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Problems with Many Additive Cost and Constraint Components

minimize
m∑

i=1

fi (x) subject to x ∈ X = ∩q
`=1X`,

where fi : <n 7→ < are convex, and the sets X` are closed and convex.

Incremental algorithm: Typical iteration

Choose indexes ik ∈ {1, . . . ,m} and `k ∈ {1, . . . , q}.
Perform a subgradient iteration or a proximal iteration

xk+1 = PX`k

(
xk − αk∇̃fik (xk )

)
or xk+1 = arg min

x∈X`k

{
fik (x) +

1
2αk
‖x − xk‖2

}
where αk is a positive stepsize and ∇̃ denotes (any) subgradient.

Motivation
Avoid processing all the cost components at each iteration

Use a simpler constraint to simplify the projection or the proximal minimization
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References for this Overview Talk

Joint and individual works with A. Nedic and M. Wang.

Focus on convergence, rate of convergence, component formation, and
component selection.

Work on incremental gradient methods and extended Kalman filter for least
squares, 1994-1997 (DPB).

Work on incremental subgradient methods with A. Nedic, 2000-2010.

Work on incremental proximal methods, 2010-2012 (DPB).

Work on incremental constraint projection methods with M. Wang 2012-2014
(following work by A. Nedic in 2011).

See our websites.
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Outline

1 Incremental Algorithms

2 Two Methods for Incremental Treatment of Constraints

3 Convergence Analysis
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Incremental Subgradient Methods

Problem: minx∈X
∑m

i=1 fi (x), where fi and X are convex

Long history: LMS (Widrow-Hoff, 1960, for linear least squares w/out projection),
former Soviet Union literature 1960s, stochastic approximation literature 1960s,
neural network literature 1970s

Basic incremental subgradient method

xk+1 = PX
(
xk − αk∇̃fik (xk )

)
Stepsize selection possibilities:

I
∑∞

k=0 αk = ∞ and
∑∞

k=0 α
2
k <∞

I αk : Constant
I Dynamically chosen (based on estimate of optimal cost)

Index ik selection possibilities:
I Cyclically
I Fully randomized/equal probability 1/m
I Reshuffling/randomization within a cycle (frequent practical choice)
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Convergence Mechanism

Quadratic One-Dimensional Example: minx∈<
∑m

i=1(aix − bi )
2

(a ix - bi)
2

amini
i

bi

amaxi
i

b i

x*

xR

REGION OF CONFUSION FAROUT REGIONFAROUT REGION

Conceptually, the idea generalizes to higher dimensions, but is hard to
treat/quantify analytically

Adapting the stepsize αk to the farout and confusion regions is an important issue

Shaping the confusion region is an important issue
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Variants of Incremental Gradient Methods/Differentiable Cost

Method with momentum/extrapolation/heavy ball (Polyak 1964): βk ∈ [0,1)

xk+1 = PX
(
xk − αk∇fik (xk ) + βk (xk − xk−1)

)
Accelerates in the farout region, decelerates in the confusion region.

Aggregated incremental gradient method

xk+1 = PX

xk − αk

m−1∑
j=0

∇fik−j (xk−j )


Proposed for differentiable fi , no constraints, cyclic index selection, and constant
stepsize, by Blatt, Hero, and Gauchman (2008).

Recent work by Schmidt, Le Roux, and Bach (2013), randomized index selection,
and constant stepsize.

A fundamentally different convergence mechanism (relies on differentiability and
aims at cost function descent). Works even with a constant stepsize (no region of
confusion).
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Incremental Proximal Methods (DPB, 2010)

Select index ik and set

xk+1 = arg min
x∈X

{
fik (x) +

1
2αk
‖x − xk‖2

}

Many similarities with incremental subgradient
Similar stepsize choices

Similar index selection schemes

Can be written as
xk+1 = PX

(
xk − αk∇̃fik (xk+1)

)
where ∇̃fik (xk+1) is a special subgradient at xk+1 (index advanced by 1)

Compared to incremental subgradient
Likely more stable

May be harder to implement
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Aggregated Incremental Proximal Method

Select index ik and set

xk+1 = arg min
x∈X

fik (x) +
m−1∑
j=1

∇̃fik−`
(xk−j+1)′(x − xk ) +

1
2αk
‖x − xk‖2


where ∇̃fik−j (xk−j+1) is special subgradient at xk−m+1 (index advanced by 1)

Can be written as

xk+1 = PX

xk − αk

m−1∑
j=0

∇̃fik−j (xk−j+1)


More stable (?) than incremental subgradient or proximal

May be harder to implement

Convergence can be shown if
∑∞

k=0 αk =∞ and
∑∞

k=0 α
2
k <∞
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Incremental Subgradient-Proximal Methods

Typical iteration
Choose ik ∈ {1, . . . ,m} and do a subgradient or a proximal iteration

xk+1 = PX
(
xk − αk∇̃fik (xk )

)
or xk+1 = arg min

x∈X

{
fik (x) +

1
2αk
‖x − xk‖2

}
where αk is a positive stepsize and ∇̃ denotes (any) subgradient.

Idea: Use proximal when easy to implement; use subgradient otherwise

A very flexible implementation

The proximal iterations still require diminishing αk for convergence
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Convergence Analysis

Under Lipschitz continuity-type assumptions:
Convergence to the optimum for diminishing stepsize.

Convergence to a neighborhood of the optimum for constant stepsize.

Faster convergence for randomized index selection (relative to a worst-case cyclic
choice).

Notes:
Fundamentally different from the gradient-proximal method, which applies when
m = 2,

min
x∈X

{
f1(x) + f2(x)

}
,

and f1 is differentiable. This is a cost descent method and can use a constant
stepsize.

Aggregated version possible
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Incremental Treatment of Many Constraints by Exact Penalties

Problem

minimize
m∑

i=1

fi (x) subject to x ∈ ∩q
`=1X`,

where fi : <n 7→ < are convex, and the sets X` are closed and convex.

Equivalent Problem (Assuming fi are Lipschitz Continuous)

minimize
m∑

i=1

fi (x) + γ

q∑
`=1

dist(x ,X`) subject to x ∈ <n,

where γ is sufficiently large (the two problems have the same set of minima).

Proximal iteration on the dist(x ,X`) function is easy
Project on X` and interpolate:

xk+1 = (1− βk )xk + βk PXik
(xk ), βk = min

{
1, (αkγ)/dist(xk ; Xik )

}
(since γ is large, usually βk = 1).
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Constraint Projection Methods (Thesis by M. Wang and Joint Papers)

minimize
m∑

i=1

fi (x) subject to x ∈ ∩q
`=1X`,

where fi : <n 7→ < are convex, and the sets X` are closed and convex.

Incremental constraint projection algorithm

Choose indexes ik ∈ {1, . . . ,m} and `k ∈ {1, . . . , q}.
Perform a subgradient iteration or a proximal iteration

xk+1 = PX`k

(
xk − αk∇̃fik (xk )

)
or xk+1 = arg min

x∈X`k

{
fik (x) +

1
2αk
‖x − xk‖2

}
where αk is a positive stepsize and ∇̃ denotes (any) subgradient.

First proposal and analysis of the case where m = 1 and some of the constraints are
explicit

X` =
{

x | g`(x) ≤ 0
}

was by A. Nedic (2011). Connection to feasibility/alternating projection methods.
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Comparison of the two methods

Second method does not require a penalty parameter γ, but needs a linear regularity
assumption: For some η > 0,∥∥∥x − P∩q

`=1X`
(x)
∥∥∥ ≤ η max

`=1,...,q
‖x − PX`

(x)‖ , ∀ x ∈ <n

Linear Regularity Satisfied

y∗ = Ay∗ + b Φx∗ = Π(AΦx∗ + b) AΦx∗ + b x X1 X2

ΠT (Φx∗) = Φx∗ T (Φx∗)

Φx = ΠT (λ)(Φx) y∗ Πy∗

Subspace spanned by basis functions
Solution of multistep projected equation
LP CONVEX NLP

Simplex

Gradient/Newton

Duality

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

1
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Incremental Random Projection Method

Problem

minimize
m∑

i=1

fi (x) subject to x ∈ X = ∩q
`=1X`,

Typical iteration
Choose “randomly" indexes ik ∈ {1, . . . ,m} and `k ∈ {1, . . . , q}.
Set

xk+1 = PX`k

(
xk − αk∇̃fik (x̄k )

)
x̄k = xk or x̄k = xk+1.∑∞

k=0 αk =∞ and
∑∞

k=0 α
2
k <∞ (diminishing stepsize is essential).

Two-way progress
Progress to feasibility: The projection PX`k

(·).

Progress to optimality: The “subgradient" iteration xk − αk∇̃fik (x̄k ).
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Visualization of Convergence

) x∗

xk

k xk+1

Incremental Projection Method
Large Stepsize

Incremental Projection Method
Small Stepsize

Gradient Projection Method Alternating Projection Method
for Feasibility

k xk+1

) x∗xk = xk+2

xk

k xk+1

) x∗= xk+2

Progress to feasibility should be faster than progress to optimality. Gradient stepsizes
αk should be << than the feasibility stepsize of 1.
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Sampling Schemes for Constraint Index `k

Nearly independent sampling

inf
k≥0

Prob(`k = X` | Fk ) > 0, ` = 1, . . . , q,

where Fk is the history of the algorithm up to time k . Some constraints may be
sampled faster than others.

Cyclic sampling
Deterministic or random reshuffling every q iterations.

Most distant constraint sampling

`k = arg max
`=1,...,q

∥∥xk − PX`
(xk )

∥∥
A variant: Skip constraints that are not violated.

Markov sampling
Generate `k as the state of an ergodic Markov chain with states 1, . . . , q.
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Sampling Schemes for Cost Component Index ik

Random independent uniform sampling

Each index i ∈ {1, . . . ,m} is chosen with equal probability 1/m, independently of
earlier choices.

Cyclic sampling
Deterministic or random reshuffling every m iterations.

Markov sampling
Generate ik as the state of a Markov chain with states 1, . . . ,m, and steady state
distribution {1/m, . . . , 1/m}.
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Convergence Theorem

Assuming Lipschitz continuity of the cost, linear regularity of the constraint, and
nonemptiness of the optimal solution set, {xk} converges to some optimal solution x∗

w.p. 1, under any combination of the preceding sampling schemes.

Idea of the convergence proof
There are two convergence processes taking place:

Progress towards feasibility, which is fast (geometric thanks to the linear regularity
assumption).

Progress towards optimality, which is slower (because of the diminishing stepsize
αk ).

This two-time scale convergence analysis idea is encoded in a coupled
supermartingale convergence theorem, which governs the evolution of two
measures of progress

E[dist2(xk ,X )] : Distance to the constraint set, which is fast

E[dist2(xk ,X∗)] : Distance to the optimal solution set, which is slow

Bertsekas (M.I.T.) Incremental Gradient 22 / 24



Convergence Theorem

Assuming Lipschitz continuity of the cost, linear regularity of the constraint, and
nonemptiness of the optimal solution set, {xk} converges to some optimal solution x∗

w.p. 1, under any combination of the preceding sampling schemes.

Idea of the convergence proof
There are two convergence processes taking place:

Progress towards feasibility, which is fast (geometric thanks to the linear regularity
assumption).

Progress towards optimality, which is slower (because of the diminishing stepsize
αk ).

This two-time scale convergence analysis idea is encoded in a coupled
supermartingale convergence theorem, which governs the evolution of two
measures of progress

E[dist2(xk ,X )] : Distance to the constraint set, which is fast

E[dist2(xk ,X∗)] : Distance to the optimal solution set, which is slow
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Concluding Remarks

Incremental methods exhibit interesting and complicated convergence behavior

Proximal variants enhance reliability

Constraint projection variants provide flexibility and enlarge the range of potential
applications

Issues not discussed:
I Distributed asynchronous implementation. The same mechanism that deals with

incrementalism (diminishing stepsize), deals also with asynchronism.

I Incremental Gauss-Newton methods (Extended Kalman Filter). Often faster in least
squares problems. Converges in one cycle for linear least squares.
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Thank you!
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