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Organization 
• We present two key extensions to basic simultaneous 

perturbation stochastic approximation (SPSA) algorithm 
• While SPSA in basic form is not formally a standard 

stochastic gradient method, it is in same general family of 
“first-order” SA methods 

• We present recent results that deal with problems at the 
extremes in some sense:  
— 1. SPSA for adaptive estimation in smooth 

problems, where we wish to obtain a Hessian 
estimate, and  

— 2. SPSA-type ideas in fully discrete problems.  
 

• Acknowledgment: The discrete work is joint with Dr. Qi 
Wang of Johns Hopkins University and Barclays 



Adaptive Methods for Smooth Problems 

Extension 1 
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Background 
• Interested in finding θ = θ∗ such that g(θ) = 0 where θ is 

vector of “adjustables” 
• Common special case of minimization: find root θ = θ∗ to 

 

 
where L(θ) is scalar-valued loss function 

• Assume only (possibly noisy) measurements of g(θ) and/or 
L(θ) available 
– Noisy measurements arise in areas such as Monte Carlo 

simulation, real-time control/estimation, machine learning, 
system identification, etc. 

• Stochastic approximation (SA) widely used for above root-
finding and optimization with noisy measurements, 
including basic SPSA (Note: Google “James Spall NIPS 
2012” for video of tutorial) 
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Brief Diversion (3 slides): Basic SPSA 
Algorithm (NIPS 2012 tutorial; Spall, 1987, 1992) 
• Let     (θ) denote SP estimate of g(θ) at kth iteration 
• Let      denote estimate for θ∗ at kth iteration 
• SPSA algorithm has form     

        
 
 

      

 where {ak} is nonnegative gain sequence 

• Generic iterative form above is standard in SA; stochastic 
analogue to steepest descent 

• Under conditions,    → θ∗ in some stochastic sense as 
k→∞  
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Computation of     (•) (Heart of SPSA) 

 • Let      be vector of p independent random variables at kth 
iteration 

 
•      typically generated by Monte Carlo 
• Let {ck} be sequence of positive scalars 
• For iteration k → k+1, take measurements at design  

levels: 
 

 

 where       are measurement noise terms  
• Common special case is when   

(e.g., system identification with perfect measurements  
of the likelihood function) 
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Computation of     (•) (cont’d) 
• The standard SP form for     (•): 

 

 

 

 

• Note that     (•) only requires two measurements of L(•) 
independent of p 

• Above SP form contrasts with standard finite-difference 
approximations taking 2p (or p+1) measurements 

• Intuitive reason why     (•) is appropriate is that  
                                 formalized in Spall (1987, 1992) 
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kĝ
≈k k k kE ˆ ˆ ˆˆ[ ( ) ] ( );θ θ θg g

kĝ
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…Back to Background (cont’d) 
• Standard SA algorithms (Robbins-Monro, etc.) show “1st-

order” behavior  
– Sharp initial decline (in optimization case)  

– Slow convergence in final phase 

– Sensitivity to units/scaling for elements of θ  

• Long-standing interest in capturing “2nd-order” (Newton-
like) effects in SA setting 
─ Adaptive SA algorithms 
─ Iterate averaging 

• Shortcomings in both of above in implementation difficulty 
and practical efficiency 
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“Standard” Adaptive SPSA Algorithm  
• Let Gk(θ) denote direct (noisy) measurement of g(θ) or 

simultaneous perturbation estimate of g(θ) at kth iteration 
• Let      denote estimate for θ∗ at kth iteration 
• “Standard” adaptive SPSA algorithm has parallel 

recursions form  
 
 

  
 
 where {ak} is nonnegative gain sequence and       is 

efficient “per-iteration” Jacobian estimate 
• Convergence of                   can be shown (Spall, 2000) 
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kĤ

k kˆ and Hθ



7 

Cost of Implementation 
• For any p, the cost per iteration of adaptive method is  

Four L measurements 
 or  

Three g measurements 

• Above costs compare very favorably with previous methods: 

 O(p2) loss measurements per iteration in finite-difference   
setting (e.g., Fabian, 1971) 

   O(p) g measurements per iteration in root-finding setting  
  (e.g., Ruppert, 1985) 
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Enhanced Adaptive SPSA Algorithm 
(Spall, 2009, IEEE Trans. Auto. Contr.)  

• Standard adaptive algorithm can be improved: 
─ Introduce feedback term that helps remove error in per-

iteration H estimates 
─ Optimal weighting to account for noisy measurements of 

loss function or of g(θ) 
• Enhanced Adaptive SPSA algorithm has same general 

parallel recursions form:  
 
 

  
• Items highlighted in red represent new expressions here: 
                           is feedback term 
   wk is optimal weighting 
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Enhanced Algorithm (cont’d) 
• Recursion for θ is unchanged from basic adaptive method 
• Critical aspect of recursion for H is the averaging of per-

iteration Jacobian estimates 
─ Each per-iteration H estimate formed by simultaneous 

perturbation of Gk(θ) values 
─ Per-iteration estimate formed from only two Gk(θ) values (vs. 

2×dim(θ) values in former adaptive methods) 
• Two changes to recursion for H (feedback and weighting) 

─ Feedback term uses current (cumulative) estimate of H as 
true H: subtracts out error in      that depends on true H 

─ Weighting accounts for increasing effective noise contribution 
across iterations  

─ Special (non-optimal) case of weighting is original adaptive 
SPSA algorithm where all      are given equal weight 

• Feedback and weighting briefly discussed in slides to follow 

ˆ
kH

ˆ
kH

ˆ
kH



13 

Feedback Contribution to  
Enhanced Algorithm 

• Per-iteration Jacobian estimate can be decomposed into four 
parts: 
 

 where Ψk =                    is error term and ck is positive 
scalar such that ck → 0 as k → ∞ (ck is the “difference 
interval” for the per-iteration estimates)   

• Feedback term is best estimate of error term (using current 
estimate of H) at each iteration: 
 

• Overall (cumulative) estimate of H (i.e.,      , k = 0,1,..., n) is 
based on weighted sums of 
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Optimal Weighting 
• Recall: 

 

• The noise term is of stochastic order             in the case of 
noisy loss measurements (optimization) and order            
in the case of noisy g measurements (root-finding) 

• Above implies that noise variance grows with k 

• Optimal weighting is such that noise growth is “damped 
down” as k gets large 

• Can solve for optimal weights via Lagrange multipliers 

O= + + + 2ˆ ˆ( ) ( )k k k kcnoiseH H θ Ψ
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Comments on Theory 
• Former theory on convergence of      continues to apply 
• New theory required for convergence of       due to modified 

form  

• Under various “standard” smoothness and bounded 
moments conditions, can show 

• For each entry in        have 
 
 

• In special case of noise-free measurements, can show that 
rate of convergence of       to H(θ∗) is almost O(e−k) 
– Feedback is critical to fast convergence 
– Applies in case of direct loss or direct g measurements  

ˆ
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Numerical Study 
• Consider minimization problem based on 4th-order 

polynomial loss function; dim(θ) = 10 
• Compare standard adaptive and enhanced adaptive SPSA 

in terms of terminal loss function values and H estimates 
• Used the stochastic gradient setting (direct noisy 

measurements of gradient g) (2SG) and setting with only 
loss values (2SPSA−see next slide) 

• Considered 50 independent runs for each experiment; 
normalized loss is from 0 (best) to 1(initial condition) 
 
 Number of 

iterations 

Normalized 
loss from 

standard 2SG 

Normalized 
loss from 

enhanced 2SG 

P-values for 
comparing loss 

functions 

2000 0.019 0.012 0.0061 

10,000 0.015 0.0034 0.00049 
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Relative Convergence Rates for Hessian 
Estimate in 2SPSA in Noise-Free Problem 

kHΛk ≡       − true H  

(for quadratic 
loss functions) 
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Concluding  Remarks for Extension 1 
• Design of efficient and (relatively) easy to use adaptive 

search algorithms is long-standing problem  
– Especially difficult in setting of noisy measurements  
– Knowledge of Jacobian/Hessian matrix also useful in 

contexts outside of improved search (e.g., Cramér-Rao 
bound) 

• Simultaneous perturbation idea can be used to 
dramatically enhance efficiency in multivariate problems 

• Improvements here to “standard” adaptive SPSA are 
simple to use and further enhance efficiency 
─ Feedback to reduce error in “per-iteration” Jacobian/Hessian 

estimates 
─ Optimal weighting to reduce effects of noise 

• Using methods for efficient estimation of model of U.S. 
Navy system 



Optimization with Discrete Version of 
SPSA Using Noisy Loss Function 

Measurements 
 

(Joint work with Qi Wang of JHU and Barclays) 

Extension 2 
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Discrete Problem Description 

• Consider real-valued loss function 
 
 
where  is set of integers 

• So, θ assumed to lie on p-dimensional integer grid 
• Want to solve problem    

 
 

• But we only know the noisy measurements 
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Algorithm Description 
• DSPSA: discrete SPSA (Wang and Spall, 2011) 
• Step 0: Pick initial guess      
• Step 1: Generate ∆k = [∆k1 , ∆k2 ,…, ∆kp]T, where ∆k has user-

specified distribution satisfying conditions. Special case is 
when ∆ki are independent Bernoulli random variables ±1 
with probability ½  

• Step 2:                                                                                                       
• Step 3: Evaluate y at 
• Step 4: Construct “gradient” approximation: 
                                                                           

 
• Step 5: After M iterations of recursion,   
       set             as the solution;                                                                              
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Algorithm Description (Cont’d)  

• Remarks: 
— Simple implementation 
— Two loss function measurements in each iteration 
— Make use of the function structure implicitly (gradient-

like quantity) 
— Handle noisy measurements 

• Convergence property: under some general conditions, 
the sequence generated by DSPSA converges almost 
surely to the optimal solution.  
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Rate of Convergence Results for DSPSA 

• We discuss MSE of DSPSA (Wang and Spall, 2013) 
• Under some general conditions, we have  

 
    

where m is determined by the loss function and b is a uniform 
upper bound for                            
 
 
 

• Note: (*) is a difference-equation-like recursion                       
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Rate of Convergence Results for DSPSA (Cont’d) 

• Solving the above difference-equation-like recursion,  
 

     
 
    where c > 0 and  0.5 < a < 1                                        
• The first big-O term is a function of m, a, a, A, k and the 

second big-O term is a function of m, a, a, A, b, k.                              
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Rate of Convergence Results for DSPSA (Cont’d) 

• The result on MSE can produce rate of convergence           
of                          to 0 in the big-O sense, where         
indicates the nearest multivariate-integer point of       
 

• Convergence rate of                        can be used to compare 
DSPSA with other standard discrete stochastic algorithms 
such as stochastic ruler (SR) algorithm (Yan and Mukai, 
1992) and stochastic comparison (SC) algorithm (Gong et 
al, 1999). 
 

*ˆ([ ] )≠θ θkP ˆ[ ]θk
θ̂k

*ˆ([ ] )≠θ θkP
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Comparison of SR, SC and DSPSA 
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• We find the rate of convergence of SR and SC 
could not be better than DSPSA. 

• The parameters (coefficients) involved in SR and 
SC are harder to tune than the coefficients in 
DSPSA. 



Numerical Comparisons 
(one of many, with similar results)  

• Skewed quartic loss function (Spall 2003,Ex 6.6) with additive 
noise N(0,1) 

• pB is an upper triangular matrix of 1’s, p = 200, domain    
{−10, −9,…, 9, 10}200 :   
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Application of DSPSA in Resource Allocation 
in Public Health 

 
• Application of DSPSA towards developing optimal public 

health strategies for containing the spread of influenza 
given limited societal resources.  

• Open source software for intervention strategies (FluTE: 
Chao et al., 2010).  

28 

  
DSPSA 
(calculation) 
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Concluding  Remarks for Extension 2 

• We introduce DSPSA for discrete stochastic optimization 
problem and show the almost sure convergence property. 

• We discuss the rate of convergence of DSPSA, which is 
O(1/ka). Rate of convergence results allow for objective 
comparison with other stochastic discrete optimization 
methods (e.g. stochastic ruler and stochastic 
comparison). 

• We consider the application of DSPSA in resource 
allocation in public health. 
 

29 



30 

Extra Slides 
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Per-Iteration Jacobian (Hessian) Estimate 
 
 
 
 
 

 where  δGk = G(θ + ck∆k) – G(θ – ck∆k) and G(⋅) is direct noisy 
measurement of g(θ) or the SP estimate of g(θ) built from noisy 
L(θ) measurements 

  and   
 ∆k ≡ [∆k1, ∆k2,…, ∆kp]T is mean-zero random vector such that 

the {∆kj} satisfy standard SPSA conditions (mean zero, 
symmetrically distributed random variables with finite inverse 
moments)  
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Optimal Weighting 
• Recall: 

 

• For the case of noisy loss functions, optimal weights are:   

 

• For the case of noisy root-finding (g) measurements, 
optimal weights are:  

 

• Both of above based on “downweighting” later per-iteration 
Jacobian estimates to compensate for increased noise 
contribution 
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