Applications of Wavelet-Based Functional Mixed Models to Proteomics and Genomics Data Jeffrey S. Morris Department of Biostatistics The University of Texas MD Anderson Cancer Center Houston, Texas jefmorris@mdanderson.org

12/4/2007

Genomic/Proteomic Data as Functions

- Genomic and proteomic tools used to find biomarkers: genes/proteins related to factors of interest, to use in diagnosis/prognosis of disease
- Genes: <u>arrayCGH/SNP chips</u>
 - $t = chromosomal location, Y(t) = log_2(copy number change)$
- mRNA: tiling microarrays
 - t = chromosomal location, Y(t) = mRNA abundance
- Proteins: <u>MALDI-MS/2d Gel Electrophoresis</u>
 - t = molecular mass (per unit charge), Y(t) = intensity
 - t_1 = molecular mass, t_2 = pH, $Y(t_{t'}, t_2)$ = intensity
- Common Characteristics of Data:
 - Very high dimensional (1000's to 10,000's to 1,000,000's)
 - Functions very irregular, containing various types of nonstationarities, discontinuities and local features.

Statistical Modeling

- Preprocessing: Necessary to align, background correct, and normalize data (technology specific)
- After preprocessing, usual approach involves 2 steps
 - 1. Extract meaningful features (peaks/spots/segments)
 - 2. Identify which are biomarkers (control for FDR)
- Alternative: Model as functions using FDA approach
 - Requires very flexible modeling techniques to capture complex local features in data.
 - Methods must be computationally efficient enough to handle extremely high dimensions of these data
 - Must find way to adjust for multiple comparisons in functional inference.
- Wavelet-Based Functional Mixed Models (Morris and Carroll, 2006 JRSS-B)

Wavelet-Based Functional Mixed Models

- Goal: Develop automated method that can be used to model and perform inference on complex, irregular functional and image data.
- Complexities:
 - Very irregular signals not smooth
 - Functions may be correlated (e.g. replicates)
 - We may need to factor out effect of nuisance factors, i.e. covariates
 - We would like to be able to flag certain regions of function/image as related to factors of interest, while giving assessment of uncertainty and controlling for multiple testing (FDR).
- Generalize linear mixed model to functional setting

Linear Mixed Models

Linear Mixed Model (Laird and Ware, 1982):

Fixed effects part, *Xβ*, accommodate a broad class of mean structures, including main effects, interactions, and linear coefficients.
 Random effects part, *Zu*, provides a convenient mechanism for modeling correlation among the *N* observations.

Functional Mixed Model (FMM)

- Idea: Relate *functional response* to set of scalar predictors through *functional coefficients*, while adjusting for possible *correlation between functions* induced by design.
- Suppose we observe a sample of *N* curves, $Y_i(t), i=1, ..., N$, on a closed interval \mathcal{T} $U_k(t) \sim GP(0,Q)$

- B_j(t) summarizes partial effect of X_j on Y(t)
- Q(t₁, t₂) and S(t₁, t₂) are covariance surfaces on T×T describing the form of the function-function deviations

Discrete Version of FMM

Suppose each observed curve is sampled on a common equally-spaced grid of length *T*.

- Rows of *B* contain fixed effect functions on grid
- *Q* and *S* are within-curve covariance matrices ($T \times T$) approximating surfaces on the grid
 - For irregular functional data, *Q* and *S* typically contain many nonstationarities, yet their dimension is too high to leave unstructured

Wavelet Space Representation
$$y(t) = \sum_{j,k \in \Im} d_{jk} \psi_{jk}(t)$$
 $d_{jk} = \int y(t) \psi_{jk}(t) dt$ $\psi_{jk}(t) = 2^{-j/2} \psi(2^{-j/2}t - k)$ Linear Representation: $\stackrel{1 \times T}{y} = \underset{1 \times T}{d} \stackrel{T \times T}{W}$ $\stackrel{1 \times T}{d} = \underset{1 \times T}{y} \stackrel{T \times T}{W}$

DWT Design Matrix $\mathbf{W} = [\psi_{11}(\mathbf{t}) \psi_{12}(\mathbf{t}) \dots \psi_{JK}(\mathbf{t})]$

Given 7-vector **y** consisting of function sampled on equallyspaced grid, a pyramid-based algorithm for DWT (Mallat) can be used to obtain **d**, *T*-vector of wavelet coefficients, in *O*(*T*) operations (converse also true)

Functional Mixed Models

- Key feature of FMM: Does not require specification of parametric form for functions (response, fixed, or random)
- Basis function approach: $Y_i(t) = \sum d_{ijk} \psi_{jk}(t)$
- Benefits of Using Wavelet Bases
 - 1. Compact support allows efficient representations of local features and discontinuities
 - 2. Whitening property allows parsimonious yet flexible representations of Q and S
 - 3. Decomposes function in both **frequency** (*j*) and **time** (*k*) domains
 - Key for *adaptive regularization* of functional estimates
 - 4. Orthonormal transformation has linear representation and special structure allows fast calculation of coefficients.

Wavelet-Based FMM:

General Approach

- 1. Project observed functions Y into wavelet space.
- 2. Fit FMM in wavelet space.(Use MCMC to get posterior samples)
- 3. Project wavelet-space estimates (posterior samples) back to data space.

Wavelet-Based FMM:

General Approach

- 1. Project observed functions Y into wavelet space.
- Fit FMM in wavelet space (Use MCMC to get posterior samples)
- 3. Project wavelet-space estimates (posterior samples) back to data space.

Wavelet-Based FMM

1. Project observed functions Y to wavelet space

Wavelet basis representation written in matrix form

$$\underbrace{D}_{N \times T} = \underbrace{Y}_{N \times T} \underbrace{W'}_{T \times T}$$

Orthonormality :

$$WW' = W'W = I_T$$

- Matrix multiplication unnecessary; fast algorithm {DWT, O(T)} can be applied to each row of Y to get corresponding wavelet coefficients (D)
- Projects observed functions into space spanned by wavelet coefficients
- Full rank projection: can run inverse algorithm (IDWT) on wavelet coefficients and completely recover original observed data.

Wavelet-Based FMM:

General Approach

- 1. Project observed functions Y into wavelet space.
- Fit FMM in wavelet space (Use MCMC to get posterior samples)

Project wavelet-space estimates
 (posterior samples) back to data space.

Wavelet RepresentationsY=DWB=B*WU=U*WE=E*W

12/4/2007

Wavelet RepresentationsY=DWB=B*WU=U*WE=E*W

12/4/2007

Wavelet Representations YW'=D BW'=B* UW'=U* EW'=E*

WW' = I

12/4/2007

~ $MVN(0,Q^*)$

D: empirical wavelet coefficients for observed curves Row *i* contains wavelet coefficients for observed curve *i* Each column double-indexed by wavelet scale j and location k

$$\underbrace{D}_{N\times T} = \underbrace{X}_{p\times T} \underbrace{B}_{p\times T}^{*} + \underbrace{Z}_{m\times T} \underbrace{U}_{m\times T}^{*} + \underbrace{E}_{N\times T}^{*} = \underbrace{U_{k}}_{k}^{*} \sim MVN(0, Q^{*})$$

- $E^* = EW'$ is the matrix of wavelet-space residuals
- $Q^* = WQW'$ and $S^* = WSW'$ model the covariance structure between wavelet coefficients for a given function.
- Q^* and S^* are too large for unstructured representation.
 - Our approach: model as diagonal matrices Q^* =diag (q_{ik}) (independent but heteroscedastic in wavelet space)
 - Parsimonious, yet accommodates nonstationary *Q* and *S*

Independent Mixed Models per Column

 $N \times p$ $N \times m$ $d_{jk} = \widehat{X} B_{jk}^* + \widehat{Z} u_{jk}^* + e_{jk}^*$ $N \times 1$ $N \times 1$ $m \times 1$ $p \times 1$ $u_{jk}^{*} \sim N(0, q_{jk}^{*})$ $e_{jk}^{*} \sim N(0, s_{jk}^{*})$

12/4/2007

Prior Assumptions

Mixture prior on B_{ijk}^* :

$$\boldsymbol{B}_{ijk}^* = \boldsymbol{\gamma}_{ijk}^* N(\boldsymbol{0}, \boldsymbol{\tau}_{ij}) + (\boldsymbol{1} - \boldsymbol{\gamma}_{ijk}^*) \boldsymbol{\delta}_0$$

$$\gamma_{ijk}^* = \text{Bernoulli}(\pi_{ij})$$

- Nonlinearly shrinks B_{ijk}* towards 0, leading to <u>adaptively regularized</u> estimates of B₍(t).
- $\tau_{ij} \& \pi_{ij}$ are regularization parameters that mitigate the trade-off between bias/variance in function estimation
- Estimated from data using *empirical Bayes* approach

Model Fitting

- MCMC to obtain posterior samples
- Use marginal likelihood: U* integ. out;

MCMC Steps

- 1. Sample from f(B_{ijk}*|D,q,s) Gibbs step: Spike/Gaussian slab mixture
- 2. Sample from *f*(*q*_{*jk*}*s*_{*jk*}|*D*,*B**) *Metropolis-Hastings* step: random walk
- 3. If desired, sample from *f*(*U*_k*|*D*,*B**,Ω) *Gibbs* step: Multivariate normals

Wavelet-Based FMM:

General Approach

- 1. Project observed functions Y into wavelet space.
- Fit FMM in wavelet space (Use MCMC to get posterior samples)
- 3. Project wavelet-space estimates (posterior samples) back to data space.

Wavelet-Based FMM

3. Project wavelet-space estimates (posterior samples) back to data space.

 Apply IDWT to posterior samples of B* to get posterior samples of fixed effect functions B_j(t) for i=1,..., p, on grid t.

B=B*W

• These posterior samples can be used to perform Bayesian inference, e.g. to figure out for what tthe fixed effect functions $B_j(t)$ are significant

FDR-Based Bayesian Functional Inference

- Given specified effect size δ, compute
 p_j(t) = 1 Prob{ |B_j(t)| > δ | Y } for each t
- $p_j(t) = local FDR estimate$ for declaring location t "significant" (region of function with difference $\geq \delta$)
- Global Criterion: Specify α, can find cutpoint on *p_j(t)* for which average FDR controlled to be ≤α.
 false positive regions || / || *flagged regions* || ≤α
- Extends FDR ideas to functional setting, and provides principled solution to multiple testing problem inherent in pointwise inference.

Example:Organ-Cell Line Expt

- 16 mice had 1 of 2 cancer cell lines (A375P or PC3MM2) injected into 1 of 2 organs (lung or brain)
- Blood Serum extracted from each mouse, run on MALDI at 2 laser intensities (low/high)
- Total: 32 spectra (2/mouse), each on grid of 7985
- Goal: Find proteins differentially expressed by:
 - Host organ site (lung/brain)
 - Donor cell line (A375P/PC3MM2)
 - Organ-by-cell line interaction

Model: Organ-by-Cell Line Experiment

Let Y(t) be the (log₂) MALDI-TOF spectrum i

$$Y_{i}(t) = B_{0}(t) + \sum_{j=1}^{4} X_{ij}B_{j}(t) + \sum_{k=1}^{16} Z_{ik}U_{k}(t) + E_{i}(t)$$

- $X_{i1}=1$ for lung, -1 brain. $X_{i2}=1$ for A375P, -1 for PC3MM2 $X_{i3}=X_1 * X_2$ $X_{i4}=1$ for low laser intensity, -1 high.
- $B_0(t)$ = overall mean spectrum $B_1(t)$ = organ main effect function $B_2(t)$ = cell-line main effect $B_3(t)$ = org x cell-line interaction function $B_4(t)$ = laser intensity effect function
- $U_k(t)$ is random effect function for mouse k.
- Zik=1 if spectrum *i* is from mouse k (k=1, ..., 16)

Demonstration of Flexibility of WFMM

 We obtain adaptively regularized estimates of both <u>fixed</u> <u>effect functions</u> and <u>random effect functions</u>

Not just estimates, but posterior samples

- We are able to model <u>nonstationarities</u> in between-curve covariances, including heteroscedasticity and spatially-varying autocorrelation (smoothness)
- <u>Model captures complex features</u>: Model-generated posterior predictive spectra look like real spectra.
- <u>Can model out block effects</u>: Inclusion of nonparametric laser intensity effect models systematic differences in location and intensity of peaks, effectively calibrating for common analysis
- Can be applied to very large data sets (1000's of functions on grid of size in the 10,000's)

Results: MALDI Example

• Using α =0.05, δ =1 (2-fold expression on log₂ scale), we flag a number of spectral regions.

Results: MALDI Example

3900 D (~100-fold) (CGRP-II): dilates blood vessels in brain
 7620 D (~5-fold) (neurogranin): active in synaptic modeling in brain (Not detected as peak)

Extension to Higher Dimensions (Images)

- Method can be extended to higher dimensional functions
 - Fixed effect and random effect surfaces
- How? Use 2d (or higher) wavelet transforms
 - Accounts for spatial correlations in both horizontal and vertical directions
- Key: image can be represented as vector, and higher dimensional wavelet transforms can be written as orthonormal linear transformation of this vector.
- Computational considerations:
 - Memory issues: keep subset of wavelet coeffs.

Bayesian Inference: Discrimination/Classification

- Can classify new function Y_i(t) (e.g. cancer/normal) using posterior predictive probabilities
 - X=cancer status of test sample (1=cancer, -1=not)
 - / Y=test spectrum, Yt=training spectra
 - Classify as cancer if $Pr(X=1/y, Y^t) > 0.50$
- Straightforward to compute given posterior samples of model parameters
- Does not require high dimensional feature selection step
- Can account/adjust for other covariates in the model, clinical and technical
- Straightforward to hierarchically combine together several types of data, functional or clinical, to predict class

Bayesian Inference:Discrimination/Classification $Pr(X = 1 | y, Y^t) = O/(O + 1)$

 $f(y \mid X = \mathbf{1}, Y^{t}) = \int f(y \mid X = \mathbf{1}, \Theta) f(\Theta \mid Y^{t}) d\Theta$ $\approx B^{-1} \sum_{b=1}^{B} f(y \mid X = \mathbf{1}, \Theta^{(b)})$

More Details

Discrimination/Classification

Bayesian Inference:

 $f(y | X = 1, \Theta^{(b)}) = f(d | X = 1, \Theta^{*(b)})$ $= \prod f(d_{ik} | X = 1, \Theta_{ik}^{*(b)})$ *j*,*k*

Return

Discussion

Presented unified modeling approach for FDA

- Adaptive enough to handle irregularities in both mean structures and random effects (covariances)
- Method based on mixed models; is FLEXIBLE
 - Accommodates a wide range of experimental designs
 - Addresses large number of research questions
- Posterior samples allow Bayesian inference and prediction
 - Flag significant regions, while controlling FDR
 - Classify subjects based on genomic/proteomic profile
- Since a unified modeling approach is used, all sources of variability in the model propagated throughout inference.

Discussion

- Approach is Bayesian. The only informative priors to elicit are *regularization parameters*, which can be estimated from data using empirical Bayes.
- Developed general-use code (freely available on website) reasonably fast and straightforward to use → minimum information to specify is Y, X, Z matrices.
- Method can be generalized to model higher dimensional functions (e.g. image mixed models, under development)
- The Gaussian/independence assumptions can be relaxed to yield robust and even more flexible modeling

Acknowledgements

Some of the work presented here is from 2 papers

- 1. "*Wavelet-Based Functional Mixed Models*" (2006) Jeffrey S. Morris and Raymond J. Carroll, *JRSS-B*, 68(2): 179-199.
- 2. "*Bayesian Analysis of Mass Spectrometry Proteomics Data using Wavelet Based Functional Mixed Models*" (2007) Jeffrey S. Morris, Philip J. Brown, Richard Herrick, Keith A. Baggerly, and Kevin R. Coombes, *Biometrics*, doi:10.1111/j.1541-0420.2007.00895.x (online)
- Supported by NIH Grant R01 CA107304
- Computer code/papers on web at http://biostatistics.mdanderson.org/Morris/papers.html

