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An SVM-Like Generalization Bound

Draw m pairs (x, y) IID from a data distribution with x ∈ Rd, ||x|| = 1
and y ∈ {−1, 1}. We consider w ∈ Rd.

L01(w, x, y) =

{
0 if ywᵀx > 0
1 otherwise

Let Qw be a an isotropic Gaussian centered at w.

Lprobit(w) = E(x,y)∼D, ε∼N (0,I) [L(w + ε, x, y)] = E(x,y)∼D [Lprobit(yw
ᵀx)]

L̂probit(w) = 1
m

∑m
i=1 Eε∼N (0,I) [L(w + ε, x, y)] = 1

m

∑m
i=1Lprobit(yw

ᵀx)

Lprobit(w) ≤

(
1

1− 1
2λ

)(
L̂probit(w) +

λ

m

(
1

2
||w||2 + ln

1

δ

))

McAllester 99, Langford and Shawe-Taylor 02, McAllester 03, Catoni 07.



Awkward Observations

• Finding the exact solution for a fixed sample is not interesting.

• For L2 reguluraization we have that ||w∗||2 grows linearly with m.

• The strong convexity is actually weak — λ/m rather than λ/
√
m.

A + 2B ≤ inf
λ>1/2

(
1

1− 1
2λ

)
(A + λB) ≤ A +

√
2AB + 2B

• Robustness trumps convexity.



The PAC-Bayesian Theorem (Catoni’s Version)

Let P be a fixed prior distribution or density on models.

Let L(h, x, y) ∈ [0, Lmax] be the loss of model h on training pair (x, y).

Theorem: For λ > 1/2 selected before seeing the training data we have
that with probabiltiy 1− δ over the draw of the training data the following
holds simultanously for all “posterior” distributions Q.

L(Q) ≤

(
1

1− 1
2λ

)(
L̂(Q) +

λLmax

m

(
KL(Q,P ) + ln

1

δ

))

KL(Qw, P ) =
1

2
||w||2



A Simpler Theorem

• Let H be a discrete but possibly infinite set of “rules”.

• Let |h| be the number of bits it takes to write rule h.

• Let L(h, x, y) ∈ [0, Lmax] be a loss.

Theorem: With probability at least 1 − δ over the draw of the sample
we have that the following holds simultaneously for all h.

L(h) ≤ inf
λ>1

2

1

1− 1
2λ

(
L̂(h) +

λLmax

m

(
(ln 2)|h| + ln

1

δ

))



Proof

We consider Lmax = 1. From the Chernoff bound

PS∼DN

(
L̂(h) ≤ L(h)− ε(h)

)
≤ e

−m ε(h)2

2L(h)

and a union bound over h we get

L(h) ≤ L̂(h) +

√√√√L(h)

(
2
(
(ln 2)|h| + ln 1

δ

)
m

)
.

We then use √
ab = inf

λ>0

a

2λ
+
λb

2
and solve for L(h).



Dropout Training

We assume a labeled training set (x1, y1), . . ., (xn, yn).

We assume some measure of error or loss L(Nω, xi, yi) ∈ [0, Lmax]

We will train the weight vector ω by a form of stochastic gradient descent.

ωt+1 = ωt − η ∇ωt L(Nωt◦st, xt, yt)

(xt, yt) = (xi, yi) for some random i ∈ {1, . . . , n}.

st ∈ {0, 1}d is a random mask.



A Message from Hinton et al.

A way to view the dropout procedure is as a very efficient way of perform-
ing model averaging. — Hinton, Srivastava, Krizhevsky, Sutskever and
Salakhutdinov, arXiv:1207.0580v1



Dropouts with Gaussian Noise

Now let Qω be the ensemble N(ω+ε)◦s with Gaussian noise ε and random
dropout mask s under preservation rate α. Let the prior P be Q0.

KL(Qω, P ) = Es,ε

[
ln

(
Q(s)Q(ε ◦ s|s)

P (s)P ((w + ε) ◦ s|s)

)]
= Es

[
Eε

[
ln

Q(ε ◦ s|s)
P ((w + ε) ◦ s|s)

]]
= Es [KL(Q,P |s)]

= Es

[
1

2
||w ◦ s||2

]
=
α

2
||w||2



L(Qω) ≤ 1

1− 1
2λ

(
L̂(Qω) +

λLmax

N

(
α

2
||ω||2 + ln

1

δ

))



The PAC-Baysian Posterior

L(Q) ≤

(
1

1− 1
2λ

)(
L̂(Q) +

λLmax

N

(
KL(Q,P ) + ln

1

δ

))

Q∗λ(N) =
1

Zλ
P (N) e−

N
λLmax

L̂(N)



The PAC-Bayesian Variance Bound

Fix a learning algorithm A such that for any sample S we have that A(S)
is a model ensemble.

Using “Langford’s Prior” P = ES [A(S)] we get

ES [L(A(S))] ≤ 1

1− 1
2λ

(
ES

[
L̂(A(S))

]
+
λLmax

N
ES [KL(A(S),ES [A(S)])]

)



Summary

• Dropouts optmize the loss of an ensemble of models.

• PAC-Bayesian theory governs the performance of ensembles of models.

• A preservation rate of α reduces the regularization penalty in PAC-
Bayesian generalization bounds by a factor of α for a variety of regular-
izers.

• The optimal PAC-Bayesian posterior has different dropout rates for dif-
ferent units.

• The variance bound appears to be much tighter but is inscrutable.


