ ∂P (x)
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Prox-SVRG

input: x̃0, η, m
iterate: for s = 1, 2, . . .

x̃ = x̃s−1

ṽ = ∇F (x̃)

x0 = x̃

probability Q = {q1, . . . , qn} on {1, . . . , n}

iterate: for k = 1, 2, . . . ,m

pick ik ∈ {1, . . . , n} randomly according to Q

vk = (∇fik(xk−1)−∇fik(x̃))/(qikn) + ṽ

xk = proxηR(xk−1 − ηvk)

end

set x̃s =
1
m

∑m
k=1 xk

end
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Convergence analysis

• theorem: let LQ = maxi{Li/(qin)}, suppose 0 < η ≤ 1/4LQ

and m sufficiently large so that

ρ =
1

µη(1− 4LQη)m
+

4LQη(m+ 1)

(1− 4LQη)m
< 1

then we have geometric convergence in expectation:

EP (x̃s)− P (x⋆) ≤ ρs[P (x̃0)− P (x⋆)]

• we always have L ≤ LQ and smallest possible LQ is

LQ =
1

n

n
∑

i=1

Li, when qi =
Li

∑n
j=1 Lj

• overall complexity: O
((

LQ

µ
+ n

)

log
(

1
ǫ

)

)
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Numerical experiments

• data (a1, b1), . . . , (an, bn) with ai ∈ R
d and bi ∈ {+1,−1}

• regularized logistic regression

minimize
x∈Rd

1

n

n
∑

i=1

log
(

1 + exp(−bia
T
i x)

)

+ λ2‖x‖
2
2 + λ1‖x‖1

• data set: RCV1 binary training (LIBSVM website)

– n = 20, 242
– d = 47, 236
– sparsity: 0.16%
– λ2 = 0.0001
– λ1 = 0.00001
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Comparison with Prox-SG: objective value
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Comparison with Prox-SG: sparsity
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Comparison with RDA: objective value

m = 2
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Comparison with RDA: sparsity

m = 2
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Comparison with Prox-SAG: objective value

m = 2
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Comparison with Prox-SAG: sparsity

m = 2
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Different variance reduction periods

λ2 = 0.0001
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Different variance reduction periods

λ2 = 0.00001
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Different variance reduction periods

λ2 = 0.000001
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Comparison of different methods: objective value

λ2 = 0.0001 m = 2
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Comparison of different methods: sparsity

λ2 = 0.0001 m = 2
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Summary: Prox-SVRG

• exploit finite average structure to obtain faster convergence rate

• extended SVRG to proximal setting, established same complexity

• developed weighted sampling scheme for Prox-SVRG

• preliminary numerical experiments comparable with (Prox-) SAG
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Summary: Prox-SVRG

• exploit finite average structure to obtain faster convergence rate

• extended SVRG to proximal setting, established same complexity

• developed weighted sampling scheme for Prox-SVRG

• preliminary numerical experiments comparable with (Prox-) SAG
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