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notation

e data: i.i.d observations from the ground truth distribution P
21y 2y ey By e ~d p
e learning machine: specified by a finite dimensional parameter
fc®©CR™
e loss function: penalty of a machine 6 for a given datum 2z
[(z;6) (a smooth function with respect to 6)
for example:

[(z;0) = —logp(z : 0) negative log loss
1(2;0) = |y — f(2;0)]>  squared loss for z = (z,7)
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expected losses

e population loss: not accessible
L(0) = Ez~p[l(Z;0)]
0, = arg mein L(6) (optimal parameter)

e empirical loss: accessible

£4(0) :% S Uei0), Dy ={zsi=1,...,t}

2; €Dy

e L is justified by the law of large numbers

L) = - > tet 2 10) = Egep 1(2:0)]
zi€Dy
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batch and on-line learning

e batch learning: minimize the empirical loss
0, = arg m@in jlt(Q),

e on-line learning: update sequentially with a datum sampled
at each time (or resampled from pooled data)

O = 0r—1 — PV 1(24560:-1),

where V denotes the gradient with respect to 6, and @ is a
matrix which controls the rate of convergence.
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asymptotic normality

Lemma (Godambe, 1991)

The distribution of 0, converges to the normal distribution
A 1
Or ~ N (9*, ZV*) , Vi=H'GH™!

under some regularity condition, where

G=Ez.p [VI(Z;0.)VI(Z;0.)T],
H=Ez.p[VVI(Z;6,)],

and 0, is the optimal parameter of the population loss:

0, = arg m@in L(6).
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generalization error

Theorem

The expectation of the population loss is asymptotically given by
A 1 1 1
E [L(et)} = L(0:) + 5 TGH " +o( 5 ),

where the expectation is taken with respect to Dy.
The variance is asymptotically given by

TTGH 'GH '+ o0 (%2) .
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training error

Theorem

The expectation of the empirical loss is asymptotically given by
A A 1 1 1
E [Lt(et)] = L(8:) - 5 TGH " +o( 5 ),

where the expectation is taken with respect to Dy.
The variance is asymptotically given by

V(L) = Ve (0 + 0 (7).
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generalized AIC

Corollary (Akaike, 1974)

The generalization error is estimated from the training error by
correcting the bias as

sy oaoa 1
L(6;) = Ly(6;) + - TrGH™ .

In the case of the maximum likelihood estimation, if the ground
truth is realized by 0.,

L(B) = Lu(6) + % (m: dim. of §),

because H = @G.
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recursive relation of consecutive estimates

Lemma (Bottou & Le Cun, 2005)
Let 6,y and 0; be estimates for D;_; and Dy = Dy_1 U {zt}. Then

1 j !
O =01 — ;Ht_IVl(Zt? bi-1) + Op (t_Q)

holds under some mild condition, where H; is the empirical
Hessian defined by

2 1 A
Hy =~ > VVI(zi360,-1).

2 €Dy
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optimal on-line learning

e optimal design: Newton-Raphson + 1/t-annealing
1.
Oy = T H, Y
e on-line estimate of Hessian: (MLE case; Bottou, 1998)

D VIVITD,
1+ Vit Vi
where VI = Vi(z11;6;)

Py =P —

stochastic-BFGS (Nocedal, Wednesday talk), etc.

e rate of convergence: equivalent with batch learning
(NM, 1998; NM & Amari, 1999; Bottou & Le Cun, 2005)

11/33



recursive relation of smooth functions

Lemma (Amari, 1967)

B+ [f(0y41)] = E% [f(6:)] — B [V £(6:)" &, VL(6;)]
+ %Tr E% [6,G(8)BTVV(6,)] + O(|&.])

holds for any smooth function f(0), where EY denotes the
expectation with respect to 0, and G(0) is defined by

G(0) =Ez-p [VU(Z;0)VI(Z;6)"] .
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linear operators for covariance analysis

Let A be an m x m square matrix and M be an m X m symmetric
matrix. We define two linear operators as follows:

EaM = AM + (AM)T,
QaM = AMA™T.
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recursive relations of parameter statistics

Lemma

Around the optimal parameter, the following approximated
recursive relations for the expectation 0; = E% [0;] and the
covariance V; = V% [0,] hold:

Orr1 =0, — Qu(0; — 0,),
Vi1 = Vi — B, Vi + Qo Vi — QQt(gt - 9*)(515 - 0*)T>

where

Qi=9:H, V.=H 'GH™,

EaM = AM + (AM)T,
QaM = AMA™.
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convergence rate of 1/t-annealing

Theorem

Let @ be C/t, where C is a constant matrix. If \pin(CH) > 1, the
leading terms are given by

t
_ CH 1

T
T=2

- _ 1
Vi= [(:CH -n! QCH} ne
where 0 is an initial parameter, and

V.=H 'GH.
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eigenvalues of operators

Let \;, i =1,...,m be eigenvalues of A. The eigenvalues of = 4
and Q4 are given by

EA:)\i“‘)\j, ,j=1,...,m,
QA:)\Z')\]', i,jzl,...,m.

This follows by the relation

vec(ABC) = (CT ® A)vec B

for any m x m square matrices A, B, C. O
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optimal design of &, = C'/t

larger Amin is advantageous to faster convergence of 6;.

(Ecu — I)"'Qcy expands V. /t, which is the minimum
covariance attained by batch learning.

eigenvalues of (Ecy — I)~'Qcpy are given by
i)
i + )\j -1’
where \;'s are eigenvalues of CH.

if C = H™1, all the eigenvalues of (Z; — I)~1€); are equal to
1,ie V; = Vi/t.
&, = H~ !/t is optimal.
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equivalence to batch learning

e on-line learning:
E[(0: — 0.)(0: — 0.)"] = V0] + E[0; — 0] E[6; — 6,]"
1 1
e batch learning:

E [0~ 00— 0.)"] = Vit 0 (;2) .
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rating systems

a method for evaluating the relative skill levels of players
e Elo rating: Arpad Elo, 1960
used in competitor-versus-competitor games such as chess
scores given to players are updated according to game results

e Glicko rating: Mark Glickman, 1997
including confidence of estimated skill levels

e TrueSkill: Ralf Herbrich et al., 2007
extension to multiplayer games
skill levels are random variables (Bayesian framework)
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model of Elo rating

score: 0 = (01,6%,...)
event: z; = (a > b) (player a beats player b at time t)
probability model:

1
Tt en(y- @ —6)°

Pr(a > b) = P(z;0)

where v is defined such that a player whose rating is 200
points greater than the other is expected to have a 75%
chance of winning.

loss function:

U(21;0) = ~log P(2;0) = log(1 + exp(y - (6" — 6)))
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update rule of Elo rating

e gradient:
9 0, i#a,b
20 l(z;0) = ¢ —v- (1 — P(2;0)), i=a (winner)

+v- (1= P(2;0)), i="b (looser)
e update rule:

9t+1 = 9,5 - 8Vl(zt;9)
=0; +(0,...,e9(1=P),...,—ey(1 = P),...,0)"

—
b

a

where k = ey = 32 for novices, 16 for professionals.
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estimate

1200 1400 1600 1800 2000

1000

fixed learning rate (k = 32)

10000

time

fixed rate
@t =el
e 10 players
out of 100

e 20000 games

(400 [game/pl.])
o k=32,16,64
o 0% = 1500
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estimate

1200 1400 1600 1800 2000

1000

fixed learning rate (k = 16)

S Sk L SRR
Al"'\vw—r,n’-q ————————————————————————————————————————————

R

TN Aty

fixed rate
@t =el
e 10 players
out of 100

e 20000 games
(400 [game/pl.])
k= 32,16,64

o 05 =1500
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estimate

1200 1400 1600 1800 2000

1000

fixed learning rate (k = 64)

10000

time

fixed rate
@t =el
e 10 players
out of 100

e 20000 games

(400 [game/pl.])
o k=32,16,64
o 0% = 1500
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optimal update rule

e update rule: (@: matrix)

9t+1 = Qt — @tVl(Zt; Qt),
VI, VI b,
1+ VIiIe Vi,
Vlt = Vl(zt+1; 915)
=(0,....7(1=P),...,—y(1=P),...,0)T
\T_/ \_\b/—/

Ppy1 =D —

e initial value:

@y = kI I is the identity matrix
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estimate

1200 1400 1600 1800 2000

1000

optimal learning rate

10000

time

15000

20000

optimal rate
e 10 players
out of 100
e 20000 games
(400 [game/pl.])

e sensitive to
initial k1
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problem of semi-optimal update

e original update rule: A0 = —cVi(z;0)
e only related players are updated: A" =0, i # a,b.
e sum of 6 is kept constant: 1TA0 = 0.

e optimal update rule: A0 = —&;Vi(z;0)

o all the players are updated, because ¢, = ﬁt_l/t is a dense
matrix.
e sum of @ is not necessarily kept constant.

e our problem: design ®; to fit the original restriction.
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description of restrictions

e 1 vs 1 case: (players a and b)

A)=aa, a*= (1 -1 0 ---),

or

O = O 0O
— o O Q.

BTA# =0, BT =

o O~ Q
O O = o
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description of restrictions

e 2 vs 2 case: (players a+b and c+d)

a b ¢ d e
10 -1 0 0

Ad=Aa, AT= 1 0 0 -1 0 ,
01 -1 0 0

or
a b c d e f
1 1110 0
0000 1 0

T Ap T _

BTA9=0, B"= 14 9 0 0 0 1
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problem formulation

Problem A
Find an "optimal” gradient A0 = ®#VI(z;0) subject to

AfeImA, (Af=Aa, o cRF)

for a matrix A € Rmxk,

Problem B
Find an “optimal” gradient Af = &VI(z;0) subject to

A € Ker BT, (BTA6=0)

for a matrix B € Rmx(m—Fk)

cf. f(6) = const. = Vf(§)TA0 =0
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assumptions

e optimality is defined in terms of
minimize | H VI — A0| as,

where [|z|3, = (z,2)n and (z,y)p = (Mx,y).
e M is chosen as H, because
e quadratic approximation of population loss:

10— 6.1% = (6 — 0. H(6 - 6.) = L(6) - L(6.)

e Mahalanobis distance in maximum likelihood case:

Vi) = LH G = g
t t
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solutions

e decompose @, into scalar and matrix parts as
O =¢eC, (e.g., er=1/t)

e solutions for the problems are:

Ca=A(ATHA)1AT

Cp=H'-H'BB"H'B)"'BTH™!
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estimate

1200 1400 1600 1800 2000

1000

sub-optimal learning rate

10000

time

sub-optimal rate

e 10 players
out of 100

e 20000 games
(400 [game/pl.])
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notes on solutions

C4 and Cp are symmetric (only when M = H).
CaH or CgH is a projection matrix:

_J1, velmAor KerB,
B 0, otherwise.

if k is small, calculation of C4 is more efficient than that of
Cp

only a few parameters are updated, however convergence is as
good as optimal case

(information loss is quite small in some case)
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concluding remarks

e we have investigated:

e dynamics of convergence phase of on-line learning,
e conditions for optimal convergence rate,
e optimal projection of gradients to subspaces,

e practical applications would be:

o skill level rating systems,
e on-line learning for Bradley-Terry model,
e distributed control systems.
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