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Minimizing finite average of convex functions

problem
det 1 “
minimize F(z) = . Zfl(x)
=1
stochastic gradient method:

Tpy1 = 2k — MV fi, (T)

two perspectives:
e stochastic optimization: a special case of minimizing E¢ f(x, )

e deterministic optimization: a randomized incremental gradient
method for a structured convex problem



Mind the problem structure

stochastic optimization perspective:
e a general method used to solve a special case
e complexity theory: 0(6%) or O(1) with strong convexity

e recent improvements by Bach & Moulines



Mind the problem structure

stochastic optimization perspective:
e a general method used to solve a special case
e complexity theory: 0(6%) or O(1) with strong convexity

e recent improvements by Bach & Moulines

deterministic optimization perspective:

e a special method for solving a structured problem

e sanity test: should at least beat full gradient methods:
complexity O(n% log %) or O(n\/%log %)

e recent progresses: SAG and SVRG



Stochastic average gradient (SAG)

¢ SAG method (Le Roux, Schmidt, Bach 2012)

n
k+1 = Tk — E L
n
i=1

where

91(21 otherwise

0 {Vfi(ack) if § = iy,
9, = i

e a randomized variant of incremental aggregated gradient (1AG)
of Blatt, Hero, & Gauchman (2007)

o complexity (gradient evaluations): O(max{n, %}log 1)

e need to store most recent gradient of each component, but can
be avoided for some structured problems



Stochastic variance reduced gradient (SVRG)

e SVRG (Johnson & Zhang 2013, Mahdavi, Zhang & Jin 2013)
— update form

1 = 2k — 0V fi (2) — Vi, (T) + VF(T))
— update Z periodically (every few passes)
e still a stochastic gradient method
BV fi, (zx) — Vi, () + VF(F)]
= VF(xy)— VF(z)+ VF(Z)
= VEF(z)

— expected update direction is the same as Ef;, (z)
— variance can be diminishing if £ updated periodically

e complexity: O ((n + %) log %) cf. SAG: O(max{n, %}log 1)



Stochastic variance reduced gradient (SVRG)

e computational cost per iteration:
— unlike SAG, no need to store gradients for each components

— need to compute two gradients at each iteration, and also
full gradient periodically (no more than three per epoch)

— for many structured problems, two gradients at each iteration
can be reduced to only one



Stochastic variance reduced gradient (SVRG)

e computational cost per iteration:
— unlike SAG, no need to store gradients for each components

— need to compute two gradients at each iteration, and also
full gradient periodically (no more than three per epoch)

— for many structured problems, two gradients at each iteration
can be reduced to only one
e intuition of variance reduction
V fi, (%) V fip, (x1)

T
VF &)=V f;, (%) VF(Z)-V f;, (%)

2

VF(3)

VE(z)



SAG vs SVRG

e SAG: more like a full gradient method?

o INS i _ ) Viiler) =i
Tht1 = T ”;gk’ where gy {91(;)1 otherwise

each new stochastic gradient is weighted by 7/n, but re-used in
many iterations

e SVRG: more like a stochastic gradient method?
1 = ok — N(V fi, (zr) — Vi, (T) + VF(2))

each new stochastic gradient is weighted by 7, but only used
once and then discarded



Contributions of this talk

e extend SVRG to minimization of composite objective functions

31312]'11@ P(x) def F(z)+ R(z), where F(z)= %Z fi(z)
i=1

— each f;(z) is convex and smooth
— P(z) strongly convex
— R(z) convex and possibly nondifferentiable

e prove same complexity O ((n + %) log %)

e weighted sampling strategy to achieve O ((n + %) log %)
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Problem statement and assumptions

. c RS
min P(z) ® F(z) + R(z), where F(z)= - z; fi(z)

assumptions:
e each fi(z) and R(z) are convex; f;(x) differentiable on dom(R)

e each f;(z) is smooth with Lipschitz constant L

IVfi(z) = Vfi(y)ll < Lllz - yll

(which implies that VF(x) also has Lipschitz constant L)
e P(x) strongly convex: for all x € dom(R) and y € R?,

P(y) = P() +€"(y - 2) + Glly —al’, V¢ € oP(@)



Proximal stochastic gradient (Prox-SG) method
e Prox-SG: for k =1,2,..., draw i; randomly from {1,...,n},

xk—argmln{szk(:vk 1) x—i-fo—:rk 1H2+R( )}

rER4

e with definition of proximal mapping

proxa(y) = argmin { o — y|? + Rl
xERA

Prox-SG can be written as
z), = prox, g (zx—1 — nV fi, (xk-1))

e complexity O(ﬁ) (Duchi & Singer 2009, Langford et al. 2009)



Prox-SVRG

e proceed in stages:

— update Z at beginning of each stage (every few passes)
— each iteration takes the form

Ty = prox,p(Tk—1 — k)

where
v = Vi (xr_1) — Vi, (Z) + VF(Z)

e still a Prox-SG method, since
]Evk = VF(:L’k_l) - VF(@) + VF(:Z‘) = VF(J:‘k_l)

but with correction from gradients computed at &

10



Prox-SVRG

input: zg, , m
iterate: fors =1,2,...

T=1Ts
v =VF(Z)
To =2
iterate: for k =1,2,...,m
pick ix, € {1,...,n} uniformly at random

vk =V fip (¥k-1) = Vi, (T) + 0
Ty = prox, p(Tk—1 — M)

end

set Ty = = > 0" ap,

end

11



Convergence analysis of Prox-SVRG

e theorem: suppose 0 < n < 1/4L and m sufficiently large so

that
1 4Ln(m +1)

~ (1= 4Lyym " (1 - ALp)m

then we have geometric convergence in expectation:

P <1

EP(is) — P(zy) < p°[P(Z0) — P(2)]

e more concretely, if n = 0/L, then

L/u 40
PR g0~ 40)m " 1— 40

choosing = 0.1 and m = 100(L/p) results in p =5/6
e overall complexity: O ((% + n) log (%))



Proof ideas

e define stochastic gradient mapping

1 1
Ik = E(SUk—l —xp) = n (zk-1 — prox, p(ze—1 — nop))

so that zp, = 211 — NGk
e similar as in classical analysis of stochastic gradient methods
2 2
ok — 2l = l@e—1 — ngr — 2]

= |opo1 — 2| — 27791{(%4 — z,) + 1% gk |?

Ellzx — 2.

IN

where A = v — VF(z_1)

[2r—1 — z]|* = 20 (BEP(zg) — P(24)) + 207 || A ?
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Assumptions for weighted sampling

irel%}i P(z) def F(z)+ R(z), where F(z)= ilz:;fz(m)

assumptions: f; and R are convex, and
e each f;(z) is smooth with Lipschitz constant L;

IVfi(x) = Vfi(y)l| < Lillz =y

e the average F'(z) has Lipschitz constant L (< 1 3" | L;)
IVE(z) = VE(y)|l < Lijz -y

o P(r) strongly convex: for all # € dom(R) and y € R?,

Py) 2 P(e) + € (y — @) + Slly —al’, V€€ 0P()
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Prox-SVRG

input: zg, , m
iterate: for s =1,2,...

T=1Ts

v =VF(Z)

To =2

probability @ = {q1,...,q,} on {1,...,n}
iterate: fork =1,2,...,m

pick i, € {1,...,n} randomly according to @
vp = (Vfir(xk-1) = Vi, (2))/(g3,n) + 0
Tk = prox, p(Tk—1 — Nk)

end

set Ty = LS @y

end
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Convergence analysis

theorem: let Ly = max;{L;/(¢;n)}, suppose 0 < n < 1/4Lg
and m sufficiently large so that

1 4Lgn(m + 1)
pn(l —4Lonm)m (1 —4Lgn)m

then we have geometric convergence in expectation:

p:

EP (i) — P(x.) < p°[P(Zo) — P(x.)]

we always have L < Lg and smallest possible L is
L;

L;, when ¢ =——

Z ' ' Z] 1 LJ

overall complexity: O ((LTQ + n) log (%))

16



Numerical experiments

data ((Ll,bl), RN (an,bn) with a; € R% and b; € {+1, —1}

regularized logistic regression

1 n
mineil]{&ize - Z log (1 + exp(—bsal x)) + Ao|lz|3 + M|z
* i=1

data set: RCV1 binary training (LIBSVM website)
n = 20,242

d = 47,236

sparsity: 0.16%

A2 = 0.0001

= A1 = 0.00001
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Comparison with Prox-SG: objective value
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Comparison with Prox-SG: sparsity
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Comparison with RDA: objective value
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number of non-zeros in w,

Comparison with RDA: sparsity
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Comparison with Prox-SAG: objective
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Comparison with Prox-SAG: sparsity
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optimality gap: P(w,)—P*

Different variance reduction periods
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Different variance reduction periods
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optimality gap: P(w,)—P*

Different variance reduction periods
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Comparison of different methods: objective value

optimality gap: P(w,)—P*
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Comparison of different methods: sparsity
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Summary: Prox-SVRG

exploit finite average structure to obtain faster convergence rate
extended SVRG to proximal setting, established same complexity
developed weighted sampling scheme for Prox-SVRG

preliminary numerical experiments comparable with (Prox-) SAG
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Summary: Prox-SVRG

exploit finite average structure to obtain faster convergence rate
extended SVRG to proximal setting, established same complexity
developed weighted sampling scheme for Prox-SVRG

preliminary numerical experiments comparable with (Prox-) SAG

V fiy, (%) V fiy, (zk)

&
8
e

VE(Z)-Vfi, (%) VF(

8

)=V fi,, (T)
VE(Z)

VF(zy)
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