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Three Dimensional Puzzle
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Cryo Electron Microscopy: Projection Images
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◮ The projection image is Pg (x , y) =
∫

∞

−∞
φg (x , y , z) dz .

◮ φ(r) is the electric potential of the molecule, φg (r) = φ(g−1r).
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Projection Images: Toy Example

Amit Singer (Yale University) Cryo-EM IPAM 5 / 42



Cryo-EM for Structuring of Proteins

◮ Almost all protein channels cannot be crystallized.

◮ Rod MacKinnon was co-awarded the Chemistry Nobel Prize in 2003
for resolving the structure of the Shaker K+ channel protein by X-ray
crystallography.

◮ Cryo-EM: projection images of “frozen” proteins

◮ Thousands of images: every image corresponds to a different protein
frozen in a different space orientation.

◮ Orientations are random and unknown.

◮ Electron beam destroys the imaged protein:
a single protein can be imaged only once.

◮ Images are very noisy (low SNR)

◮ Images are 100 × 100 pixels.
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Fourier projection-slice theorem
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The Fourier projection-slice theorem

◮ θ ∈ S2 beaming direction, θ⊥ orthogonal plane.

◮ The 2D FT of the projection image is the double integral

P̂θ(ξ) =

∫

θ⊥
e−ir ·ξPθ(r) dr .

◮ The 3D FT of the molecule is the triple integral

φ̂(ξ) =

∫

R3

e−ir ·ξφ(r) dr .

◮ Slice Theorem: P̂θ(η) = φ̂(η), η ∈ θ⊥.
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The Geometry of the slice theorem

◮ Every image is a great circle over S2.

◮ Any pair of images have a common line, or

◮ Any pair of great circles meet at two antipodal points.
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Three Dimensional Puzzle

◮ The radial lines are the puzzle pieces.

◮ Every image is a circular chain of pieces.

◮ Common line: meeting point

Amit Singer (Yale University) Cryo-EM IPAM 10 / 42



Spiders: It’s the Network

◮ K projection images

◮ L radial lines

◮ We build a weighted directed graph G = (V ,E ,W ).

◮ The vertices are the radial lines (|V | = KL)

V = {(k, l) : 1 ≤ k ≤ K , 0 ≤ l ≤ L − 1}

E = {((k1, l1), (k2, l2)) : (k1, l1) points to (k2, l2)}

W(k1,l1),(k2,l2) =

{

1 if ((k1, l1), (k2, l2)) ∈ E

0 if ((k1, l1), (k2, l2)) 6∈ E

◮ W is a sparse weight matrix of size KL × KL
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Spider first pair of legs

◮ Blue vertex (k1, l1) is the head of the spider

◮ Link (k1, l1) with (k1, l1 + l), −d ≤ l ≤ d (same image radial lines)

◮ Weights: W(k1,l1),(k1,l1+l) = 1.
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Spider: remaining legs

◮ (k1, l1) and (k2, l2) are common radial lines of different images.

◮ Links: ((k1, l1), (k2, l2 + l)) ∈ E for − d ≤ l ≤ d .

◮ Weights: W(k1,l1),(k2,l2+l) = 1.
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Averaging operator

◮ Row stochastic normalization of W

A = D−1W.

◮ D is a diagonal matrix, Dii =
∑N

j=1 Wij .

◮ The matrix A is an averaging operator:

(Af)(k1, l1) =
1

|{((k1, l1), (k2, l2)) ∈ E}|

∑

((k1,l1),(k2,l2))∈E

f (k2, l2).

A assigns the head of each spider the average of f over its legs.

◮ A1 = 1: trivial eigenvector ψ0 = 1, with λ0 = 1.
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Coordinate Eigenvectors

◮ Coordinate vectors x, y and z are eigenvectors:

Ax = λx Ay = λy Az = λz

◮ The center of mass of every spider is beneath the spider’s head:
any pair of opposite legs balance each other – symmetric weights.
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Embedding and algorithm

◮ Find the common lines for all pairs of images.

◮ Construct the averaging operator A.

◮ Compute eigenvectors Aψi = λiψi .

◮ Embed the data into the eigenspace (ψ1,ψ2,ψ3)

(k, l) 7→ (ψ1(k, l),ψ2(k, l),ψ3(k, l)).

◮ Reveals molecule orientations up to rotation and reflection.

◮ Final cosmetics:
PCA same image radial lines and equally space them.
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Numerical Spectrum
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Spherical Harmonics

◮ The spherical harmonics Y m
l are the eigenfunctions of the Laplacian

on the sphere

∆S2Y m
l = −l(l + 1)Y m

l , l = 0, 1, 2, . . . , m = −l , . . . , l .

◮ Funk-Hecke: The spherical harmonics are the eigenfunctions of any
integral operator that commutes with rotations:

(Kf )(β) =

∫

S2

k(〈β, β′〉)f (β′) dSβ′ ,

KY m
l = λlY

m
l .

◮ The spider kernel commutes with rotations only on average, so
spherical harmonics are not guaranteed.

◮ The three linear spherical harmonics are exact eigenfunctions of the
spider kernel.
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Toy Example
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E. coli ribosome
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E. coli ribosome
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Advantages

◮ Global: all radial lines are linked together.

◮ Fast: linear in data size KL and intersection points
(

K
2

)

.

◮ Averaging: all geometric information is averaged.

◮ Robust: errors due to false detections of common lines are smoothed
out (can be viewed as matrix perturbation).

◮ Optional: omit uncertain common lines (fewer legs).
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Beyond CryoEM: Center of mass averaging operator

◮ Coordinates x, y, z are eigenfunctions of the averaging operator:

Ax = λx Ay = λy Az = λz.

◮ Sphere has a constant curvature.
Is there a generalization to Euclidean spaces?
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Global Positioning from Local Distances
Problem setup:

◮ N points ri ∈ R
p (p = 2, 3).

◮ Find coordinates ri = (x1
i , . . . , xp

i )

◮ Given noisy neighboring distances δij = ‖ri − rj‖2 + noise.

Solution:

◮ Build an operator whose eigenfunctions are the global coordinates.

◮ Efficient eigenvector computation of a sparse matrix.

Applications:

◮ Sensor networks

◮ Protein structuring from NMR spectroscopy
(1/r6 decay of the spin-spin interaction between hydrogen atoms)

◮ Surface reconstruction and PDE solvers.

◮ More?
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Global Positioning from Local Distances: History

◮ Multidimensional Scaling (MDS) if all dij = ‖ri − rj‖ are given:
law of cosines + SVD of the inner product matrix.

◮ Optimization: minimizing a variety of loss functions, e.g.

min
r1,...,rN

∑

i∼j

[

‖ri − rj‖
2 − δ2

ij

]2

many variables, not convex, local minima.

◮ Semidefinite programming (SDP), slow.

◮ Graph Laplacian regularization
(Weinberger, Sha, Zhu & Saul, NIPS 2006).
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Rigidity
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Locally Rigid Embedding

◮ Assume local rigidity.

◮ For each point, embed its k-NN locally (using MDS or otherwise).

◮ N local coordinate systems mutually rotated and possibly reflected.

◮ How to glue the different coordinate systems together?
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Center of Mass

◮ Consider the point ri and its k-NN ri1 , ri2 , . . . , rik .

◮ Find weights such that ri is the center of mass of its neighbors

k
∑

j=1

Wi ,ij rij = ri

and
k

∑

j=1

Wi ,ij = 1

System of p + 1 linear equations in k variables;
underdetermined for k > p + 1.

◮ Weights are invariant to rigid transformations:
rotation, translation, reflection.

◮ In practice we choose the solution with min
∑k

j=1 W 2
i ,ij

to keep weights balanced.
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Eigenvectors of W

◮ The N × N weight matrix W is sparse:
every row has at most k non-zero elements.

◮ W is not symmetric;
must have negative weights for points on the boundary.

◮ By construction

W1 = 1, Wx1 = x1, . . . , Wxp = xp,

because
N

∑

j=1

Wij = 1,
N

∑

j=1

Wij rj = ri .

◮ We are practically done:
eigenvectors of W with λ = 1 are the desired coordinates.

◮ A little linear algebra is needed to deal with multiplicity and noise.
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1097 US Cities, k = 18 NN
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Locally Rigid Embedding: 10% noise
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US Cities: Numerical Spectrum
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Numerical spectrum of W for different levels of noise:
clean distances (left), 1% noise (center), and 10% noise (right).
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519 hydrogen atoms of 2GGR: 1% noise
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2GGR: 5% noise
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2GGR: Numerical Spectrum
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Dealing with the multiplicity

◮ The eigenvalue λ = 1 is degenerated with multiplicity p + 1

Wφi = φi , i = 0, 1, . . . , p.

◮ The computed eigenvectors φ0,φ1, . . . ,φp are linear combinations of
1, x1, . . . , xp.

◮ We may assume φ0 = 1 and 〈φj ,1〉 = 0 for j = 1, . . . , p.

◮ We look for a p × p matrix A that maps the eigenmap
Φi = (φ1

i , . . . ,φ
p
i ) to the original coordinate set ri = (x1

i , . . . , xp
i )

ri = AΦi , for i = 1, . . . ,N.

◮ The squared distance between ri and rj is

d2
ij = ‖ri − rj‖

2 = (Φi − Φj)
TATA(Φi − Φj).

◮ Overdetermined system of linear equations for the elements of ATA.
Least squares gives ATA, whose Cholesky decomposition yields A.
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Dealing with noisy distances δij

◮ Noise breaks the degeneracy and may lead to crossings of eigenvalues.

◮ Coordinate vectors are approximated as linear combinations of m

non-trivial eigenvectors Φi = (φ1, . . . , φm), with m > p (still m ≪ N).

◮ ri = AΦi , with A being p × m instead of p × p.

◮ Replace

d2
ij = ‖ri − rj‖

2 = (Φi − Φj )
TATA(Φi − Φj)

with the constrained minimization problem for the m ×m semidefinite
positive matrix P = ATA

min
∑

i∼j

[

(Φi − Φj)
TP(Φi − Φj) − δ2

ij

]2
, such that P ≻ 0.

◮ A small SDP (formulation uses the Schur complement lemma).
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Comparison to LLE and Graph Laplacian regularization

◮ Locally Linear Embedding (LLE) is a non-linear dimensionality
reduction method.

◮ LLE: Construct weights by solving an overdetermined system

min

∥

∥

∥

∥

∥

∥

∑

j

WijXj −Xi

∥

∥

∥

∥

∥

∥

2

, where Xi ∈ R
n.

◮ We have a preprocessing step to reveal vectors (Xi are not given).

◮ Graph Laplacian regularization: approximate coordinate by the

eigenvectors of Wij = exp
{

−d2
ij/ε

}

for i ∼ j , Wij = 0 elsewhere.

◮ LRE requires “locally” rigid subgraphs, graph neighbors can be
physically distant.
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Technical Remarks

◮ A sparse symmetric (positive) matrix W with similar spectral
properties can be constructed with the same effort (Dan Spielman)

◮ The eigenvector computation can be done in parallel.

◮ The storage of W is distributed between the N sensors, such that
each point stores only k values of W together with k neighboring
values of a given vector.
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Numerical Integration

◮ Find f = f (x) from its derivative f ′(x).

�
��� �

����

�
�

�
���

◮ Approximate

f (xi+1) = f (xi ) +
1

2

[

f ′(xi ) + f ′(xi+1)
]

∆x

f (xi−1) = f (xi ) −
1

2

[

f ′(xi ) + f ′(xi−1)
]

∆x

◮ Find weights Wi ,i+1, Wi ,i−1 such that

f (xi+1)Wi ,i+1 + f (xi−1)Wi ,i−1 = f (xi ), Wi ,i+1 + Wi ,i−1 = 1.

◮ f = (f (x1), f (x2), . . . , f (xN)) satisfies Wf = f.
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Numerical Integration: Surface Reconstruction
◮ Find f = f (x , y) from its gradient field (fx(x , y), fy (x , y)).
◮ Approximate North, South, East, West and find weights.
◮ Eigenvector computation Wf = f averages over different integration

paths between the blue green points.
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Numerical Integration: Surface Reconstruction
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Thank You!
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