Minimizing Finite Sums with the Stochastic Average Gradient Algorithm

Mark Schmidt

Joint work with Nicolas Le Roux and Francis Bach

Simon Fraser University

Context: Machine Learning for "Big Data"

- Large-scale machine learning: large N, large P
 - N: number of observations (inputs)
 - P: dimension of each observation
- Regularized empirical risk minimization: find x* solution of

$$\min_{\mathbf{x} \in \mathbb{R}^P} \frac{1}{N} \sum_{i=1}^N \ell(\mathbf{x}^T \mathbf{a}_i) + \lambda r(\mathbf{x})$$

data fitting term + regularizer

Context: Machine Learning for "Big Data"

- Large-scale machine learning: large N, large P
 - N: number of observations (inputs)
 - P: dimension of each observation
- Regularized empirical risk minimization: find x* solution of

$$\min_{x \in \mathbb{R}^P} \frac{1}{N} \sum_{i=1}^N \ell(x^T a_i) + \lambda r(x)$$

data fitting term + regularizer

- Applications to any data-oriented field:
 - Vision, bioinformatics, speech, natural language, web.
- Main practical challenges:
 - Choosing regularizer r and data-fitting term f.
 - Designing/learning good features a_i.
 - Efficiently solving the problem when *N* or *P* are very large.

This talk: Big-N Problems

• We want to minimize the sum of a finite set of smooth functions:

$$\min_{x\in\mathbb{R}^P}g(x):=\frac{1}{N}\sum_{i=1}^Nf_i(x).$$

This talk: Big-N Problems

• We want to minimize the sum of a finite set of smooth functions:

$$\min_{x\in\mathbb{R}^P}g(x):=\frac{1}{N}\sum_{i=1}^Nf_i(x).$$

- We are interested in cases where N is very large.
- We will focus on strongly-convex functions g.

This talk: Big-N Problems

• We want to minimize the sum of a finite set of smooth functions:

$$\min_{x\in\mathbb{R}^P}g(x):=\frac{1}{N}\sum_{i=1}^Nf_i(x).$$

- We are interested in cases where N is very large.
- We will focus on strongly-convex functions g.
- Simplest example is ℓ₂-regularized least-squares,

$$f_i(x) := (a_i^T x - b_i)^2 + \frac{\lambda}{2} ||x||^2.$$

- Other examples include any ℓ_2 -regularized convex loss:
 - logistic regression, Huber regression, smooth SVMs, CRFs, etc.

• We consider minimizing $g(x) = \frac{1}{n} \sum_{i=1}^{N} f_i(x)$.

- We consider minimizing $g(x) = \frac{1}{n} \sum_{i=1}^{N} f_i(x)$.
- Deterministic gradient method [Cauchy, 1847]:

$$x_{t+1} = x_t - \alpha_t g'(x_t) = x_t - \frac{\alpha_t}{N} \sum_{i=1}^{N} f'_i(x_t).$$

- Linear convergence rate: $O(\rho^t)$.
- Iteration cost is linear in N.
- Fancier methods exist, but still in O(N)

- We consider minimizing $g(x) = \frac{1}{n} \sum_{i=1}^{N} f_i(x)$.
- Deterministic gradient method [Cauchy, 1847]:

$$x_{t+1} = x_t - \alpha_t g'(x_t) = x_t - \frac{\alpha_t}{N} \sum_{i=1}^{N} f'_i(x_t).$$

- Linear convergence rate: $O(\rho^t)$.
- Iteration cost is linear in N.
- Fancier methods exist, but still in O(N)
- Stochastic gradient method [Robbins & Monro, 1951]:
 - Random selection of i(t) from $\{1, 2, ..., N\}$,

$$x_{t+1} = x_t - \alpha_t f'_{i(t)}(x_t).$$

- Iteration cost is independent of N.
- Sublinear convergence rate: O(1/t).

- We consider minimizing $g(x) = \frac{1}{n} \sum_{i=1}^{N} f_i(x)$.
- Deterministic gradient method [Cauchy, 1847]:

Stochastic gradient method [Robbins & Monro, 1951]:

Motivation for New Methods

- FG method has O(N) cost with linear rate.
- SG method has O(1) cost with sublinear rate.

Motivation for New Methods

- FG method has O(N) cost with linear rate.
- SG method has O(1) cost with sublinear rate.

• Goal is linear rate **and** O(1) cost.

A variety of methods have been proposed to speed up SG methods:

- Step-size strategies, momentum, gradient/iterate averaging
 - Polyak & Juditsky (1992), Tseng (1998), Kushner & Yin (2003) Nesterov (2009), Xiao (2010), Hazan & Kale (2011), Rakhlin et al. (2012)
- Stochastic version of accelerated and Newton-like methods
 - Bordes et al. (2009), Sunehag et al. (2009), Ghadimi and Lan (2010),
 Martens (2010), Xiao (2010), Duchi et al. (2011)

A variety of methods have been proposed to speed up SG methods:

- Step-size strategies, momentum, gradient/iterate averaging
 - Polyak & Juditsky (1992), Tseng (1998), Kushner & Yin (2003) Nesterov (2009), Xiao (2010), Hazan & Kale (2011), Rakhlin et al. (2012)
- Stochastic version of accelerated and Newton-like methods
 - Bordes et al. (2009), Sunehag et al. (2009), Ghadimi and Lan (2010),
 Martens (2010), Xiao (2010), Duchi et al. (2011)
- None of these methods improve on the O(1/t) rate

Existing linear convergence results:

- Constant step-size SG, accelerated SG
 - Kesten (1958), Delyon and Juditsky (1993), Nedic and Bertsekas (2000)
 - Linear convergence but only up to a fixed tolerance
- Hybrid methods, incremental average gradient
 - Bertsekas (1997), Blatt et al. (2007), Friedlander and Schmidt (2012)
 - Linear rate but iterations make full passes through the data

Existing linear convergence results:

- Constant step-size SG, accelerated SG
 - Kesten (1958), Delyon and Juditsky (1993), Nedic and Bertsekas (2000)
 - Linear convergence but only up to a fixed tolerance
- Hybrid methods, incremental average gradient
 - Bertsekas (1997), Blatt et al. (2007), Friedlander and Schmidt (2012)
 - Linear rate but iterations make full passes through the data
- Special Problems Classes
 - Collins et al. (2008), Strohmer & Vershynin (2009), Schmidt and Le Roux (2012), Shalev-Shwartz and Zhang (2012)
 - Linear rate but limited choice for the fi's

 Is it possible to have a general linearly convergent algorithm with iteration cost independent of N?

- Is it possible to have a general linearly convergent algorithm with iteration cost independent of N?
 - YES!

- Is it possible to have a general linearly convergent algorithm with iteration cost independent of N?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i(t) from $\{1, 2, ..., n\}$ and compute $f'_{i(t)}(x^t)$.

$$x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^{N} f_i'(x^t)$$

- Is it possible to have a general linearly convergent algorithm with iteration cost independent of N?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i(t) from $\{1, 2, ..., n\}$ and compute $f'_{i(t)}(x^t)$.

$$x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^N f_i'(x^t)$$

- Is it possible to have a general linearly convergent algorithm with iteration cost independent of N?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i(t) from $\{1, 2, ..., n\}$ and compute $f'_{i(t)}(x^t)$.

$$x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^N y_i^t$$

• **Memory**: $y_i^t = f_i'(x^k)$ from the last t where i was selected.

- Is it possible to have a general linearly convergent algorithm with iteration cost independent of N?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i(t) from $\{1, 2, ..., n\}$ and compute $f'_{i(t)}(x^t)$.

$$x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^N y_i^t$$

- **Memory**: $y_i^t = f_i'(x^k)$ from the last t where i was selected.
- Assumes that gradients of other examples don't change.
- This assumption becomes accurate as $||x^{t+1} x^t|| \to 0$.
- Stochastic variant of increment average gradient (IAG).
 [Blatt et al. 2007]

Convergence Rate of SAG

Assume only that:

• f_i is convex, f'_i is L-continuous, g is μ -strongly convex.

Convergence Rate of SAG

Assume only that:

• f_i is convex, f'_i is L-continuous, g is μ -strongly convex.

Theorem. With $\alpha_t = \frac{1}{16L}$ the SAG iterations satisfy

$$\mathbb{E}[g(x^t) - g(x^*)] \leqslant \left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^t C.$$

- Linear convergence with iteration cost independent of N.
- A linear rate is also achieved for any $\alpha_t \leq \frac{1}{16L}$.

Convergence Rate of SAG

Assume only that:

• f_i is convex, f'_i is L-continuous, g is μ -strongly convex.

Theorem. With $\alpha_t = \frac{1}{16L}$ the SAG iterations satisfy

$$\mathbb{E}[g(x^t) - g(x^*)] \leqslant \left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^t C.$$

- Linear convergence with iteration cost independent of N.
- A linear rate is also achieved for any $\alpha_t \leq \frac{1}{16L}$.
 - Well-conditioned problems: constant non-trivial reduction per pass:

$$\left(1 - \frac{1}{8N}\right)^N \le \exp\left(-\frac{1}{8}\right) = 0.8825.$$

• Badly-conditioned problems, almost same as deterministic method. (gradient method has rate $\left(1-\frac{\mu}{L}\right)^{2t}$ if $\alpha_t=\frac{1}{L}$, but N times slower)

• Assume that N = 700000, L = 0.25, $\mu = 1/N$:

- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2=0.99998.$

- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2=0.99998.$
 - Accelerated gradient method has rate $(1 \sqrt{\frac{\mu}{L}}) = 0.99761$.

- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998$.
 - Accelerated gradient method has rate $\left(1-\sqrt{\frac{\mu}{L}}\right)=0.99761$.
 - SAG (*N* iterations) has rate $\left(1 \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^N = 0.88250$.

- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2=0.99998.$
 - Accelerated gradient method has rate $(1 \sqrt{\frac{\mu}{L}}) = 0.99761$.

 - SAG (*N* iterations) has rate $\left(1 \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^N = 0.88250$. Fastest possible first-order method: $\left(\frac{\sqrt{L} \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^2 = 0.99048$.

- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998$.
 - Accelerated gradient method has rate $(1 \sqrt{\frac{\mu}{L}}) = 0.99761$.

 - SAG (*N* iterations) has rate $(1 \min\{\frac{\mu}{16L}, \frac{1}{8N}\})^N = 0.88250$. Fastest possible first-order method: $(\frac{\sqrt{L} \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}})^2 = 0.99048$.
- SAG beats two lower bounds:
 - Stochastic gradient bound (linear vs. sub-linear).
 - Full gradient bound (for typical L, μ, and N).

- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998$.
 - Accelerated gradient method has rate $(1 \sqrt{\frac{\mu}{i}}) = 0.99761$.

 - SAG (*N* iterations) has rate $\left(1 \min\left\{\frac{1}{16L}, \frac{1}{8N}\right\}\right)^N = 0.88250$. Fastest possible first-order method: $\left(\frac{\sqrt{L} \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^2 = 0.99048$.
- SAG beats two lower bounds:
 - Stochastic gradient bound (linear vs. sub-linear).
 - Full gradient bound (for typical L, μ, and N).
- Number of f'_i evaluations to reach ϵ :
 - Gradient: $O(N_{u}^{L} \log(1/\epsilon))$.

- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2=0.99998.$
 - Accelerated gradient method has rate $(1 \sqrt{\frac{\mu}{i}}) = 0.99761$.

 - SAG (*N* iterations) has rate $\left(1 \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^N = 0.88250$. Fastest possible first-order method: $\left(\frac{\sqrt{L} \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^2 = 0.99048$.
- SAG beats two lower bounds:
 - Stochastic gradient bound (linear vs. sub-linear).
 - Full gradient bound (for typical L, μ, and N).
- Number of f'_i evaluations to reach ϵ :
 - Gradient: $O(N_{u}^{L} \log(1/\epsilon))$.
 - Accelerated: $O(N_{\sqrt{\frac{L}{\mu}}} \log(1/\epsilon))$.

- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2=0.99998.$
 - Accelerated gradient method has rate $(1 \sqrt{\frac{\mu}{i}}) = 0.99761$.

 - SAG (*N* iterations) has rate $(1 \min\{\frac{\mu}{16L}, \frac{1}{8N}\})^N = 0.88250$. Fastest possible first-order method: $(\frac{\sqrt{L} \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}})^2 = 0.99048$.
- SAG beats two lower bounds:
 - Stochastic gradient bound (linear vs. sub-linear).
 - Full gradient bound (for typical L, μ, and N).
- Number of f'_i evaluations to reach ϵ :
 - Gradient: $O(N_{\frac{L}{n}} \log(1/\epsilon))$.
 - Accelerated: $O(N_{\sqrt{\frac{L}{\mu}}} \log(1/\epsilon))$.
 - SAG: $O(\max\{N, \frac{L}{n}\}\log(1/\epsilon))$.

Constants in Convergence Rate

Theorem. With $\alpha_t = \frac{1}{16L}$ the SAG iterations satisfy

$$\mathbb{E}[g(x^t) - g(x^*)] \leqslant \left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^t C,$$

where if we initialize with $y_i^0 = 0$ we have

$$C = [g(x^0) - g(x^*)] + \frac{4L}{N} ||x^0 - x^*||^2 + \frac{\sigma^2}{16L},$$

and if we initialize with $y_i^0 = f_i'(x^0) - g'(x^0)$ we have

$$C = \frac{3}{2}[g(x^0) - g(x^*)] + \frac{4L}{N}||x^0 - x^*||^2.$$

• If we initialize with N iterations of SG, $[g(x^0) - g(x^*)]$ and $||x^0 - x^*||^2$ are in O(1/N) so C = O(1/N).

Convergence Rate in Convex Case

Assume only that:

• f_i is convex, f'_i is L-continuous, some x^* exists.

Assume only that:

• f_i is convex, f'_i is L-continuous, some x^* exists.

Theorem. With $\alpha_t \leqslant \frac{1}{16L}$ the SAG iterations satisfy

$$\mathbb{E}[g(x^t) - g(x^*)] = O(1/N)$$

• Faster than SG lower bound of $O(1/\sqrt{N})$.

Assume only that:

• f_i is convex, f'_i is L-continuous, some x^* exists.

Theorem. With $\alpha_t \leqslant \frac{1}{16L}$ the SAG iterations satisfy

$$\mathbb{E}[g(x^t) - g(x^*)] = O(1/N)$$

- Faster than SG lower bound of $O(1/\sqrt{N})$.
- Same algorithm and step-size as strongly-convex case:
 - Algorithm is adaptive to strong-convexity.
 - Faster convergence rate if μ is locally bigger around x^* .

Assume only that:

• f_i is convex, f'_i is L-continuous, some x^* exists.

Theorem. With $\alpha_t \leqslant \frac{1}{16L}$ the SAG iterations satisfy

$$\mathbb{E}[g(x^t) - g(x^*)] = O(1/N)$$

- Faster than SG lower bound of $O(1/\sqrt{N})$.
- Same algorithm and step-size as strongly-convex case:
 - Algorithm is adaptive to strong-convexity.
 - Faster convergence rate if μ is locally bigger around x^* .
- Same algorithm could be used in non-convex case.

Assume only that:

• f_i is convex, f'_i is L-continuous, some x^* exists.

Theorem. With $\alpha_t \leqslant \frac{1}{16L}$ the SAG iterations satisfy

$$\mathbb{E}[g(x^t) - g(x^*)] = O(1/N)$$

- Faster than SG lower bound of $O(1/\sqrt{N})$.
- Same algorithm and step-size as strongly-convex case:
 - Algorithm is adaptive to strong-convexity.
 - Faster convergence rate if μ is locally bigger around x^* .
- Same algorithm could be used in non-convex case.
- Contrast with SDCA:
 - Requires explicit strongly-convex regularizer.
 - Not adaptive to μ , does not allow $\mu = 0$.

Comparing FG and SG Methods

• quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)

Comparison of competitive deterministic and stochastic methods.

SAG Compared to FG and SG Methods

• quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)

SAG starts fast and stays fast.

SAG Compared to Coordinate-Based Methods

• quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)

PCD/DCA are similar on some problems, much worse on others.

- while(1)
 - Sample *i* from $\{1, 2, ..., N\}$.
 - Compute $f'_i(x)$.
 - $d = d y_i + f'_i(x)$.
 - $y_i = f_i'(x)$.
 - $x = x \frac{\alpha}{N}d$.

- while(1)
 - Sample *i* from $\{1, 2, ..., N\}$.
 - Compute $f'_i(x)$.
 - $d = d y_i + f'_i(x)$.
 - $y_i = f_i'(x)$.
 - $x = x \frac{\alpha}{N}d$.
- Issues:
 - Should we normalize by N?

- while(1)
 - Sample *i* from $\{1, 2, ..., N\}$.
 - Compute $f'_i(x)$.
 - $d = d y_i + f'_i(x)$.
 - $\mathbf{y}_i = f_i'(\mathbf{x})$.
 - $x = x \frac{\alpha}{N}d$.
- Issues:
 - Should we normalize by N?
 - Can we reduce the memory?

- while(1)
 - Sample *i* from $\{1, 2, ..., N\}$.
 - Compute $f'_i(x)$.
 - $d = d y_i + f'_i(x)$.
 - $\mathbf{y}_i = f_i'(\mathbf{x})$.
 - $x = x \frac{\alpha}{N} d$.
- Issues:
 - Should we normalize by N?
 - Can we reduce the memory?
 - Can we handle sparse data?

- while(1)
 - Sample *i* from $\{1, 2, ..., N\}$.
 - Compute $f'_i(x)$.
 - $d = d y_i + f'_i(x)$.
 - $\mathbf{y}_i = f_i'(\mathbf{x})$.
 - $x = x \frac{\alpha}{N} d$.
- Issues:
 - Should we normalize by N?
 - Can we reduce the memory?
 - Can we handle sparse data?
 - How should we set the step size?

- while(1)
 - Sample *i* from $\{1, 2, ..., N\}$.
 - Compute $f'_i(x)$.
 - $d = d y_i + f'_i(x)$.
 - $\mathbf{y}_i = f_i'(\mathbf{x})$.
 - $x = x \frac{\alpha}{N} d$.
- Issues:
 - Should we normalize by N?
 - Can we reduce the memory?
 - Can we handle sparse data?
 - How should we set the step size?
 - When should we stop?

- while(1)
 - Sample *i* from $\{1, 2, ..., N\}$.
 - Compute $f'_i(x)$.
 - $d = d y_i + f'_i(x)$.
 - $\mathbf{y}_i = f_i'(\mathbf{x})$.
 - $X = X \frac{\alpha}{N} d$.
- Issues:
 - Should we normalize by N?
 - Can we reduce the memory?
 - Can we handle sparse data?
 - How should we set the step size?
 - When should we stop?
 - Can we use mini-batches?

- while(1)
 - Sample *i* from {1, 2, ..., *N*}.
 - Compute $f'_i(x)$.
 - $d = d y_i + f'_i(x)$.
 - $\mathbf{y}_i = f_i'(\mathbf{x})$.
 - $x = x \frac{\alpha}{N} d$.
- Issues:
 - Should we normalize by N?
 - Can we reduce the memory?
 - Can we handle sparse data?
 - How should we set the step size?
 - When should we stop?
 - Can we use mini-batches?
 - Should we shuffle the data?

Implementation Issues: Normalization

- Should we normalize by N in the early iterations?
- The parameter update:
 - $x = x \frac{\alpha}{N}d$.

Implementation Issues: Normalization

- Should we normalize by N in the early iterations?
- The parameter update:

•
$$X = X - \frac{\alpha}{M}d$$
.

- We normalize by number of examples seen (M).
- Better performance on early iterations.

Implementation Issues: Memory Requirements

- Can we reduce the memory?
- The memory update for $f_i(a_i^T x)$:
 - Compute $f'_i(a_i^T x)$.
 - $d = d (y_i f_i'(a_i^T x)).$
 - $y_i = f_i'(a_i^T x)$.

Implementation Issues: Memory Requirements

- Can we reduce the memory?
- The memory update for $f_i(a_i^T x)$:
 - Compute $f'_i(\delta)$, with $\delta = \mathbf{a}_i^\mathsf{T} \mathbf{x}$.
 - $\bullet \ d = d a_i(y_i f'(\delta)).$
 - $y_i = f_i'(\delta)$.
- Only store the scalars $f_i'(\delta)$.
- Reduces the memory from O(NP) to O(N).

Implementation Issues: Sparsity

- Can we handle sparse data?
- The parameter update for each variable *j*:
 - $\bullet \ \ \textit{x}_{\textit{j}} = \textit{x}_{\textit{j}} \tfrac{\alpha}{\textit{M}} \frac{\textit{d}_{\textit{j}}}{\textit{d}_{\textit{j}}}.$

Implementation Issues: Sparsity

- Can we handle sparse data?
- The parameter update for each variable j:

•
$$x_i = x_i - \frac{k\alpha}{M} d_i$$
.

- For sparse data, d_i is typically constant.
- Apply previous k updates when it changes.

Implementation Issues: Sparsity

- Can we handle sparse data?
- The parameter update for each variable j:

•
$$X_j = X_j - \frac{k\alpha}{M} d_j$$
.

- For sparse data, di is typically constant.
- Apply previous k updates when it changes.
- Reduces the iteration cost from O(P) to $O(\|f_i'(x)\|_0)$.
- Standard tricks allow ℓ_2 -regularization and ℓ_1 -regularization.

• How should we set the step size?

- How should we set the step size?
 - Theory: $\alpha = 1/16L$.
 - Practice: $\alpha = 1/L$.

- How should we set the step size?
 - Theory: $\alpha = 1/16L$.
 - Practice: $\alpha = 1/L$.
- What if L is unknown or smaller near x*?

- How should we set the step size?
 - Theory: $\alpha = 1/16L$.
 - Practice: $\alpha = 1/L$.
- What if L is unknown or smaller near x*?
 - Start with a small L.
 - Increase L until we satisfy:

$$f_i(x^+ - \frac{1}{L}f_i'(x)) \le f_i'(x) - \frac{1}{2L}||f_i'(x)||^2.$$

(assuming
$$||f_i'(x)||^2 \ge \epsilon$$
)

Decrease L between iterations.

- How should we set the step size?
 - Theory: $\alpha = 1/16L$.
 - Practice: $\alpha = 1/L$.
- What if L is unknown or smaller near x*?
 - Start with a small L.
 - Increase L until we satisfy:

$$f_i(x^+ - \frac{1}{L}f_i'(x)) \le f_i'(x) - \frac{1}{2L}||f_i'(x)||^2.$$

(assuming $||f_i'(x)||^2 \ge \epsilon$)

- Decrease / between iterations.
- For $f'_i(a_i^T x)$, this line-search is O(1) in N and P:

$$f_i'(a_i^T x - \frac{f'(\delta)}{L} ||a_i||^2).$$

• When should we stop?

- When should we stop?
- Normally we check the size of ||f'(x)||.

- When should we stop?
- Normally we check the size of ||f'(x)||.
- And SAG has $y_i \to f'_i(x)$.

- When should we stop?
- Normally we check the size of ||f'(x)||.
- And SAG has $y_i \to f'_i(x)$.
- We can check the size of $\|\frac{1}{N}d\| = \|\frac{1}{N}\sum_{i=1}^{N}y_i\| \to \|f'(x)\|$

Implementation Issues: Mini-Batches

• Can we use mini-batches?

Implementation Issues: Mini-Batches

- Can we use mini-batches?
 - Yes, define each f_i to include more than one example.
 - Reduces memory requirements.
 - Allows vectorization.
 - But must decrease L for good performance: $L_{\mathcal{B}} \leq \max_{i \in \mathcal{B}} \{L_i\}$.

Implementation Issues: Mini-Batches

- Can we use mini-batches?
 - Yes, define each f_i to include more than one example.
 - Reduces memory requirements.
 - Allows vectorization.
 - But must decrease *L* for good performance: $L_{\mathcal{B}} \leq \max_{i \in \mathcal{B}} \{L_i\}$.
 - In practice, use the line-search on the batch to determine $L_{\mathcal{B}}$.

Implementation Issues: Non-Uniform Sampling

Does re-shuffling and doing full passes work better?

Implementation Issues: Non-Uniform Sampling

- Does re-shuffling and doing full passes work better?
 - NO!

- Does re-shuffling and doing full passes work better?
 - NO!
 - Performance is intermediate between IAG and SAG.

- Does re-shuffling and doing full passes work better?
 - NO!
 - Performance is intermediate between IAG and SAG.
- Can non-uniform sampling help?

- Does re-shuffling and doing full passes work better?
 - NO!
 - Performance is intermediate between IAG and SAG.
- Can non-uniform sampling help?
 - Duplicate examples proportional to their Lipschitz constants:

$$\frac{1}{N}\sum_{i=1}^{N}f_{i}(x)=\frac{1}{\sum L_{i}}\sum_{i=1}^{N}\sum_{j=1}^{L_{i}}L_{\text{mean}}\frac{f_{i}(x)}{L_{i}}.$$

Now convergence rate depends on L_{mean} instead of L_{max}.

- Does re-shuffling and doing full passes work better?
 - NO!
 - Performance is intermediate between IAG and SAG.
- Can non-uniform sampling help?
 - Duplicate examples proportional to their Lipschitz constants:

$$\frac{1}{N} \sum_{i=1}^{N} f_i(x) = \frac{1}{\sum L_i} \sum_{i=1}^{N} \sum_{j=1}^{L_i} L_{\text{mean}} \frac{f_i(x)}{L_i}.$$

- Now convergence rate depends on L_{mean} instead of L_{max} .
- Sample proportional to Lipschitz constants (skip the duplications).

- Does re-shuffling and doing full passes work better?
 - NO!
 - Performance is intermediate between IAG and SAG.
- Can non-uniform sampling help?
 - Duplicate examples proportional to their Lipschitz constants:

$$\frac{1}{N} \sum_{i=1}^{N} f_i(x) = \frac{1}{\sum L_i} \sum_{i=1}^{N} \sum_{j=1}^{L_i} L_{\text{mean}} \frac{f_i(x)}{L_i}.$$

- Now convergence rate depends on L_{mean} instead of L_{max}.
- Sample proportional to Lipschitz constants (skip the duplications).
- No re-weighting required.
 (just updates y_i more often if f'_i can change more quickly)

- Does re-shuffling and doing full passes work better?
 - NO!
 - Performance is intermediate between IAG and SAG.
- Can non-uniform sampling help?
 - Duplicate examples proportional to their Lipschitz constants:

$$\frac{1}{N} \sum_{i=1}^{N} f_i(x) = \frac{1}{\sum L_i} \sum_{i=1}^{N} \sum_{j=1}^{L_i} L_{\text{mean}} \frac{f_i(x)}{L_i}.$$

- Now convergence rate depends on L_{mean} instead of L_{max}.
- Sample proportional to Lipschitz constants (skip the duplications).
- No re-weighting required.
 (just updates y_i more often if f'_i can change more quickly)
- Better performance using partially biased sampling.
- Combine with the line-search for adaptive sampling.
 (see paper/code for details)

SAG with Non-Uniform Sampling

• protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)

Datasets where SAG had the worst relative performance.

SAG with Non-Uniform Sampling

• protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)

• Lipschitz sampling helps a lot.

• Faster theoretical convergence using only the 'sum' structure.

- Faster theoretical convergence using only the 'sum' structure.
- Simple algorithm, empirically better than theory predicts.

- Faster theoretical convergence using only the 'sum' structure.
- Simple algorithm, empirically better than theory predicts.
- Black-box stochastic gradient algorithm:
 - Adaptivity to problem difficulty, line-search, termination criterion.

- Faster theoretical convergence using only the 'sum' structure.
- Simple algorithm, empirically better than theory predicts.
- Black-box stochastic gradient algorithm:
 - Adaptivity to problem difficulty, line-search, termination criterion.
- Constrained and non-smooth problems:
 - Proximal-gradient, ADMM.

[Mairal, 2013, Wong et al., 2013, Mairal, 2014, Next talk, 2014]

- Faster theoretical convergence using only the 'sum' structure.
- Simple algorithm, empirically better than theory predicts.
- Black-box stochastic gradient algorithm:
 - Adaptivity to problem difficulty, line-search, termination criterion.
- Constrained and non-smooth problems:
 - Proximal-gradient, ADMM.
 [Mairal, 2013, Wong et al., 2013, Mairal, 2014, Next talk, 2014]
- Memory-free methods:
 - Similar performance, but requires two f'_i evaluations per iteration. [Mahdavi et al., 2013, Johnson and Zhang, 2013, Zhang et al., 2013, Konecny and Richtarik, 2013, Next talk, 2014]]

- Faster theoretical convergence using only the 'sum' structure.
- Simple algorithm, empirically better than theory predicts.
- Black-box stochastic gradient algorithm:
 - Adaptivity to problem difficulty, line-search, termination criterion.
- Constrained and non-smooth problems:
 - Proximal-gradient, ADMM.
 [Mairal, 2013, Wong et al., 2013, Mairal, 2014, Next talk, 2014]
- Memory-free methods:
 - Similar performance, but requires two f_i' evaluations per iteration. [Mahdavi et al., 2013, Johnson and Zhang, 2013, Zhang et al., 2013, Konecny and Richtarik, 2013, Next talk, 2014]]
- For the adventurous:
 - Accelerated (seems to work, but requires a small step size).
 - Newton-like (diagonal-scaling didn't seem to help).
 - Going asynchronous (algorithm seems to be robust to this).
 - Simpler proof technique.