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notation

• data: i.i.d observations from the ground truth distribution P

z1, z2, . . . , zt, . . . ∼i.i.d. P

• learning machine: specified by a finite dimensional parameter

θ ∈ Θ ⊂ Rm

• loss function: penalty of a machine θ for a given datum z

l(z; θ) (a smooth function with respect to θ)

for example:

l(z; θ) = − log p(z : θ) negative log loss

l(z; θ) = |y − f(x; θ)|2 squared loss for z = (x, y)
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expected losses

• population loss: not accessible

L(θ) = EZ∼P [l(Z; θ)]

θ∗ = argmin
θ

L(θ) (optimal parameter)

• empirical loss: accessible

L̂t(θ) =
1

t

∑
zi∈Dt

l(zi; θ), Dt = {zi; i = 1, . . . , t}

• L̂ is justified by the law of large numbers

L̂t(θ) =
1

t

∑
zi∈Dt

l(zi; θ)
t→∞−−−→ L(θ) = EZ∼P [l(Z; θ)]
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batch and on-line learning

• batch learning: minimize the empirical loss

θ̂t = argmin
θ

L̂t(θ),

• on-line learning: update sequentially with a datum sampled
at each time (or resampled from pooled data)

θt = θt−1 − Φt∇l(zt; θt−1),

where ∇ denotes the gradient with respect to θ, and Φ is a
matrix which controls the rate of convergence.
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asymptotic normality

Lemma (Godambe, 1991)

The distribution of θ̂t converges to the normal distribution

θ̂t ∼ N
(
θ∗,

1

t
V∗

)
, V∗ = H−1GH−1

under some regularity condition, where

G = EZ∼P

[
∇l(Z; θ∗)∇l(Z; θ∗)

T
]
,

H = EZ∼P [∇∇l(Z; θ∗)] ,

and θ∗ is the optimal parameter of the population loss:

θ∗ = argmin
θ

L(θ).

6 / 33



setting batch prop. optimal on-line Elo remarks

generalization error

Theorem

The expectation of the population loss is asymptotically given by

E
[
L(θ̂t)

]
= L(θ∗) +

1

2t
TrGH−1 + o

(
1

t

)
,

where the expectation is taken with respect to Dt.
The variance is asymptotically given by

V
[
L(θ̂t)

]
=

1

2t2
TrGH−1GH−1 + o

(
1

t2

)
.
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training error

Theorem

The expectation of the empirical loss is asymptotically given by

E
[
L̂t(θ̂t)

]
= L(θ∗)−

1

2t
TrGH−1 + o

(
1

t

)
,

where the expectation is taken with respect to Dt.
The variance is asymptotically given by

V
[
L̂t(θ̂t)

]
=

1

t
VZ∼P [l(Z; θ∗)] + o

(
1

t

)
.
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generalized AIC

Corollary (Akaike, 1974)

The generalization error is estimated from the training error by
correcting the bias as

L(θ̂t) = L̂t(θ̂t) +
1

t
TrGH−1.

In the case of the maximum likelihood estimation, if the ground
truth is realized by θ∗,

L(θ̂t) = L̂t(θ̂t) +
m

t
(m : dim. of θ),

because H = G.
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recursive relation of consecutive estimates

Lemma (Bottou & Le Cun, 2005)

Let θ̂t−1 and θ̂t be estimates for Dt−1 and Dt = Dt−1∪{zt}. Then

θ̂t = θ̂t−1 −
1

t
Ĥ−1

t ∇l(zt; θ̂t−1) +Op

(
1

t2

)
holds under some mild condition, where Ĥt is the empirical
Hessian defined by

Ĥt =
1

t

∑
zi∈Dt

∇∇l(zi; θ̂t−1).
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optimal on-line learning

• optimal design: Newton-Raphson + 1/t-annealing

Φt =
1

t
Ĥ−1

t ,

• on-line estimate of Hessian: (MLE case; Bottou, 1998)

Φt+1 = Φt −
Φt∇l∇lTΦt

1 +∇lTΦt∇l

where ∇l = ∇l(zt+1; θt)

stochastic-BFGS (Nocedal, Wednesday talk), etc.

• rate of convergence: equivalent with batch learning
(NM, 1998; NM & Amari, 1999; Bottou & Le Cun, 2005)
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recursive relation of smooth functions

Lemma (Amari, 1967)

Eθt+1 [f(θt+1)] = Eθt [f(θt)]− Eθt
[
∇f(θt)

TΦt∇L(θt)
]

+
1

2
TrEθt

[
ΦtG(θt)Φ

T
t ∇∇f(θt)

]
+O(∥Φt∥3)

holds for any smooth function f(θ), where Eθ denotes the
expectation with respect to θ, and G(θ) is defined by

G(θ) = EZ∼P

[
∇l(Z; θ)∇l(Z; θ)T

]
.
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linear operators for covariance analysis

Definition

Let A be an m×m square matrix and M be an m×m symmetric
matrix. We define two linear operators as follows:

ΞAM = AM + (AM)T,

ΩAM = AMAT.
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recursive relations of parameter statistics

Lemma

Around the optimal parameter, the following approximated
recursive relations for the expectation θ̄t = Eθt [θt] and the
covariance Vt = Vθt [θt] hold:

θ̄t+1 = θ̄t −Qt(θ̄t − θ∗),

Vt+1 = Vt − ΞQtVt +ΩQtV∗ − ΩQt(θ̄t − θ∗)(θ̄t − θ∗)
T,

where

Qt = ΦtH, V∗ = H−1GH−1,

ΞAM = AM + (AM)T,

ΩAM = AMAT.
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convergence rate of 1/t-annealing

Theorem

Let Φ be C/t, where C is a constant matrix. If λmin(CH) ≥ 1, the
leading terms are given by

θ̄t = θ∗ + St(θ0 − θ∗), St =
t∏

τ=2

(
I − CH

τ

)
= O

(
1

tλmin

)
Vt =

[
(ΞCH − I)−1ΩCH

] 1
t
V∗,

where θ0 is an initial parameter, and

V∗ = H−1GH−1.
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eigenvalues of operators

Lemma

Let λi, i = 1, . . . ,m be eigenvalues of A. The eigenvalues of ΞA

and ΩA are given by

ΞA : λi + λj , i, j = 1, . . . ,m,

ΩA : λiλj , i, j = 1, . . . ,m.

Proof.

This follows by the relation

vec(ABC) = (CT ⊗A) vecB

for any m×m square matrices A,B,C.
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optimal design of Φt = C/t

• larger λmin is advantageous to faster convergence of θ̄t.

• (ΞCH − I)−1ΩCH expands V∗/t, which is the minimum
covariance attained by batch learning.

• eigenvalues of (ΞCH − I)−1ΩCH are given by

λiλj

λi + λj − 1
,

where λi’s are eigenvalues of CH.

• if C = H−1, all the eigenvalues of (ΞI − I)−1ΩI are equal to
1, i.e. Vt = V∗/t.

• Φt = H−1/t is optimal.
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equivalence to batch learning

• on-line learning:

E
[
(θt − θ∗)(θt − θ∗)

T
]
= V [θt] + E [θt − θ∗]E [θt − θ∗]

T

=
1

t
V∗ +O

(
1

t2

)
.

• batch learning:

E
[
(θ̂t − θ∗)(θ̂t − θ∗)

T
]
=

1

t
V∗ +O

(
1

t2

)
.
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rating systems

a method for evaluating the relative skill levels of players

• Elo rating: Arpad Elo, 1960
used in competitor-versus-competitor games such as chess
scores given to players are updated according to game results

• Glicko rating: Mark Glickman, 1997
including confidence of estimated skill levels

• TrueSkill: Ralf Herbrich et al., 2007
extension to multiplayer games
skill levels are random variables (Bayesian framework)
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model of Elo rating

• score: θ = (θ1, θ2, . . . )

• event: zt = (a ≻ b) (player a beats player b at time t)

• probability model:

Pr(a ≻ b) = P (zt; θ) =
1

1 + exp(γ · (θb − θa))
,

where γ is defined such that a player whose rating is 200
points greater than the other is expected to have a 75%
chance of winning.

• loss function:

l(zt; θ) = − logP (zt; θ) = log(1 + exp(γ · (θb − θa)))
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update rule of Elo rating

• gradient:

∂

∂θi
l(zt; θ) =


0, i ̸= a, b

−γ · (1− P (zt; θ)), i = a (winner)

+γ · (1− P (zt; θ)), i = b (looser)

• update rule:

θt+1 = θt − ε∇l(zt; θ)

= θt + (0, . . . , εγ(1− P )︸ ︷︷ ︸
a

, . . . ,−εγ(1− P )︸ ︷︷ ︸
b

, . . . , 0)T

where k = εγ = 32 for novices, 16 for professionals.
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fixed rate
Φt = εI

• 10 players
out of 100

• 20000 games
(400 [game/pl.])

• k = 32, 16, 64

• θi0 = 1500
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optimal update rule

• update rule: (Φ: matrix)

θt+1 = θt − Φt∇l(zt; θt),

Φt+1 = Φt −
Φt∇lt∇lTt Φt

1 +∇lTt Φt∇lt
,

∇lt = ∇l(zt+1; θt)

= (0, . . . , γ(1− P )︸ ︷︷ ︸
a

, . . . ,−γ(1− P )︸ ︷︷ ︸
b

, . . . , 0)T

• initial value:

Φ0 = kI I is the identity matrix
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optimal rate

• 10 players
out of 100

• 20000 games
(400 [game/pl.])

• sensitive to
initial kI
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problem of semi-optimal update

• original update rule: ∆θ = −ε∇l(zt; θ)
• only related players are updated: ∆θi = 0, i ̸= a, b.
• sum of θ is kept constant: 1T∆θ = 0.

• optimal update rule: ∆θ = −Φt∇l(zt; θ)

• all the players are updated, because Φt = Ĥ−1
t /t is a dense

matrix.
• sum of θ is not necessarily kept constant.

• our problem: design Φt to fit the original restriction.
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description of restrictions

• 1 vs 1 case: (players a and b)

∆θ = αa, aT =
( a b c

1 −1 0 · · ·
)
,

or

BT∆θ = 0, BT =


a b c d

1 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
...

...
. . .

.
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description of restrictions

• 2 vs 2 case: (players a+b and c+d)

∆θ = Aα, AT =


a b c d e

1 0 −1 0 0 · · ·
1 0 0 −1 0 · · ·
0 1 −1 0 0 · · ·

,

or

BT∆θ = 0, BT =


a b c d e f

1 1 1 1 0 0 · · ·
0 0 0 0 1 0 · · ·
0 0 0 0 0 1 · · ·
...

...
. . .

.
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problem formulation

Problem A

Find an “optimal” gradient ∆θ = Φ∇l(z; θ) subject to

∆θ ∈ ImA, (∆θ = Aα, α ∈ Rk)

for a matrix A ∈ Rm×k.

Problem B

Find an “optimal” gradient ∆θ = Φ∇l(z; θ) subject to

∆θ ∈ KerBT, (BT∆θ = 0)

for a matrix B ∈ Rm×(m−k),

cf. f(θ) = const. ⇒ ∇f(θ)T∆θ = 0
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assumptions

• optimality is defined in terms of

minimize ∥H−1∇l −∆θ∥M ,

where ∥x∥2M = ⟨x, x⟩M and ⟨x, y⟩M = ⟨Mx, y⟩.
• M is chosen as H, because

• quadratic approximation of population loss:

∥θ − θ∗∥2H = (θ − θ∗)
TH(θ − θ∗) = L(θ)− L(θ∗)

• Mahalanobis distance in maximum likelihood case:

V[θ̂t] =
1

t
H−1GH−1 =

1

t
H−1
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solutions

• decompose Φt into scalar and matrix parts as

Φt = εtC, (e.g., εt = 1/t)

• solutions for the problems are:

Problem A

CA = A(ATHA)−1AT

Problem B

CB = H−1 −H−1B(BTH−1B)−1BTH−1
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sub-optimal rate

• 10 players
out of 100

• 20000 games
(400 [game/pl.])

31 / 33



setting batch prop. optimal on-line Elo remarks

notes on solutions

• CA and CB are symmetric (only when M = H).

• CAH or CBH is a projection matrix:

λ =

{
1, v ∈ ImA or KerB,

0, otherwise.

• if k is small, calculation of CA is more efficient than that of
CB

• only a few parameters are updated, however convergence is as
good as optimal case
(information loss is quite small in some case)
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concluding remarks

• we have investigated:
• dynamics of convergence phase of on-line learning,
• conditions for optimal convergence rate,
• optimal projection of gradients to subspaces,

• practical applications would be:
• skill level rating systems,
• on-line learning for Bradley-Terry model,
• distributed control systems.
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