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P(k) ~ k−γ , k >>1,  2 < γ
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A. Random Networks   [Erdos and Rényi (1959, 1960)]

B. Scale Free [Price,1965 & Barabasi,1999]  

C.Hierarchial

Mean path length ~ ln(k)
Phase transition:
Connected if: p ≥ ln( k ) / k

Preferential 
attachment. Add 
proportionally to 
connectedness

Mean path length ~ lnln(k)

Copy smaller graphs and let them 
keep their connections.

Review: Macroscopic Network Analysis
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A. Stochastic Block Models   
[Holland, Laskey, and Leinhardt 1983]

B.Exponential Radom Graph Models 
[Bahadur 1961, Besag 1974, Frank & 
Strauss 1986]  

C.Latent Space Models 
[Hoff, Raftery, and Handcock, 2002]  

Review: Meta Analysis of Networks
Domingo

Carlos
Alejandro
Eduardo

Frank
Hal
Karl
Bob
Ike
Gill

Lanny
Mike
John

Xavier
Utrecht

Norm
Russ
Quint

Wendle
Ozzie

Ted
Sam
Vern
Paul



3

IPAM talk, Nov 5, 2007

5

School of Computer Science

White et al:  From logical role systems to empirical social structures

“We can express a role through a relation (or set of relations) and 
thus a social system by the inventory of roles.   If roles equate to 
positions in an exchange system, then we need only identify 
particular aspects of a position.  But what aspect?”

Structural Equivalence:Structural Equivalence:

Two actors are structurally equivalent if they have 
the same types of ties to the same people.

Dissecting Social Networks
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Structural Equivalence
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Graph reduced to positions

Structural Equivalence

⇒
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0 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 1 1 1 0 0 0 0
1 0 1 0 0 0 1 1 1 1 0 0 0 0
0 1 0 0 0 1 0 0 0 0 1 1 1 1
0 1 0 0 1 0 0 0 0 0 1 1 1 1
0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0

Blockmodeling is the process of identifying these types of positions. A block is a 
section of the adjacency matrix - a “group” of structurally equivalent ACTORS.

Classical Blockmodeling
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. 1 1 1 0 0 0 0 0 0 0 0 0 0
1 . 0 0 1 1 0 0 0 0 0 0 0 0
1 0 . 1 0 0 1 1 1 1 0 0 0 0
1 0 1 . 0 0 1 1 1 1 0 0 0 0
0 1 0 0 . 1 0 0 0 0 1 1 1 1
0 1 0 0 1 . 0 0 0 0 1 1 1 1
0 0 1 1 0 0 . 0 0 0 0 0 0 0
0 0 1 1 0 0 0 . 0 0 0 0 0 0
0 0 1 1 0 0 0 0 . 0 0 0 0 0
0 0 1 1 0 0 0 0 0 . 0 0 0 0
0 0 0 0 1 1 0 0 0 0 . 0 0 0
0 0 0 0 1 1 0 0 0 0 0 . 0 0
0 0 0 0 1 1 0 0 0 0 0 0 . 0
0 0 0 0 1 1 0 0 0 0 0 0 0 .

1 2 3 4 5 6
1 0 1 1 0 0 0
2 1 0 0 1 0 0
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4 0 1 0 1 0 1 
5 0 0 1 0 0 0
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Cohesive Subgroups
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Stochastic Cohesive Subgroups
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• Regard each network tie as a random variable (often binary)
Xij = 1 if there is a network link from person i to person j

= 0 if there is no link,
for i, j members of some set of actors N.

A directed network: Xij and Xji are distinct.
A non-directed network: Xij = Xji

• Formulate a hypothesis about interdependencies and construct a 
dependence graph

The dependence graph represents the contingencies among network 
variables Xij. (e.g., defined on cliques), i.e., a set of "potential functions".

General Framework for Stochastic 
Blockmodel
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The Hammersley-Clifford Theorem

where:
the summation is over all cliques A;

zA = Π xijÎA xij is the network statistic corresponding to the clique A; 

λA is the parameter corresponding to clique A;

c = ΣX exp{ΣAλAzA(x)} is a normalising constant

(Besag, 1974)

{ }∑===
cliques all

exp)(*)Pr( AAzc
xpxX λ1
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Bernoulli Blockmodels
• Suppose actors are either in block 1 or 2, and pairwise potentials

• Hammersley-Clifford: 
Pr(X = x) = (1/c) exp{Σi,j λij xij }

• Block homogeneity:
λij = θ11 if i and j both in block 1
λij = θ12 if i in block 1 and j in block 2, etc.

• Pr(X = x) = (1/c) exp{θ11 L11+θ12 L12+θ21 L21+θ22 L22}
where L rs is the number of edges from block r to block s.

• Extendable to multiple blocks

IPAM talk, Nov 5, 2007
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This Talk:

• Latent "Topics" of Vertices
– Mixed Membership of Stochastic Blocks 

[Airoldi, Blei, Fienberg and Xing, 2005, 2006, 2007]

• Temporal Evolution of Networks
– Temporal Exponential Random Graph Model

[Hanneke and Xing, 2006]

• Reverse Engineer Latent Rewiring Networks
– Hidden Temporal Exponential Random Graph Model

[Guo, Hanneke, Fu and Xing, 2007]
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Mixed Membership of Actors
• Sampson’s Monastery (Sampson 1968)

What are the factions?

How many are there?

How do factions relate 
to one another?
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A Latent Mixture Membership 
Blockmodel

Motivation

• In many networks (e.g., biological network, citation networks), each 
node may be “multiple-class”, i.e.,  has multiple functional/topical 
aspects.

• The interaction of a node (e.g., a protein) with different nodes
(partners) may be under different function context. 

• Prior knowledge of group interaction may be available.
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A Generative Perspective

• Mixed membership and peer-specific role realizations:

MM vector of node i MM vector of node j

iθ jθ

MM vector of node j as acceptorMM indicators of node i as initiator

1→iZ 2→iZ jiZ → niZ →L L 1→jZ 2→jZ ijZ → njZ →L L

ijR
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Modeling Ideas

• Hierarchical Bayes
– Latent MM vector encodes degree of semantic aspects
– Latent structures on semantic-dependent interactions

• Combination of 2 classes of models

1. Models of mixed 
membership (e.g., 
admixture model)

2. Network models 
(block models)

Stochastic block models of mixed membership

∪

=
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Interactions
(observed*)

j

i

yij = 1

h

g
1  2  3

1
2
3

β23 = 0.9

Group-to-group
patterns (latent*)

Pr ( yij=1 | θi,θj,β) = θi
T βθj

The Hierarchical Model

αθi

θj

1  2  3

Mixed membership
Vectors (latent*)
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The Hierarchical Model: MMSB

( )01
21

δρργ )(Bernoulli~
,,,, ,, −+

jiji zzjiR ( )01
21

δρργ )(Bernoulli~
,,,, ,, −+

jiji zzjiR

( )01 δρργ )(Bernoulli~ ,, −+
→→ ijji zzjiR

For each object i=1,…,N:

For each role-pair (s,t):
( )ijiZ θMulti~→

( )jijZ θMulti~→

( )αθ Dirichlet~i

( )βγ Beta~,ts

For each pair of object (i,j)

jiZ →

ijZ →
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Variational EM

The Complete likelihood:

• The mean-field approximation

– Parameters:  K*, α, β

– Variational EM:
• init (α,β)
• while (≈ log-lik increases)

– variational inference 
(ν*,φ*, …) = arg max(γ,φ) F(α,β; ν,φ,…)

update (α,β) with variational-MLEs given (ν*,φ*, …)
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Back to the Monastery

• Outcasts are an isolated faction

• Young Turks like members of the Loyal Opposition, although the 
sentiment is not reciprocal.
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In the mixed-membership simplex
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Temporal network evolution 
…

…
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This Talk:

• Latent "Topics" of Vertices
– Mixed Membership of Stochastic Blocks 

[Airoldi, Blei, Fienberg and Xing, 2005, 2006, 2007]

• Temporal Evolution of Networks
– Temporal Exponential Random Graph Model

[Hanneke and Xing, 2006]

• Reverse Engineer Latent Rewiring Network
– Hidden Temporal Exponential Random Graph Model

[Guo, Hanneke, Fu and Xing, 2007]

IPAM talk, Nov 5, 2007

26

School of Computer Science

The Changing Climate in the Senate

Corporativity, 

Antagonism,

Cliques,
…

over time?
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T0 TN ?
…

…

"Rewiring" Pathways in Biology
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Evolving Networks

• We observe the network at discrete, evenly spaced 
time points t = 1,2,…,T. 

• The observed network at time t: At.

• We want to design a class of statistical models for the 
evolution of networks over a fixed set of nodes.
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Markov Assumption

• To simplify things, assume the network observed at 
timestep t (1 ≤ t ≤ T) is independent of the rest of 
history given the knowledge of the network at timestep
t-1, then

• What should the conditional look like?

( ) ( ) ( ) ( )1121121  ,,,, APAAPAAPAAAAP tttt LK −− =
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• Two types of conditional probability model:

– Generative model (e.g. Bayesian networks):

– Energy-based model (e.g. Markov networks)

• Energy-based model is easier to analyze, but even 
approximate inference and learning can be hard.
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Energy-Based Local Conditional Probabilities
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Exponential Random Graphs

• Very general families for modeling a single static 
network observation.

• Can estimate the θ parameters by MCMC MLE

( ) ( ) ( ){ }θθ ZAuAP lnexp −⋅=
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ERGM Example

• A Classic example: (Frank & Strauss 1986)
– u1(A) = # edges in A
– u2(A) = # 2-stars in A
– u3(A) = # triangles in A

( ) ( ) ( ) ( ){ }AuAuAuAP 332211exp θθθ ++∝
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Temporal Extension of ERGMs

• Can we build all the work on ERGMs when 
designing a temporal model?

( ) ( ) ( ){ }111 ,ln,exp −−− −Ψ⋅= ttttt AZAAAAP θθ

Say the network has a single relation, and its value is either 0
or 1 (e.g., “friends” or “not friends”).
Let  Aij denote the value of the relation between ith actor and 
jth actor.
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An Example

• “Continuity”: 

• “Reciprocity”:

• “Transitivity”:

• “Density”:
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An Example (cont.)
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Maximum Likelihood Estimation

• Approximate MLE by MCMC (Z intractable)

• Use gradient ascent, using MCMC to estimate the 
expectation on each iteration (as in ERGM).
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Estimation Toy Example

• Generate a series of 10 networks from the example.

• True model has θ1=0, θ2=5, θ3=0, θ4=-20
(i.e., reciprocity and density only) 

• Estimated parameters:
θ1=-0.5,  θ2=4.2,   θ3=-0.08,   θ4=-20.2
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Simulation
• Uses the example model
• True parameters random in [0,10)
• 100 actors
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What’s it good for?

• Hypothesis Testing

• Data Exploration

• Foundation for Learning

IPAM talk, Nov 5, 2007
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An idea for specifying a model

• A network might be decomposable into different 
types of “motifs” (e.g., “hub & spokes”, “k-clique”, 
“triangle”,…).

• Write the potential functions to encode your 
understanding about how each motif evolves.

• It’s nice because we can “plug in” our intuition about 
the data.
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This Talk:

• Latent "Topics" of Vertices
– Mixed Membership of Stochastic Blocks 

[Airoldi, Blei, Fienberg and Xing, 2005, 2006, 2007]

• Temporal Evolution of Networks
– Temporal Exponential Random Graph Model

[Hanneke and Xing, 2006]

• Reverse Engineer Latent Rewiring Network
– Hidden Temporal Exponential Random Graph Model

[Guo, Hanneke, Fu and Xing, 2007]
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• Infer the network structure from node-attribute 
profiles

• Current methods:
Information-theoretic approaches, Model-based approaches, …

Reverse Engineering Networks
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…

t=1 2 3 T

⇒

⇒

Reverse Engineering Gene Networks
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Rewiring Biological Networks

• Networks rewire over discrete timesteps



23

IPAM talk, Nov 5, 2007

45

School of Computer Science

Rewiring Biological Networks (cont.) 

• Networks rewire over epochs
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• Latent network structures are of higher dimensions 
than observed node attributes
– How to place constraints on the latent space?

• Limited evidence per timestep
– How to share the information across time?

Technical Challenges
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• How to place constraint on the latent space?
– Modeling the hidden process governing network rewiring.

• How to share the information across time?
– Topological information shared via the hidden process of 

network rewiring;
– Additional information shared by a set of parameters 

invariant over time.

Technical Challenges
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Transition Model

Emission Model

The Graphical Model
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• A Hidden Temporal Exponential Random Graph 
Model

– An expressive framework to model network rewiring:

– Features of choice: 

(Density)

( ) ⎥
⎦

⎤
⎢
⎣

⎡
Ψ= ∑ −

−
−

i

tt
iit

tt AA
AZ

AAp ),(exp
),(

1 1
1

1 θ
θ

(Continuity) (Transitivity)

The Transition Model:
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The Emission Model

• Given the network topology, modeling the conditional 
probability distribution for binary node attributes.

• The Bayesian network approach is not 
straightforward in this case.

– BN approach models the data generation process explicitly.

– Need: network structure + local factors

– Difficulty: rewiring network structures lead to different local 
factors over time.
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The Emission Model (con't)

• Markov network based approach: 

– All features are pairwise which corresponds to the time-
specific network topology 

– Addition information to be shared over time represented 
by a matrix of "activation" parameters Λ

– The design of feature function Φ can be problem-specific.
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• Assumptions:
– Binary gene expression levels
– Time-invariant matrix Λ represents direction of correlation.

• The feature function    

( )( )1212 −−Λ=Φ t
j

t
iij

t
ijij xxA

Emission Model for Gene Expression
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Time-invariant parameters 
dictating the direction of 
pairwise correlation

Initial network to 
define the prior 
on A1

Multiple observations 
per timestep allowed

Hidden rewiring networks

Graphical Structure Revisit
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Straightforward -- tractable 
transition model; the partition 
function is the product of per 
edge terms

Computation is non-trivial

Given the graphical structure, run 
variable elimination algorithms, 
works well for small graphs

Inference

• Gibbs sampling:

– To evaluate the log-odds

– Difficulty: Evaluate the ratio of Partition function



28

IPAM talk, Nov 5, 2007

55

School of Computer Science

Parameter Estimation
• Parameter matrices are estimated a priori

– A0: Use the single timestep emission model and do MAP 
computation for inference (Pool the data together)

– Λ :  A majority vote of the direction of the correlation by the 
observations over all timesteps (Also Can be set as real 
values)

• Low-dimensional parameter vectors can be estimated 
under the Monte Carlo EM framework.
– Trade-off between the transition model and emission model:

• Larger θ: better fit of the rewiring processes;
• Larger η: better fit of the observations.

– Use grid search to find a good starting point.
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• Data generated from the proposed htERGM
• A0 consists of 10 nodes and 14 edges
• The total number of timesteps T = 50.

• Three approaches:
– sERG: the static counterpart of the proposed algorithm
– avg: averaged network from ground truth 

(approx. upper bounds the performance of any static network inference algorithm)

– htERG: infer timestep-specific networks

• F1 Score: the harmonic mean of sensitivity and specificity

Results – Simulated Data
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Results on Simulated Data (1)
• F1 scores on different parameter settings (varying         )ηθ ,2

s)repetition 10 sampling, Gibbs of iterations100k  ,5,4,5.0( 31 ==−= Dθθ
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Results on Simulated Data (2)
• Summary on capturing edge switching in networks

– Three cases: offset, false positive, missing (false negative)
– mean and root-mean-square of absolute offset time units

s)repetition 10 sampling, Gibbs of iterations100k    ,,,,,.( 514450 321 ====−= Dηθθθ
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Results on Simulated Data (3)
• F1 scores on different lengths of epoch (varying D)

s)repetition 10 sampling, Gibbs of iterations100k  ,1,4,4,5.0( 321 ===−= ηθθθ

lengths of epoch 
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Results on Drosophila data
• The proposed model was applied to infer the muscle development 

sub-network (Zhao et al., 2006) on Drosophila lifecycle gene 
expression data (Albeitman et al., 2002).
– 11 genes, 66 timesteps over 4 development stages
– Further biological experiments are necessary for verification.

Network in 
(Zhao et al. 2006)

Embryonic Larval Pupal & Adult
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• A hierarchical Bayesian extension of stochastic block 
models, and applications to network semantic distillation

• A new class of stochastic models for dynamic network 
analysis and an example in the biological context.

• Open issues and on-going and future work
– Approximating Z in hTERG model

– Large-scale network analysis

– Handling continuous gene expressions

– Developing emission models for social network analysis

Summary
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Thank you!


