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An everyday fundamental question...

What is the (statistical) significance associated
with a common gene cluster q?
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A Naive (straightforward) Approach

I Assumption: Let the input be generated by a stationary, iid
source which emits xi with probability pxi .

I
q = {x1, x2, . . . , xl}

Pq = (px1)(px2) . . . (pxl
)
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A more complex model (naive approach)

I Assumption: Let the input be generated by a stationary, iid
source which emits xi with probability pxi .

I
q = {x1(i1), x2(i2), . . . , xl(il)}

Pq =

(
(i1 + i2 + . . . + il)!

i1! i2! . . . il !

)
(px1)

i1(px2)
i2 . . . (pxl

)il

(multinomial coefficients)
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Some troubling issues....

I What is pxi ?
I A gene xi is not commonly known to occur too many times

I If i 6= j , how do pxi and pxj compare?

I
...

Can we do without guessing pxi ?
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The proposed model (structured clusters)

I Recall: Genes occur on chromosomes (linearly arranged)
I Or, on a network (common connected components)

I Let the collection of all subclusters within the common cluster
q that occurs in the species being compared be S.

What is the probability of occurrence of subclusters S,
given the occurrence of cluster q?
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The proposed model (structured clusters)

I Individual pxi is irrelevant

I The occurrence of each xi is equally likely (or not)

I Well-posed question

, but a combinatorics nightmare!

The 64K $ question: Is this solvable?

Laxmi Parida Combinatorics and Statistics of Gene Clusters



. . . . . .

Context
Permutations → PQ trees

The proposed model (structured clusters)

I Individual pxi is irrelevant

I The occurrence of each xi is equally likely (or not)

I Well-posed question, but a combinatorics nightmare!

The 64K $ question: Is this solvable?

Laxmi Parida Combinatorics and Statistics of Gene Clusters



. . . . . .

Context
Permutations → PQ trees

The proposed model (structured clusters)

I Individual pxi is irrelevant

I The occurrence of each xi is equally likely (or not)

I Well-posed question, but a combinatorics nightmare!

The 64K $ question: Is this solvable?

Laxmi Parida Combinatorics and Statistics of Gene Clusters



. . . . . .

Context
Permutations → PQ trees

Roadmap

Context
Permutation patterns

Permutations → PQ trees
Gene Proximity Analysis
Statistics of permutations
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Permutation patterns

What are the common patterns?

s1 = . . . g1 g2 g3 g4 g5 g6 g7 . . .

s2 = . . . g8 g5 g2 g4 g3 g9 g0 . . .
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Permutation patterns (πpatterns)

s1 = . . . g1 g2 g3 g4 g5 g6 g7 . . .

s2 = . . . g8 g5 g2 g4 g3 g9 g0 . . .

Genes gi in s1 and gi in s2 are orthologous

Block of genes g2, g3, g4, g5

appear together,
albeit in a different order

This block is a permutation (pattern)

{g2, g3, g4, g5}
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Permutation patterns

How bad is the scenario?

Permutation patterns: O(n2)
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Permutation patterns

Maximal πpatterns

Let P be the set of all patterns on a given input string s. (p1 ∈ P)
is non-maximal with respect to (p2 ∈ P) if both of the following
hold.

(1) Each occurrence of p1 on s is covered by an occurrence of p2

on s.

(2) Each occurrence of p2 on s covers l ≥ 1, occurrence(s) of p1

on s.

A pattern (p2 ∈ P) is maximal, if there exists no (p1 ∈ P) such
that p2 is non-maximal w.r.t. p1.

nonmaximal πpatterns ⇔ subclusters
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πpatterns (nested & straddling)

s1 = . . . g a c d b e f g e b . . .

s2 = . . . b g f e d a b c f b . . .

p = {a, b, c , d , e, f , g}, (1)

nonMaximal(p) = {{e, f }, {f , g}, {e, f , g}, (2)

{a, b, c , d , }}. (3)
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Statistics of permutations

What is a PQ Tree?

Is there a sequence where the sets are consecutive?

A collection of sets
{5, 6}

{1, 2, 3, 4}
{1, 2, 3, 4, 5}
{1, 2, 3, 4, 5, 6} 2 3

65

41

The answer is YES for this set.
All such sequences captured by the PQ tree.
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Linear Notation

p = {a, b, c , d , e, f , g},
nonMaximal(p) = {{e, f }, {f , g}, {e, f , g},

{a, b, c , d , }}.

a b c d f ge

p = ((a, b, c, d)-(e-f -g)).
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Is the definition any good?

Theorem
Let M be the set of all maximal patterns, i.e.,

M = {p ∈ P| there is no (p′ ∈ P) maximal w.r.t p}

Then M is unique.
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Algorithms

I Find the patterns (WABI 03, JCB 04)

For a fixed pattern size, the time taken is

O(|Σ|+ n(log t)2 log |Σ|),

where
t = O(|Σ|+ n log |Σ|).

I Extract maximal form (CPM 05, JCB 06)

The Minimal Consensus PQ Tree Algorithm (linear time)

(software available: http://www.mit.edu/oweimann/BIO/)
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Gene Proximity Analysis on Whole Genomes
(CPM 05, JCB 06)

I Human, rat genomes (http://bio.math.berkeley.edu/slam)

I 25,422 putative orthologous genes

I 23 human, 21 rat chromosomes
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Human & Rat
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Human & Rat
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Proximity- Summary

Number of Number of
all patterns maximal patterns

E Coli K-12 & B Subtilis 15, 000 450

human & rat 1, 574, 312 504

(Joint work with Revital Eres, Oren Weimann, Gadi Landau)
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Statistical Significance

Two related but distinct questions:

1.
Naive model: Given n random permutations of k genes,
what is the probability that K of these n contain the
cluster q ?

2.
Structured cluster model: Given that a permutation pat-
tern q occurs K times in the input, what is the proba-
bility of its maximal form given as a PQ tree T ?

Statistical Significance of Large Gene Clusters, Laxmi Parida,

Journal of Computational Biology, 14(9), pp 1145–1159, 2007.
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How to answer Question 2 (for K = 2)?

I Recall: PQ T in relation with multiple occurrences
I a single occurrence has no PQ T
I Consensus PQ of o1, o2 ∈ Fr(T ) is not necessarily T

I Use one occurrence as reference WLOG

a b c d f ge

B

1 2 3 4 5 7
a b c d f ge

A

C

6

(1) PQ tree T . (2) Ref PQ Tree T ′ on 7 consecutive integers.
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Working with T ′
(on consecutive integers)

I Count the size of the frontier set of T ′

Interpretation: Each o ∈ Fr(T ′) is such that the consensus PQ
tree of o and the identity permutation is T ′

I What is the bottleneck?

How many possibilities does a P node (with k children)
introduce?
Each possibility cannot have any internal structure

We call this P-Arrangement of size k
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What is an interval?

interval Π(q1[k1..k2]) size
[k1..k2]

non-trivial:

[3..4] 5 2 4 3 1 {3, 4} 2

[2..4] 5 2 4 3 1 {2, 3, 4} 3

[1..4] 5 2 4 3 1 {2, 3, 4, 5} 4

trivial:

[1..5] 5 2 4 3 1 {1, 2, 3, 4, 5} 5
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P-arrangement

An arrangement of size k is a P-arrangement if it has no
non-trivial intervals.

Examples: 2 4 1 3

2 4 1 5 3

2 6 4 1 5 3
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The central question:

What is the number of P-arrangements of size k?

Theorem (Par07)

Let q be a P-arrangement of size k + 1. Let q′ be obtained by
replacing an extreme element (either k + 1 or 1) from its position j
in q, with the empty symbol. Then

1. q′ is a P-arrangement, or,

2. every interval [i1 . . . i2] in q′ is such that i1 < j < i2.

Laxmi Parida Combinatorics and Statistics of Gene Clusters
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Theorem illustration (nested arrangements)

q = 9 1 5 2 φ 3 6 4 7 10 8

9 1 5 2 φ 3 6 4 7 10 8 2

9 1 5 2 φ 3 6 4 7 10 8 5

9 1 5 2 φ 3 6 4 7 10 8 9 1 5 2 φ 3 6 4 7 10 8 6(2)

9 1 5 2 φ 3 6 4 7 10 8 7

9 1 5 2 φ 3 6 4 7 10 8 10

Signature: sig(q) = 2(1) < 5(1) < 6(2) < 10(1)

Laxmi Parida Combinatorics and Statistics of Gene Clusters
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Signature Lemma

Let q be an arrangement of size k with symbol φ in position j with
all the intervals [ir1 . . . ir2] satisfying

ir1 < j < ir2,

for all 1 ≤ r ≤ K . Let the size of the interval be ir = ir2 − ir1 + 1.

1. (straddling intervals) If two such intervals, where one is not
nested in the other, are of size i and i ′, then i = i ′ and they
must overlap in i − 1 positions.

2. (uniqueness and form)

sig(q) = i1(ki1) < i2(ki2) < . . . < ir (kir ) < . . . < iK (kiK ),

is unique with ki1 = 1, kiK = 1, iK = k,and each kir ,
1 ≤ r < K , is either 1 or 2.

Laxmi Parida Combinatorics and Statistics of Gene Clusters
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Formula for number of P-arrangements

Pa(2) = 2,

Pa(3) = 0,

Pa(4) = 2,

Pa(k) = Nst ′(k − 1), for k > 4.

Polynomial time dynamic programming solution.

Laxmi Parida Combinatorics and Statistics of Gene Clusters
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Nst ′(k)

Number of nested arrangements with viable positions to get
k + 1-sized P-arrangements:

Nst ′(k) = S(k , 2)− Scnt(k, 2)

+
k∑

l=4

(l − 1)S(k, l)− 2Scnt(k, l).

Laxmi Parida Combinatorics and Statistics of Gene Clusters
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S(l , u), Scnt(l , u)

Number of nested arrangements with smallest l and largest u
interval sizes:

S(u, l) = 4S(u-1, l) + 2S(u-2, l) +
u−l∑

y=3

∆u−yPa(∆u−y )S(u − y , l)

Number of nested arrangements with the extreme element in the
smallest interval:

Scnt(u, l) = 2Scnt(u-1, l) +
u−l∑

y=3

Pa(∆u−y )Scnt(u − y , l)

Laxmi Parida Combinatorics and Statistics of Gene Clusters
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Back to ... Estimating the frontier size

#(A) =





1 if A is a leaf node,
2

∏c
j=1 #(Aj) if A is a Q node,

Pa(c)
∏c

j=1 #(Aj) if A is a P node.

Laxmi Parida Combinatorics and Statistics of Gene Clusters
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Estimating the frontier size

D

2 (2.2.1.1) = 8

2 (8.1) = 16

2(1.1.1.1) = 2 2(1.1) = 2

A

C

B

1 2 3 4 5 6

8

9

7

Computation of #(X ) for each node X in the PQ tree.
Note that #(A) = #(B) = 2, #(C ) = 8, and #(D) = 16.
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Estimating Fr(T ′): A complete example

a b c d f ge

B

1 2 3 4 5 7
a b c d f ge

A

C

6

(1) The input PQ tree T . (2) Numbering the leaf nodes.
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Example...

B

1 2 3 4 5 7
a b c d f ge

A

C

6

Node A

3 1 4 2 2 4 1 3

Node B

5 6 7 7 6 5

Node C

A B B A

(2) Numbering the leaf nodes (3) The possible
& labeling the internal nodes. arrangmeents.

Laxmi Parida Combinatorics and Statistics of Gene Clusters
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Estimating the frontier size

1 2 3 4 5 6 7

3 1 4 2 5 6 7 7 6 5 2 4 1 3
3 1 4 2 7 6 5 5 6 7 2 4 1 3
2 4 1 3 5 6 7 7 6 5 3 1 4 2
2 4 1 3 7 6 5 5 6 7 3 1 4 2

7 6 5 4 3 2 1

a b c d e f g

c a d b e f g g f e b d a c
c a d b g f e e f g b d a c
b d a c e f g g f e c a d b
b d a c g f e e f g c a d b

g f e d c b a
(4) The 10 possible arrangements. (5) Arrangements in input alphabet.
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Problems in Combinatorics

I What is the number of simple permutations of degree k?
What is the number of P-arrangements of size k?
We give the first explicit formula for this number.

I O(n2) time to recognize a simple permutation.
We give O(n) time to recognize a P-arrangement.

Laxmi Parida Combinatorics and Statistics of Gene Clusters
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Combinatorics to probabilities

pr(T ) =
|Fr(T ′)|

n!

Laxmi Parida Combinatorics and Statistics of Gene Clusters
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Back to the clusters

166 0.236× 10−3

303 0.376× 10−4

250 0.404× 10−4
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Open Problems-1

Structured clusters with multiplicities

p = {a, b, c(2), d , e, x},
with exactly three occurrences given as

o1 = d e a b c x c,

o2 = c d e a b x c,

o3 = c x c b a e d .

         
T4

         
T2T1,3

         

 c

d e a b

 cx

 c

cx

d e a bd e a b

 c

 cx
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Open Problems-2

Clusters on networks (common connected components)

F

G

H

A

B

C

I 

J

D

E

F

G

H

A

B

C

I 

J

D

E

D

B

A 

G H

C
E

F

I J
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