Complex Networks as a tool to study human activity

José Javier Ramasco

Bruno Gonçalves Steven A. Morris Romualdo Pastor-Satorras Sergei Dorogovtsev

Outline

- Social Networks as weighted graphs
- Measures and meaning
- Social Inertia
- Results in Empirical Networks and models
- More information, Range
- Conclusions

Social Networks

Friendster.com

Social Networks

Some characteristics that make social networks hard to study

- Arbitrariness of the definition
- Variability
- Size constrains on the social probes

Collaboration Networks

Collaboration Networks

The projected network contains less information than the original bipartite graph.

A way to avoid that in part is to use a weighted network in the projection.

The weight of a link may be defined as

$$w_{ij} = \sum_{k \text{ collab}} \frac{\delta_i^k \delta_j^k}{n_k - 1}$$

$$w_{ij} = \sum_{k \text{ collab}} \delta_i^k \delta_j^k = \text{ num. common collab.}$$

Note however that there is still a certain loose of information.

Measures

We can define a number of distributions for the weighted network

Degree distribution
 $\begin{array}{l}
 P_k(k) & \left\langle k \right\rangle & C_k(k) \\
 Weight distribution of the edges
 P_w(w) & \left\langle w \right\rangle & C_w(w) \\
 Strength distribution$

$$s_{i} = \sum_{j \in v(i)} w_{ij}$$
$$P_{s}(s) \qquad \langle s \rangle \qquad C_{s}(s)$$

Measures

Other properties of the projected network that we are interested in

• Clustering $c_i = \frac{2t_i}{k_i(k_i - 1)}$ $C = \langle c_i \rangle$ $c_{i}^{w} = \frac{1}{s_{i}(k_{i}-1)} \sum_{i \ m \in v(i)} \frac{w_{ij} + w_{im}}{2} a_{ij} a_{im} a_{jm} \qquad C^{w} = \left\langle c_{i}^{w} \right\rangle$ Correlations $k_{nn,i} = \frac{1}{k_i} \sum_{i \in \mathcal{N}(i)} k_j \qquad k_{nn}(k) = \left\langle k_{nn,i} \right\rangle_k$ $S_{nn}(s) = \langle S_{nn,i} \rangle_{a}$ $I_{nn}(I) = \left\langle I_{nn} \right\rangle_{I}$

A. Barrat, et al., PNAS 101, 3747 (2004).

Social Inertia

Remember that

 w_{ij} = num. of works together that the strength means

$$s_i = \sum_{j \in v(i)} w_{ij}$$
 = total num of partnerships

And the degree of a node means

 k_i = num. of different partners

Let us define then the Social Inertia as

$$\mathbf{I}_i = \frac{S_i}{k_i}$$

J.J. Ramasco and S.A. Morris, PRE 73, 016122 (2006).

Social Inertia

The extreme values of I are

- $I_i \rightarrow 1$ if all collaborations happened with different partners.
- $I_i \rightarrow q_i$ if all works where done with the

same team.

In general, represents a measure of the eagerness of an author for collaborations with new people.

This concept could be generalized to other weighted graphs, its physical meaning (?).

Social Inertia

Warning: the social inertia is averaged over time. It is the same concept as an average velocity.

It should be possible to define an instant inertia but it requires a more detailed knowledge of the empirical databases.

$$\tilde{I}_i = \left\langle \Delta S_i \middle/ \Delta k_i \right\rangle_T \quad ?$$

Field	N_c	N_a	$N_{ai}/N_a(\%)$
	IMDB movie database		
movies	127823	383640	0.37
	Scientific collaborations		
anthrax	2460	4320	8.9
atrial ablation	3091	6409	0.78
biosensors	5889	10993	1.1
botox	1560	3521	2.3
complex networks	900	1354	5.3
$\operatorname{condmat}$	22002	16721	2.8
distance education	1389	2466	21.5
info science	14209	9399	40.4
info viz	2448	5520	12.4
scientometrics	3467	2926	21.04
self organized criticality	1631	2040	5.4
silicon on isolator	2381	4867	1.3
superconductors	1629	2981	6.5
superstrings	6643	3755	7.8

$$N_a$$
 = num. agents

 $N_{\rm c}$ = num. collaborations

$$N_{\rm ai}$$
 = num. agents that
work alone

Main and Inset: movies

Slopes main blue = $-3 = 1-\delta$

$$P_{w}(w) \sim w^{-\delta}$$
$$C_{w} = \int_{w}^{\infty} P(w') dw' \sim w^{1-\delta}$$

Slopes main red = -3

Slopes inset red = -3.8

Slopes main red = 0.7

Main: movies

Inset: superstrings

Inset: infoscience

Slopes main red = 0.4

Slopes inset red = 0.6

<u>Models</u>

Each step a new collaboration of size n is added. m of the agents are new, without experience.

The rest m-n are selected from the pool of old agents
Prob p → one of the previous partners of an "old" agent is chosen
Prob 1-p → an "old" agent is chosen with prob proportional to q

After Q_c collaborations, the agents have a prob. $1/\tau$ of becoming inactive.

R. Guimarà *et al.*, Science **308**, 697 (2005).

Simulation results

Range, different quality of the connections

Motivation

• IMDB Actor network, w_{im} = number of times *i* and *m* have worked together.

$$P_{w}(w) \sim w^{-\delta}$$
$$C_{w} = \int_{w}^{\infty} P(w') dw' \sim w^{1-\delta}$$
fit $\delta = -4$

Motivation

- P(w) has finite second moment.
- <w> does not depend on k
- Are the weight correlated?

$$s_i = \sum_{j \in v(i)} w_{ij} = w_{iv_1} + w_{iv_2} + \dots + w_{iv_{k_i}}$$
$$\sigma_s(k) \sim k^{1/2} \Longrightarrow \sigma_{} \sim k^{-1/2}$$

(J.J. Ramasco, Eur. Phys. J. ST 143, 47 (2007))

Models

- We can try to replicate this situation in a toy model
- The simplest case requires P(w,w'), P(w) and P(w'|w) and also a sets of rules for weight assignment.
- This is not a unique method.

$$P(w) = \int P(w,w')dw'$$
$$P(w'|w) = P(w,w')/P(w)$$

Models

• We chose three possible functional forms for P(w,w')

$$P_{+}(w,w') = \frac{X_{+}}{(w+w')^{2+\alpha}}$$
$$P_{U}(w,w') = \frac{X_{U}}{(ww')^{1+\alpha}}$$
$$P_{-}(w,w') = \frac{X_{-}}{(ww'+1)^{1+\alpha}}$$

• The reason was that

$$P(w) \sim w^{-1-\alpha}$$

$$< w >_{+} (w_0) = (1 + \alpha + w_0)/\alpha$$

 $< w >_{U} = \alpha / (\alpha - 1)$
 $< w >_{-} (w_0) = (\alpha + 1/w_0) / (\alpha - 1)$

Measures

- The goal is to find a measure to estimate the type/intensity of weight correlations and their intensity.
- P(w) is **fixed**.
- Compare actual pattern with a random configuration

$$\implies \sigma_w^2(i) = \sum_j (w_{ij} - \langle w \rangle(i))^2$$

$$r(i) = \frac{w_{\max}(i) - w_{\min}(i)}{w_{\max}(i) + w_{\min}(i)}$$

M. Barthelemy, Physica A **319**, 633 (2003). J.J. Ramasco *et al.*, to appear PRE.

Measures

- The three magnitudes are able to detect up to some level weight correlations
- But there is a resolution problem

Transport

- There are many ways to describe network transport properties
- We focus on the so called Superhighways

Transport

- Actor network

 ρ ≈ 0.268(1)
 - Ω **≈** 20(7)
 - S ≈ 3(1)
- US airport traffic

 $\Omega \approx 2.6(1)$

Conclusions

- We have studied collaborations networks using a weighted graph representation.
- This representation allows us to define the Social Inertia in a natural way.
- The Inertia (measured in a quantitative way) grows with the experience and the network is assortative for the inertia.
- The model is able to reproduce some of the quantitative features of the empirical networks but it is necessary more detail for a better quantitative result.

Conclusions

- Weight correlations appear in real-world networks
- We have propose a measures to quantify the level of correlations
- These correlations have a strong effect on the transport properties of the graph
- Open questions:
 - Origin of the phenomenon in real nets.
 - Effect on disease spreading.

Web Surfing

• The database is formed by the weblogs of Emory University from Apr. 1st 2005 to Jan. 17th 2006 (41 weeks).

• Each click in a web of the university is registered at the time resolution of 1 second.

Number of IPs	N_{IP}	3, 179, 671
Number of URLs	N_{URL}	2,562,398
Total Number of page requests (weight)	Ω	53, 582, 121
Average number of IPs introduced per day	n_{IP}	10,742
Average number of URLs introduced per day	n_{URL}	8,396
Average number of edges introduced per day	e	77,569
Average wieght increment per day	Ω^{\dagger}	186,350

Growth

IPs

URLs

Growth

l

i.

l

l

Conclusions

- We have studied an empirical database generating an evolving bipartite graph.
- Preferential attachment plays an important role in the evolution of the weights but so does aging of the connections.
- These data allow us to consider also the activity patterns of the community.
- Open questions …