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Genomic/Proteomic Data as Functions

•
 
Genomic and proteomic tools used to find 
biomarkers: genes/proteins related to factors of 
interest, to use in diagnosis/prognosis of disease

•
 
Genes: arrayCGH/SNP chips 

–

 

t =chromosomal location, Y(t) = log2 (copy number change)

•
 
mRNA: tiling microarrays

–

 

t = chromosomal location, Y(t) = mRNA abundance

•
 
Proteins: MALDI-MS/2d Gel Electrophoresis

–

 

t = molecular mass (per unit charge), Y(t) = intensity
–

 

t1 = molecular mass, t2 = pH,  Y(tt, t2 ) = intensity

•
 
Common Characteristics of Data:
–

 

Very high dimensional (1000’s to 10,000’s to 1,000,000’s)
–

 

Functions very irregular, containing various types of 
nonstationarities, discontinuities and local features.
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Statistical Modeling 

•
 
Preprocessing: Necessary to align, background 
correct, and normalize data (technology specific)

•
 
After preprocessing, usual approach involves 2 steps

1. Extract meaningful features   (peaks/spots/segments)
2. Identify which are biomarkers (control for FDR)

•
 
Alternative: Model as functions using FDA approach
–

 

Requires very flexible modeling techniques to capture 
complex local features in data.

–

 

Methods must be computationally efficient enough to handle 
extremely high dimensions of these data

–

 

Must find way to adjust for multiple comparisons in 
functional inference.

•
 
Wavelet-Based Functional Mixed Models           
(Morris and Carroll, 2006 JRSS-B)
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Wavelet-Based Functional Mixed Models

•
 

Goal: Develop automated method that can be 
used to model and perform inference on 
complex, irregular functional and image data. 

•
 

Complexities:
–

 
Very irregular signals – not smooth

–
 

Functions may be correlated (e.g. replicates)
–

 
We may need to factor out effect of nuisance 
factors, i.e. covariates

–
 

We would like to be able to flag certain regions of 
function/image as related to factors of interest, 
while giving assessment of uncertainty and 
controlling for multiple testing (FDR).

•
 

Generalize linear mixed model to functional 
setting
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Linear Mixed Models
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•
 

Fixed effects part, Xβ, accommodate a broad 
class of mean structures, including main 
effects, interactions, and linear coefficients.

•
 

Random effects part, Zu,
 

provides a 
convenient mechanism for modeling 
correlation among the N observations.

Linear Mixed Model
 

(Laird and Ware, 1982):
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Functional Mixed Model (FMM)

•
 

Idea: Relate functional response to set of scalar predictors 
through functional coefficients, while adjusting for 
possible correlation between functions induced by design.

•
 

Suppose we observe a sample of N curves,
Yi

 

(t), i=1, …, N, on a closed interval T

{ { {

functions
error residual

functions
effect random1

function
effect fixed1

functions
response

)()()()( tEtUZtBXtY ik

m

k
ikj

p

j
iji ++= ∑∑

==
321

),0(~)(
 ),0(~)(

SGPtE
QGPtU

i

k

•
 

Bj (t) summarizes partial effect of Xj on Y(t)
•

 
Q(t1,t2 ) and

 
S(t1,t2 ) are covariance surfaces on

 
T

 
×T 

describing the form of the function-function deviations
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Discrete Version of FMM

•
 

Rows of B contain fixed effect functions on grid
•

 
Q and S are within-curve covariance matrices (T ×

 
T) 

approximating surfaces on the grid
–

 

For irregular functional data, Q and S typically contain many 
nonstationarities, yet their dimension is too high to leave 
unstructured

Suppose each observed curve is sampled on a 
common equally-spaced grid of length T.
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Wavelet Space Representation
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Given T-vector y consisting of function sampled on equally-
 spaced grid, a pyramid-based algorithm

 
for DWT (Mallat) 

can be used to obtain d,
 

T –vector of wavelet coefficients, 
in O(T) operations (converse also true)

Linear 
Representation:
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Functional Mixed Models

•
 
Key feature of FMM: Does not require specification of 
parametric form for functions (response, fixed, or random)

•
 
Basis function approach: Yi

 

(t)=Σdijkψjk

 

(t)
•

 
Benefits of Using Wavelet Bases

1. Compact support allows efficient representations of 
local features and discontinuities

2. Whitening property allows parsimonious yet flexible 
representations of Q and S

3.

 

Decomposes function in both

 

frequency (j) and

 

time (k) domains
–

 

Key for adaptive regularization of functional estimates
4.

 
Orthonormal

 
transformation has

 
linear representation 

and special structure allows
 

fast calculation of 
coefficients.
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Wavelet-Based FMM: 
General Approach

1.
 

Project observed functions Y into wavelet  
space.

2.
 

Fit FMM in wavelet space.
(Use MCMC to get posterior samples)

3.
 

Project wavelet-space estimates (posterior 
samples) back to data space.
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Wavelet-Based FMM: 
General Approach

2.
 

Fit FMM in wavelet space
(Use MCMC to get posterior samples)

3.
 

Project wavelet-space estimates (posterior 
samples) back to data space.

1. Project observed functions Y 
into wavelet  space.
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Wavelet-Based FMM

1. Project observed functions Y
 

to wavelet space
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•

 

Matrix multiplication unnecessary; fast algorithm {DWT, O(T)} can be 
applied to each row of Y to get corresponding wavelet coefficients (D)

•

 

Projects observed functions into space spanned by wavelet coefficients
•

 

Full rank projection: can run inverse algorithm (IDWT) on wavelet 
coefficients and completely recover original observed data.
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Wavelet-Based FMM: 
General Approach

2. Fit FMM in wavelet space
(Use MCMC to get posterior samples)

1.
 

Project
 

observed functions Y
 

into 
wavelet  space.

3.
 

Project
 

wavelet-space estimates 
(posterior samples)

 
back to data space.
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Wavelet Space FMM
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Wavelet Space FMM
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Wavelet Space FMM
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Wavelet Space FMM
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Wavelet Space FMM

•
 

B* =BW’ & U* =UW’:
 

Rows contain wavelet coefficients for 
the fixed and random effect functions, respectively

•
 

E* =EW’ is the matrix of wavelet-space residuals
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D : empirical wavelet coefficients for observed curves
Row i contains wavelet coefficients for observed curve i
Each column double-indexed

 

by wavelet scale j and location k

•
 

Q*=WQW’ and
 

S*=WSW’
 

model the covariance structure 
between wavelet coefficients for a given function.

•
 

Q* and S* are
 

too large for unstructured representation.
-

 
Our approach: model as diagonal matrices Q*=diag(qjk

 

)
 (independent but heteroscedastic

 
in wavelet space)

-
 

Parsimonious, yet accommodates nonstationary
 

Q and S
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Independent Mixed Models per Column
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Prior Assumptions

Mixture prior on Bijk
*:

0
*** )1(),0( δγτγ ijkijijkijk NB −+=

• Nonlinearly shrinks Bijk
* towards 0, leading to

 adaptively regularized estimates of Bi

 

(t).
•

 
τij &

 
πij are

 
regularization parameters that mitigate the 

trade-off between bias/variance in function estimation
• Estimated from data using

 
empirical Bayes approach

)(Bernoulli*
ijijk πγ =
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Model Fitting
•

 
MCMC to obtain posterior samples 

•
 
Use marginal likelihood: U* integ. out;

MCMC Steps
1.

 
Sample from f(Bijk

 

*|D,q,s)
Gibbs step:

 
Spike/Gaussian slab mixture

2.
 

Sample from f(qjk,sjk

 

|D,B*) 
Metropolis-Hastings step:

 
random walk 

3.
 

If desired, sample from f(Uk

 

*|D,B*,Ω)
 Gibbs step:

 
Multivariate normals
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Wavelet-Based FMM: 
General Approach

2.
 

Fit FMM in wavelet space
(Use MCMC to get posterior samples)

1.
 

Project
 

observed functions Y into 
wavelet  space.

3. Project wavelet-space estimates 
(posterior samples) back to data 
space.
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Wavelet-Based FMM

•
 
Apply IDWT

 
to posterior samples of B* to get 

posterior samples of fixed effect functions Bj (t) 
for i=1,…, p, on grid t. 

B=B*W
•

 
These posterior samples can be used to perform 
Bayesian inference, e.g. to figure out for what t

 the fixed effect functions Bj (t) are significant

3. Project wavelet-space estimates 
(posterior samples) back to data 
space.
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FDR-Based Bayesian Functional Inference 

•
 

Given specified effect size δ, compute
pj (t) = 1 - Prob{ |Bj

 

(t)|
 

> δ
 

| Y } for each t
•

 
pj (t) = local FDR estimate for declaring location t 
“significant”

 
(region of function with difference ≥δ)

•
 

Global Criterion: Specify α, can find cutpoint
 

on 
pj (t) for which average FDR controlled to be ≤α.
|| false positive regions || / || flagged regions ||≤α

•
 

Extends FDR ideas to functional setting, and 
provides principled solution to multiple testing 
problem inherent in pointwise

 
inference.
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Example:Organ-Cell Line Expt
•

 
16 mice had 1 of 2 cancer cell lines (A375P

 
or 

PC3MM2) injected into 1 of 2 organs (lung
 

or brain)
•

 
Blood Serum extracted from each mouse, run on 
MALDI at 2 laser intensities (low/high)

•
 

Total: 32 spectra (2/mouse), each on grid of 7985
•

 
Goal: Find proteins differentially expressed by:
–

 
Host organ site (lung/brain)

–
 

Donor cell line (A375P/PC3MM2)
–

 
Organ-by-cell line interaction
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Model: Organ-by-Cell Line Experiment

•
 

Xi1

 

=1 for lung, -1 brain.  Xi2

 

=1 for A375P, -1 for PC3MM2

Xi3= X1

 

*  X2

 

Xi4

 

=1 for low
 

laser intensity, -1 high.
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Let Yi

 

(t)
 

be the (log2

 

) MALDI-TOF spectrum i

• B0

 

(t) = overall mean

 

spectrum

 

B1

 

(t) = organ

 

main effect

 

function

B2

 

(t) = cell-line main effect

 

B3

 

(t) = org x cell-line

 

interaction

 

function

B4

 

(t) = laser intensity

 

effect

 

function

• Uk

 

(t) is random effect function for mouse
 

k.

• Zik=1 if spectrum i is from mouse k (k=1, …, 16)
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Demonstration of Flexibility of WFMM

•
 

We obtain adaptively regularized estimates of both fixed 
effect functions

 
and random effect functions

–

 

Not just estimates, but posterior samples
•

 
We are able to model nonstationarities

 
in between-curve 

covariances, including heteroscedasticity
 

and spatially-
 varying autocorrelation (smoothness)

•
 

Model captures complex features: Model-generated 
posterior predictive spectra look like real spectra.

•
 

Can model out block effects: Inclusion of nonparametric 
laser intensity effect models systematic differences in 
location and intensity of peaks, effectively calibrating for 
common analysis

•
 

Can be applied to very large data sets (1000’s of functions 
on grid of size in the 10,000’s)
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Results: MALDI Example

•
 
Using

 
α=0.05, δ=1 (2-fold expression on log2

 scale), we flag a number of spectral regions.
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Results: MALDI Example

•

 

3900 D (~100-fold) (CGRP-II): dilates blood vessels in brain
•

 

7620 D (~5-fold) (neurogranin): active in synaptic modeling in 
brain (Not detected as peak)
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Extension to Higher Dimensions (Images)

•
 

Method can be extended to higher 
dimensional functions 
–

 
Fixed effect and random effect surfaces

•
 

How?  Use 2d (or higher) wavelet transforms
–

 
Accounts for spatial correlations in both 
horizontal and vertical directions

•
 

Key: image can be represented as vector, and 
higher dimensional wavelet transforms can 
be written as orthonormal linear 
transformation of this vector.

•
 

Computational considerations:
–

 
Memory issues: keep subset of wavelet coeffs.
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Bayesian Inference: 
Discrimination/Classification

•
 
Can classify new function Yi

 

(t) (e.g. cancer/normal) using 
posterior predictive probabilities 

-
 
X=cancer status of test sample (1=cancer, -1=not)

-
 
Y=test

 
spectrum, Yt=training spectra

-
 
Classify as cancer if Pr(X=1|y,Yt)>0.50

•
 
Straightforward to compute given posterior samples of 
model parameters

•
 
Does not require high dimensional feature selection

 
step

•
 
Can account/adjust for other covariates

 
in the model, 

clinical and technical
•

 
Straightforward to hierarchically combine together several 
types of data, functional or clinical, to predict class

Details
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More Details
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Discussion

•
 

Presented unified modeling approach for FDA 
–

 
Adaptive enough to handle irregularities in both 
mean structures and random effects (covariances) 

•
 

Method based on mixed models; is FLEXIBLE
–

 
Accommodates a wide range of experimental designs

–
 

Addresses large number of research questions
•

 
Posterior samples allow Bayesian inference and prediction
–

 
Flag significant regions, while controlling FDR

–
 

Classify subjects
 

based on genomic/proteomic profile
•

 
Since a unified modeling approach is used, all 
sources of variability in the model propagated 
throughout inference.
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Discussion

•
 

Approach is Bayesian.  The only informative priors to elicit 
are regularization parameters, which can be estimated from 
data using empirical Bayes.

•
 

Developed general-use code
 

(freely available on website)
 

–
 reasonably fast and straightforward to use  minimum 

information to specify is Y, X, Z matrices.
•

 
Method can be generalized

 
to model higher dimensional 

functions
 

(e.g. image mixed models, under development)
•

 
The Gaussian/independence assumptions can be relaxed to 
yield robust

 
and even more flexible modeling
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