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AN ot ot cence
Review: Macroscopic Network Analysis

A. Random Networks [Erdos and Rényi (1959, 1960)] e Fick
P(k) =

k!
Mean path length ~ In(k)
Phase transition:
Connected if: P > In(k)/k

P(k)~k7, k>>1 2<y
Mean path length ~ InIn(k)
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B et e slnce
Review: Meta Analysis of Networks

A.Stochastic Block Models
[Holland, Laskey, and Leinhardt 1983]

1
PriX=x) :;exp(Z/lU,x” )

B.Exponential Radom Graph Models
[Bahadur 1961, Besag 1974, Frank &
Strauss 1986]

exp{0'z(x)}

L

PriX =x) =

C.Latent Space Models
[Hoff, Raftery, and Handcock, 2002]
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Dissecting Social Networks @6 ©

White et al: From logical role systems to empirical social structures

“We can express a role through a relation (or set of relations) and
thus a social system by the inventory of roles. If roles equate to
positions in an exchange system, then we need only identify
particular aspects of a position. But what aspect?”

Structural Equivalence:

Two actors are structurally equivalent if they have
the same types of ties to the same people.
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Structural Equivalence
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Structural Equivalence
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Classical Blockmodeling
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Blockmodeling is the process of identifying these types of positions. A block is a
section of the adjacency matrix - a “group” of structurally equivalent ACTORS. 8
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Cohesive Subgroups

-
N
w
~
ol

(o]

[EN
[

o~

=1
ocopklo

—

RO OO
ol Nl olle]

[elloNall N olle]
[eNelloNall N eolle}
[eNoNelloNall i  ol(e]
OO OOk rOOP|O

[$2]
eNeoNoNeol oNoNoNeleNall S N Nl
[cNeoNoNeol oNeoNoNal 3 SlleoNe}
OQCOO0OOFRRFRRFRPRFPOOIR:
OQOO0OO0OO0OFRRFRRFRRPLROO|
PRPPPRPOOOO|R:!
PRPRPRPPRPOOOO|
[eNoNeoNeol oNeNei
[cNoNoNol eNeN
[eNeoNeoNe} e
[eNeoNeoNaN]
[eNeNeN
[eNeN]
o

IPAM talk, Nov 52007

[elcNoNeoNel ol HiloNeol olle]

OO0OO0O0OO0OO0O|rkrrOOP|IO
[cNeoNeoloNoNoNall ol JHloNeol ol(e]

1
2
3
4
5
6

OCO0OOFrRFrROPRr

OrOFrROFrRW

[cNoNeoN NeNoNé|

OO0OPrPOOOO®

X

School of Computer Science
Carnegie Mellon

Stochastic Cohesive Subgroups
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General Framework for Stochastic
Blockmodel

« Regard each network tie as a random variable (often binary)

Xij = 1lifthere is a network link from person i to person j
=0 if there is no link,
for i, j members of some set of actors N.

A directed network: X; and X; are distinct.

A non-directed network: X; = X;;

« Formulate a hypothesis about interdependencies and construct a
dependence graph

The dependence graph represents the contingencies among network
variables X;. (e.g., defined on cliques), i.e., a set of "potential functions”.

11
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The Hammersley-Clifford Theorem
PI’(X=X)=,D*(X)=1€Xp{Z A2 }
c all cliques A<A
where:
the summation is over all cliques A;
z, =TI 54 X; i the network statistic corresponding to the clique A;
Aa is the parameter corresponding to clique A;
¢ = Iy exp{Zraza(X)} is a normalising constant
(Besag, 1974)
12
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Bernoulli Blockmodels

Suppose actors are either in block 1 or 2, and pairwise potentials

Hammersley-Clifford:
Pr(X = x) = (1/c) exp{Z;; A;x; }

Block homogeneity:
A= 0y, if i and j both in block 1
A= 0., ifiin block 1 and j in block 2, etc.

Pr(X = x) = (1/c) exp{0, L1, +0,, L1505 Ly +0;; Ly}
where L is the number of edges from block r to block s.

Extendable to multiple blocks

13
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This Talk:
» Latent "Topics" of Vertices
— Mixed Membership of Stochastic Blocks
[Airoldi, Blei, Fienberg and Xing, 2005, 2006, 2007]
e Temporal Evolution of Networks
— Temporal Exponential Random Graph Model
[Hanneke and Xing, 2006]
* Reverse Engineer Latent Rewiring Networks
— Hidden Temporal Exponential Random Graph Model
[Guo, Hanneke, Fu and Xing, 2007]
14
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Mixed Membership of Actors
* Sampson’s Monastery (Sampson 1968)

= What are the factions?
= How many are there?

= How do factions relate
to one another?
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I
A Latent Mixture Membership
Blockmodel

Motivation

* In many networks (e.g., biological network, citation networks), each
node may be “multiple-class”, i.e., has multiple functional/topical
aspects.

» The interaction of a node (e.g., a protein) with different nodes
(partners) may be under different function context.

» Prior knowledge of group interaction may be available.

16
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A Generative Perspective

* Mixed membership and peer-specific role realizations:

MM vector of node 7 MM vector of node j

17
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Modeling Ideas

» Hierarchical Bayes
— Latent MM vector encodes degree of semantic aspects
— Latent structures on semantic-dependent interactions

+ Combination of 2 classes of models

1. Models of mixed 2. Network models
membership (e.g., U (block models)
admixture model)

— Stochastic block models of mixed membership

18
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The Hierarchical Model

Mixed membership Interactions Group-to-group
Vectors (latent*) (observed*) patterns (latent*)

Pr(y;=116.6.8 =267 pa

19
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The Hierarchical Model: MMSB
BT A
’ NE2
/ N*N KKl
For each object i=1,...,N: For each pair of object (1;])
6, ~ Dirichlet(« .
(@) I:> Z,,, ~Multi(g)
For each role-pair (s,?): Zi,i~ l\/lulti(ej)
7., ~ Beta(p) R~ Bernoulli(pyz‘ s TA=P)S )zo
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Variational EM

The Complete likelihood:

g,

7 ,+a-1 Ijr“Jz‘gﬂzLﬁﬂl—l i‘J(l—rivi)z‘gﬁszﬁ/izfl
p(r.2,0.7) = [T02""" <2 (17,0
* The mean-field approximation

q(r,z,a,na,ﬂ):[ﬁq(a m]x[ [Ta0s mn]x[ L1600 14000 14 a0 mn]

— Parameters: K*, a, B

— Variational EM:
* init (o,B)
» while (= log-lik increases)
— variational inference
(v*,0%, ...) = arg max,, o F(a.B; v,9,...)
update (a,) with variational-MLEs given (v*,¢*, ...)

21
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¢ Qutcasts are an isolated faction
¢ Young Turks like members of the Loyal Opposition, although the
sentiment is not reciprocal. 22
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Temporal network evolution
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This Talk:

» Latent "Topics" of Vertices

— Mixed Membership of Stochastic Blocks
[Airoldi, Blei, Fienberg and Xing, 2005, 2006, 2007]

* Temporal Evolution of Networks
— Temporal Exponential Random Graph Model
[Hanneke and Xing, 2006]

» Reverse Engineer Latent Rewiring Network

— Hidden Temporal Exponential Random Graph Model
[Guo, Hanneke, Fu and Xing, 2007]

1879 1887 1896 1903 1911 1919 1937 1536 1543 1951 1965 1967 1876 1563 1991 1999
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The Changing Climate in the Senate
Senate: Party Polarization 1879-2006
Distance Between the Parties First Dimension
g
Polarization
2 ]
C L. g Moderate Democrats 2
orporativity, :s m‘\J\ 25
Antagonism, g 5- v AV‘-\.« \.\_/_,\//\-\% e d
s Moderate E
Cliques, E 2 W \\)\' &3
over time? -
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"Rewiring" Pathways in Biology
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B ot e slnce
Evolving Networks

« We observe the network at discrete, evenly spaced
time pointst=1,2,...,T.

T=1 T=2 T=3 T=4 T=5

* The observed network at time t: Al

* We want to design a class of statistical models for the
evolution of networks over a fixed set of nodes. 28
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Markov Assumption

e To simplify things, assume the network observed at
timestep t (1 <t <T) is independent of the rest of
history given the knowledge of the network at timestep
t-1, then

P(A', A7, A7, )= P(A| A2 ). P(A2 A P(AY)

* What should the conditional look like?

29
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Energy-Based Local Conditional Probabilities

» Two types of conditional probability model:

— Generative model (e.g. Bayesian networks):

p(xIy)=] T p(x I Pa(x).y)

— Energy-based model (e.g. Markov networks)

e*E(X,y) 1
p(X | y) = ze,E(x-yy) = Z(y) eXp|:; (Dk (XCK ) y):|
* Energy-based model is easier to analyze, but even
approximate inference and learning can be hard. 30
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Exponential Random Graphs

* Very general families for modeling a single static
network observation.

P(A)=exp{@-u(A)-InZ(6)}

» Can estimate the 6 parameters by MCMC MLE

31
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ERGM Example

» A Classic example: (Frank & Strauss 1986)
— u;(A) =#edgesin A
— U,(A) =# 2-stars in A
— Ug(A) = # triangles in A

P(A) x exp{glul(A)_I_ U, (A)+ qus(A)}

32
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Temporal Extension of ERGMs

» Can we build all the work on ERGMs when
designing a temporal model?

P(AA")=explo- (A, A)-Inz(0, A}

= Say the network has a single relation, and its value is either 0
or 1 (e.g., “friends” or “not friends”).
= Let A; denote the value of the relation between ith actor and

jth actor.
33
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An Example
P(aA)=explo-w(a', A )-Inz(0, A7)}
. “Continuity”: ¥,(A, A?)= Z(Aﬁ A+ - A J- A7)
ij
+ “Reciprocity”: ¥,(A',A”)= 3 A/A}?
ij
‘ i, AACAT
* “Transitivity™ g (At A Zuk ! )
A A= S
* “Density” (A‘ A 1) ZAH
34
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An Example (cont.)

P(At‘At—l)oc exp{@lz(Atj Atj—l + (1_ Ait, Xl— A,tj_l))
02 AN
DAACA

ijk

o0

+ 0,

35
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Maximum Likelihood Estimation
» Approximate MLE by MCMC (Z intractable)
T T
InP(AT, A, &A= 0.3 (A, A7)- Y InZ(6, A
t=2 t=2
VInP(AT, AT A°|A)= (A, A7) Y E, [(a At A
t=2 t=2
» Use gradient ascent, using MCMC to estimate the
expectation on each iteration (as in ERGM).
36
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Estimation Toy Example

» Generate a series of 10 networks from the example.

» True model has 6 ,=0, 6 ,=5, 8 ,=0, 6 ,=-20
(i.e., reciprocity and density only)

» Estimated parameters:
9 1:'0.5, 6 2:4.2, 9 3:'0.08, 9 4:'20.2

IPAM talk, Nov 52007
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Simulation

» Uses the example model
» True parameters random in [0,10)
* 100 actors

— Aok MILE
1IN MLE

-
in

Budidean Distzroz from True 8
" w
I w |
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What'’s it good for?

» Hypothesis Testing
» Data Exploration

* Foundation for Learning

39
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An idea for specifying a model
* A network might be decomposable into different
types of “motifs” (e.g., “hub & spokes”, “k-clique”,
“triangle”,...).
» Write the potential functions to encode your
understanding about how each motif evolves.
 It’'s nice because we can “plug in” our intuition about
the data.
40
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This Talk:

» Latent "Topics" of Vertices
— Mixed Membership of Stochastic Blocks
[Airoldi, Blei, Fienberg and Xing, 2005, 2006, 2007]

* Temporal Evolution of Networks
— Temporal Exponential Random Graph Model
[Hanneke and Xing, 2006]

» Reverse Engineer Latent Rewiring Network

— Hidden Temporal Exponential Random Graph Model
[Guo, Hanneke, Fu and Xing, 2007]

41
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Reverse Engineering Networks

* Infer the network structure from node-attribute
profiles

LS T R
PRhewe ™y
LCE.E.F'N K. 8§
fomsaBagn
B manism
AAPE 3w
PP rom B
o MmeT Ay

o Y
w o™ Dp@e

=

* Current methods:
Information-theoretic approaches, Model-based approaches, ...

42
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Reverse Engineering Gene Networks

(- ¥y
-
L.
Ea
TF&
= X, Tx
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TFd L}

TFd =
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Rewiring Biological Networks

* Networks rewire over discrete timesteps

T=1 T=2 T=3 T=4 T=5

44
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Rewiring Biological Networks (cont.)

* Networks rewire over epochs

T=12 T=345 T=6,7.8 T=9~15

311"
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Technical Challenges

e Latent network structures are of higher dimensions
than observed node attributes

— How to place constraints on the latent space?

» Limited evidence per timestep
— How to share the information across time?

IPAM talk, Nov 5. 2007
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Technical Challenges

* How to place constraint on the latent space?
— Modeling the hidden process governing network rewiring.

GEOMONGNE

* How to share the information across time?

— Topological information shared via the hidden process of
network rewiring;

— Additional information shared by a set of parameters

invariant over time. 4
IPAM talk, Nov 52007
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The Graphical Model
DTET
Transition Model
) 4 ) 4 ) 4
D4 D, D+
Emission Model
48

IPAM talk, Nov 5. 2007

24



X

Schoolof Computer Science @ N —(®)
The Transition Model:

* A Hidden Temporal Exponential Random Graph
Model

— An expressive framework to model network rewiring:

t| at-1)_ # t pt-1
p (AA)= e exp{Zepﬂ(A A )}
— Features of choice:
YAACA
H=2 A, \PZ:Z(Ai[iATl+(1—A1[1X1—Atfl))n ‘I’3=HKZA1W

ijk

(Density) (Continuity) (Transitivity) 49
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The Emission Model

» Given the network topology, modeling the conditional
probability distribution for binary node attributes.

» The Bayesian network approach is not
straightforward in this case.

— BN approach models the data generation process explicitly.
— Need: network structure + local factors

— Difficulty: rewiring network structures lead to different local
factors over time.

50
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The Emission Model (con't)

» Markov network based approach:

— All features are pairwise which corresponds to the time-
specific network topology

— Addition information to be shared over time represented
by a matrix of "activation" parameters A

ti At _ 1 t oyt At
p(x ‘A 'A)— Z(A' A7) EXP{U;CDU (5 X5 A Ay)
— The design of feature function ® can be problem-specific.

51
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- REREA
Emission Model for Gene Expression
* Assumptions:

— Binary gene expression levels
— Time-invariant matrix /A represents direction of correlation.

i = | a"'\._=—|

» The feature function s s

®, = AA, (2% ~1f2x; -1) o U B
O—®

D=-1 Pp=]|

=] P==1

52
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Graphical Structure Revisit

Initial network to
define the prior
1
onA D1 D2 DT

Multiple observations
per timestep allowed

Hidden rewiring networks

Time-invariant parameters /

dictating the direction of
pairwise correlation
IPAM talk, Nov 52007
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Inference

* Gibbs sampling:

' A ALy, A, Y
e = W8 e O,y AL, AT )

— To evaluate the log-odds 5 o AL =) P =1
i 1) TR B, AL =0) | B PaAL,,, AL, = 1)

— Difficulty: Evaluate the ratio of Partition function z(A') = 5=, exp (0"F(A. A"))

r®

At
Straightforward -- tractable Computation is non-trivial
transition model; the partition
function is the product of per
edge terms Given the graphical structure, run
variable elimination algorithms, 54
works well for small graphs
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Parameter Estimation

» Parameter matrices are estimated a priori

— AD: Use the single timestep emission model and do MAP
computation for inference (Pool the data together)

— /1': A majority vote of the direction of the correlation by the
observations over all timesteps (Also Can be set as real
values)

» Low-dimensional parameter vectors can be estimated
under the Monte Carlo EM framework.

— Trade-off between the transition model and emission model:

» Larger 6: better fit of the rewiring processes;
- Larger 7 : better fit of the observations.

— Use grid search to find a good starting point. o
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Results — Simulated Data

Data generated from the proposed htERGM
AQ consists of 10 nodes and 14 edges
The total number of timesteps T = 50.

Three approaches:
— SERG: the static counterpart of the proposed algorithm

— avg: averaged network from ground truth
(approx. upper bounds the performance of any static network inference algorithm)

— htERG: infer timestep-specific networks

F1 Score: the harmonic mean of sensitivity and specificity

56
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Results on Simulated Data (1)

 F1 scores on different parameter settings (varying &,,7)
(6, =-0.5,6, = 4,D =5,100k iterations of Gibbs sampling,10 repetitions)

n=05 n=10 n=15
10

08 = T ;2 = ;g T

Y08 = = |08 _

%08 = 06 X a s = 0,=4

“ 04 04 04T :
sERG avg htERG sERG avg htERG sERG avg htERG

10——=7 1

1.0

o E B gy F g, 2 ¥

o
80. . _
o = g 6,=5
& 06 = 0.6 06

sERG avg htERG sERG avg htERG sERG avg htERG
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Results on Simulated Data (2)

* Summary on capturing edge switching in networks

— Three cases: offset, false positive, missing (false negative)
— mean and root-mean-square of absolute offset time units
(6,=-0.5,0,=4,6,=4,7=1,D=5,100k iterations of Gibbs sampling, 10 repetitions)

.. = c,,,,,m,f,‘.,.,.,. — truth # At Ai2
offset 'I;-': 532 23 56

63 6.7 9.1

mss [ 22 82 109
58
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Results on Simulated Data (3)

F1 scores on different lengths of epoch (varying D)
(6,=-05,6, =4,0,=4,7=1 100k iterationsof Gibbssampling,10 repetitiors)

— htERGM
—avg of truth
1.0f—sERGM .
09_ [T T 1 -
[«8]
o 08

[&]
® 0.7
-
L 0.6H[=

0.5k SRR : :
1 2 3 4 5 6 7 8 9 10
lengths of epoch

59
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Results on Drosophila data
» The proposed model was applied to infer the muscle development
sub-network (Zhao et al., 2006) on Drosophila lifecycle gene
expression data (Albeitman et al., 2002).
— 11 genes, 66 timesteps over 4 development stages
— Further biological experiments are necessary for verification.
Network in Embryonic
(Zhao et al. 2006)
60
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Summary

» A hierarchical Bayesian extension of stochastic block
models, and applications to network semantic distillation

* A new class of stochastic models for dynamic network
analysis and an example in the biological context.

* Open issues and on-going and future work
Approximating Z in hTERG model

Large-scale network analysis

Handling continuous gene expressions

Developing emission models for social network analysis
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Thank you!
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