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Communities discovered in a 3.7M node network of U.S. Patents

[Gopalan and Blei, PNAS 2013]



1 2 3 4 5
game life film book wine
season know movie life street
team school show books hotel
coach street life novel house

play man television story room
points family films man night
games says director author place
giants house man house restaurant
second children story war park
plavers night savs children qarden
6 7 8 9 10
bush building won yankees government
campaign street team game war
clinton square second mets military
republican housing race season officials
house house round run iraq
party buildings cup league forces
democratic = development open baseball iraqi
political space game team army
democrats percent play games troops
senator real win hit oldier:
11 12 13 14 15
children stock church art police
school percent war museum yesterday
women companies women show man
family fund life gallery officer
parents market black works officers
child bank political artists case
life investors catholic street found
says funds government artist charged
help financial jewish paintings street
mother business pope exhibition shot
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[Hoffman, Blei, Wang, Paisley, JMLR 2013]



Population analysis of 2 billion genetic measurements

[Gopalan, Hao, Blei, Storey, in preparation]



Neuroscience analysis of 220 million fMRI measurements

[Manning, Ranganath, Blei, Norman, submitted]



This talk

Build model Infer hidden Predict & Explore

variables

—

e Customized data analysis is important to many fields.
e Pipeline separates assumptions, computation, application

e Eases collaborative solutions to data science problems



This talk
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—

e Graphical models are a language for expressing assumptions about data.
e Variational methods turn inference into optimization.

e Stochastic optimization scales up and generalizes variational methods.



This talk
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—

e |Introduction to variational methods
e Scaling up with stochastic variational inference [Hoffman et al., 2013]

e Generalizing with black box variational inference [Ranganath et al., 2014]



Stochastic Variational Inference
(with Matt Hoffman, Chong Wang, John Paisley)
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Classical variational inference
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e Given data, estimate the conditional distribution of the hidden variables.

e Local variables describe per-data point hidden structure.
o Global variables describe structure shared by all the data.

e Classical variational inference:
¢ Do some local computation for each data point.
e Aggregate these computations to re-estimate global structure.
e Repeat.

e [nefficient, and cannot handle massive data sets.



Stochastic variational inference
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Stochastic variational inference
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@ A generic class of models

® Classical mean-field variational inference

@® Stochastic variational inference



A generic class of models

Global variables R 'B

X
Local variables . l

p(B. zt:m x1:0) = p(B) [ [ P2 | Bp(xi | 2i, B)
i=1

A generic model with local and global variables:
e The observations are x = xy:p.
e The local variables are z = z;..
e The global variables are .
e The ith data point x; only depends on z; and S5.

Our goal is to compute p(8, z | x).



A generic class of models

Global variables R 'B

X
Local variables . l

p(B. zt:m x1:0) = p(B) [ [ P2 | Bp(xi | 2i, B)
i=1

e A complete conditional is the conditional of a latent variable given the
observations and other latent variable.

e Assume each complete conditional is in the exponential family,

p(zi| B.x;) = h(z;)exping(B. Xi)TZi —a(ne(B, x)}
p(Blz.x) = h(B)exp{ng(z.x)" B —a(ng(z.x))}.



A generic class of models

Global variables R 'B

Xi
Local variables

p(B. zt:m x1:0) = p(B) [ [ P2 | Bp(xi | 2i, B)
i=1

e Bayesian mixture models Dirichlet process mixtures, HDPs

e Time series models Multilevel regression
(variants of HMMs, Kalman filters) (linear, probit, Poisson)

Stochastic blockmodels

Factorial models

Matrix factorization Mixed-membership models
(e.g., factor analysis, PCA, CCA) (LDA and some variants)



Mean-field variational inference
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Introduce a variational distribution over the latent variables q(8, z).
Optimize the evidence lower bound (ELBO) with respect to q,

log p(x) > Eg4llog p(B, Z, x)] — Eg[log q(B, 2)].
Equivalent to minimizing the KL between g and the posterior

The ELBO links the observations/model to the variational distribution.




Mean-field variational inference
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e Set g(B, 2) to be a fully factored variational distribution,
a(B.2) = a(BI M) [Ti=; azi | ¢0).-

e Each component is in the same family as the model conditional,

p(Blz.x) = h(B)exping(z,x)" B —a(ng(z,x))}
a(BIA) = h(B)expirT B —a(M)}.

e (Same for the local variational parameters)




Mean-field variational inference
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e Optimize the ELBO with coordinate ascent. The ELBO is

LA, p1:n) = Eqllog p(B. Z, x)] — Egllog q(B. 2)].

o With respect to the global parameters, the gradient is
ViL = ' (M) (Egng(Z, x)] — A).

e This leads to a simple coordinate update [Ghahramani and Beal, 2001]

A= Eg [7’]9(2, X)] .




Mean-field variational inference

Initialize A randomly.
Repeat until the ELBO converges

@ For each data point, update the local variational parameters:
O = Eyonlne(B.x)] forie{1,....n.

® Update the global variational parameters:
/\(t) = E¢(r) [ng(Zun, X1:n)].

e Inefficient: We analyze the whole data set before completing one iteration.

e E.g.: Initeration #1 we analyze all documents with random topics.



Stochastic variational inference
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e Stochastic variational inference stems from this classical algorithm

e |dea #1: Natural gradients [Amari, 1998]

e |dea #2: Stochastic optimization [Robbins and Monro, 1951]



Natural gradients

- P

q
—— gradient
—6— Riemannian gradient

[Honkela et al., 2010]

e The natural gradient of the ELBO is
VoL = Eg[ng(Z, x)] — A.

e We can compute the natural gradient by computing the coordinate updates
in parallel and subtracting the current variational parameters. [Sato, 2001]



Stochastic optimization

A STOCHASTIC APPROXIMATION METHOD'
By HerBERT RoBBINS AND SuTToN MONRO
University of North Carolina

1. Summary. Let M (z) denote the expected value at level z of the response
to a certain experiment. M (z) is assumed to be a monotone function of z but is
unknown to the experimenter, and it is desired to find the solution z = 6 of the
equation M(z) = a, where « is a given constant. We give a method for making
successive experiments at levels 2y , 2, , - - - in such a way that z, will tend to 6 in
probability.

e Why waste time with the real gradient, when a cheaper noisy estimate of the
gradient will do? [Robbins and Monro, 1951]

e Stochastic optimization follows noisy estimates of the gradient.

e Guaranteed to converge to a local optimum [Bottou, 1996]



Stochastic variational inference
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We will use stochastic optimization for global variables.

Let V, L; be a realization of a random variable whose expectation is V L.

Iteratively set
A0 =2 4 v, 1,

This leads to a local optimum when

oo oo
E €= 00 E €% <00
t=1 t=1



Stochastic variational inference

e With local and global variables, we decompose the ELBO

L = E[log p(B)] — Ellog q(B)] + >/, Ellog p(z:, x; | B)] — E[log q(2))]

e Sample a single data point t uniformly from the data and define

L = Ellog p(B)] — E[log q(8)] + n(E[log p(z:, x; | B)] — E[log q(z1)]).

1. The ELBO is the expectation of L£; with respect to the sample.
2. The gradient of the t-ELBO is a noisy gradient of the ELBO.
3. The t-ELBO is like an ELBO where we saw x; repeatedly.




Stochastic variational inference

o Let n¢(Z;, x;) be the conditional distribution of the global variable for the
model where the observations are n replicates of x;.

e With this, the noisy natural gradient of the ELBO is
Vkﬁf = Ed),[’?t(zt’ Xt)] - A’

* Notes:
¢ It only requires the local variational parameters of one data point.
¢ In contrast, the full natural gradient requires all local parameters.
e Thanks to conjugacy it has a simple form.



Stochastic variational inference

Initialize global parameters A randomly.
Set the step-size schedule €; appropriately.
Repeat forever

@ Sample a data point uniformly,
x; ~ Uniform(x, ..., xp).

® Compute its local variational parameter,

¢ = Exanlne(B, x)].
® Pretend its the only data point in the data set,

A= Eg[n:(Z, xp)]-
@ Update the current global variational parameter,
AD = (1 =)A= f e




Stochastic variational inference in LDA
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@ Sample a document
® Estimate the local variational parameters using the current topics
©® Form intermediate topics from those local parameters

@ Update topics as a weighted average of intermediate and current topics



Stochastic variational inference in LDA
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[Hoffman et al., 2010]
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We defined a generic algorithm for scalable variational inference.

e Bayesian mixture models e Dirichlet process mixtures, HDPs
e Time series models e Multilevel regression
(variants of HMMs, Kalman filters) (linear, probit, Poisson)
e Factorial models e Stochastic blockmodels
e Matrix factorization e Mixed-membership models

(e.g., factor analysis, PCA, CCA) (LDA and some variants)



Black Box Variational Inference
(with Rajesh Ranganath and Sean Gerrish)



Black box variational inference

Build model Infer hidden Predict & Explore

variables S

Our vision:

e Easily use variational inference with any model
* No requirements on the complete conditionals

* No mathematical work beyond specifying the model



Black box variational inference
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The original, but slow, black box: [Metropolis, 1953; Hastings, 1970]

Tailored to models: [Jordan and Jaakkola, 1996; Braun and McAuliffe, 2008; others]

Requires model-specific analysis: [Wang and Blei, 2013; Knowles and Minka, 2011]

Similar goals: [Salimans and Knowles, 2012; Salimans and Knowles, 2014]



Black box variational inference
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The ELBO:

Its gradient:

VoL(v) =

L) =E

qllogp(B, Z, x)]
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—log q(B,Z|v)]

Eq[Vy log q(B. Z | v)(logp(B. Z, x) —log q(B. Z | v))]




Black box variational inference
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A noisy gradient at v:

B
VoLO) & 2 3 (V109 a(Be. 2| 1)(100 p(Bo. 25 ) ~ 109 0 2] v)
b=1

where

(Bo. 20) ~ q(B. 2| V)



The noisy gradient

B
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e We use these gradients in a stochastic optimization algorithm.

e Requirements:
» Sampling from q(8, z)
e Evaluating V,, log q(8, z | v)
o Evaluating log p(8, z, x)



The noisy gradient

B
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o A black box:

o Requirements around g(-) can be reused across models.
o Evaluating log p(8, z, x) is akin to defining the model.

e But the variance of the estimator is high



The noisy gradient

B

VoLW) = =Y (V0109 (B, 20| v) 100 p(Bo. 25, ) ~ 109 (B 25| 1)
b=1

Rao-Blackwellization for each component of the gradient

Control variates, again using Vy, log g(8, z | v)

AdaGrad, for setting learning rates

Stochastic variational inference, for handling massive data



predictive likelihood
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A nonconjugate Normal-Gamma time-series model



Neuroscience analysis of 220 million fMRI measurements

[Manning, Ranganath, Blei, Norman, submitted]
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e Customized data analysis is important to many fields.
e Pipeline separates assumptions, computation, application

e Eases collaborative solutions to data science problems



This talk
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—

e Graphical models are a language for expressing assumptions about data.
e Variational methods turn inference into optimization.

e Stochastic optimization scales up and generalizes variational methods.



This talk
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variables

—

e Scaling up with stochastic variational inference [Hoffman et al., 2013]
e Generalizing with black box variational inference [Ranganath et al., 2014]

e Please help us.



