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An SVM-Like Generalization Bound

Draw m pairs (x,y) IID from a data distribution with z € R?, ||z|| = 1
and y € {—1,1}. We consider w € R?.

0 if ywTax >0
1 otherwise

Loy (w, z,y) = {

Let (), be a an isotropic Gaussian centered at w.
Lprobit<w> — E(x,y)ND, e~N(0,1) [L<w T €, 7, y)] — E(ac,y)ND [LPI’Obit<wax>]

zprobit<w> — % 221 EENN(O,I) [L(w T €, T, y)] — % Zyil Lprobit<wax)

1 . A1 1
Lprobit(w) < (1 — ;}\) (Lprobit<w) + R (§Hw|‘2 + In 5))
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Awkward Observations

e [inding the exact solution for a fixed sample is not interesting.

e For Ly reguluraization we have that ||w*||* grows linearly with m.

e The strong convexity is actually weak — A/m rather than A/y/m.

A+2B < inf (

A>1/2

)(A+AB) < A+V2AB+2B

1
L=

e Robustness trumps convexity.



The PAC-Bayesian Theorem (Catoni’s Version)
Let P be a fixed prior distribution or density on models.
Let L(h,x,y) € [0, Lyax] be the loss of model h on training pair (x,y).
Theorem: For A > 1/2 selected before seeing the training data we have

that with probabiltiy 1 — ¢ over the draw of the training data the following
holds simultanously for all “posterior” distributions ().

L(Q) < ( 11> (i(@)+ A%;ax (/Cﬁ(Q,P)Jrln%))

1
IC‘C(QUM P) — §H’LU||2



A Simpler Theorem

e Let H be a discrete but possibly infinite set of “rules”.
e Let |h| be the number of bits it takes to write rule h.

o Let L(h,x,y) € |0, Liax| be a loss.

Theorem: With probability at least 1 — ¢ over the draw of the sample
we have that the following holds simultaneously for all h.

) < inf e (2 + 222 (u2al +10) )

>\>%1—§ m




Proof

We consider L.« = 1. From the Chernoff bound

e(h)?

Py pv (L(h) < L(h) — (b)) < "1

and a union bound over h we get

L(h) < L(h) +

\L(h> (2 ((In2)|n] —|—ln§)>.

m
, a b
Vab = inf 5545

We then use

and solve for L(h).



Dropout Training
We assume a labeled training set (x1,41), - - -, (Tn, Yn)-
We assume some measure of error or loss L(Ny, z;, ¥;) € [0, Liax]

We will train the weight vector w by a form of stochastic gradient descent.

Wiyl = Wt — 1) th L<Nwtosta Lt, yt>
(x4, 1) = (x4, y;) for some random 7 € {1,...,n}.

sy € {0,1}? is a random mask.



A Message from Hinton et al.

A way to view the dropout procedure is as a very efficient way of perform-

ing model averaging. — Hinton, Srivastava, Krizhevsky, Sutskever and
Salakhutdinov, arXiv:1207.0580v1



Dropouts with Gaussian Noise

Now let @, be the ensemble N, )., with Gaussian noise € and random
dropout mask s under preservation rate a. Let the prior P be Q).

KL(Q., P)

o | (i - o7
= B [ e 5 o 7

B, [KL(Q, P|s)
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The PAC-Baysian Posterior
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The PAC-Bayesian Variance Bound

Fix a learning algorithm A such that for any sample .S we have that A(S)
is a model ensemble.

Using “Langford’s Prior” P = Eg[A(S)] we get




Summary

e Dropouts optmize the loss of an ensemble of models.

e PAC-Bayesian theory governs the performance of ensembles of models.

e A preservation rate of a reduces the regularization penalty in PAC-
Bayesian generalization bounds by a factor of « for a variety of regular-
17€1S.

e The optimal PAC-Bayesian posterior has different dropout rates for dif-
ferent units.

e The variance bound appears to be much tighter but is inscrutable.



