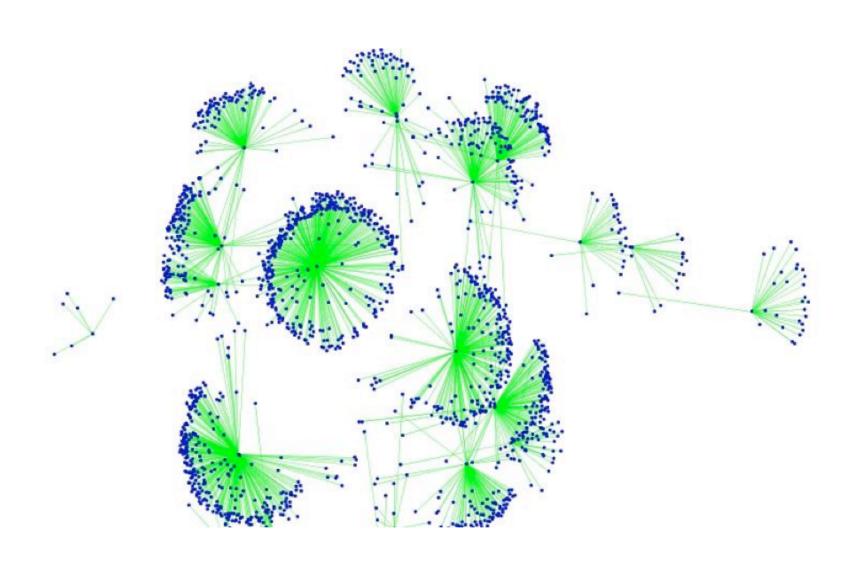
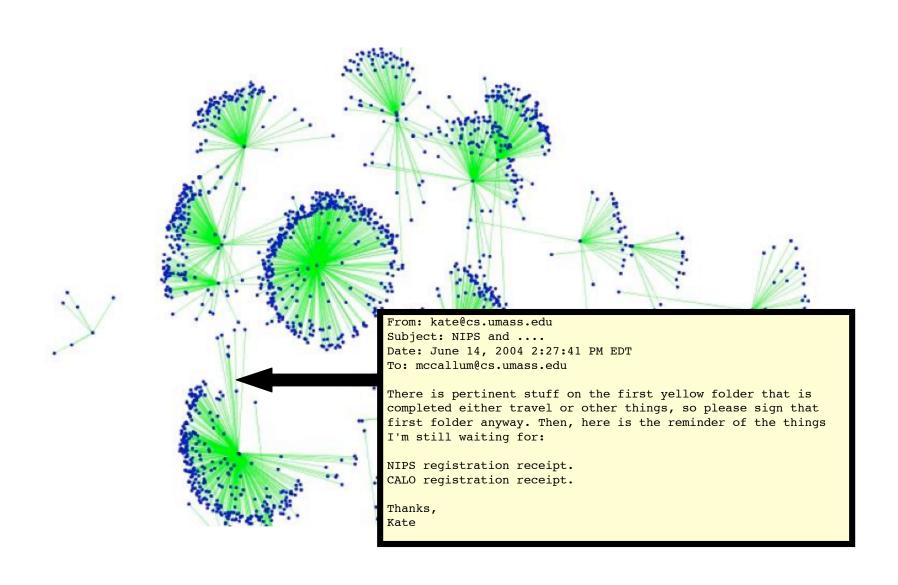
Predictive Social Network Analysis with Multi-Modal Data


Andrew McCallum

Computer Science Department
University of Massachusetts Amherst



Joint work with Wei Li, Xuerui Wang, Andres Corrada, Chris Pal, Natasha Mohanty, David Mimno, Gideon Mann.

Social Network in an Email Dataset

Social Network in an Email Dataset

Social Network Analysis (Pattern Discovery in Networks)

Data:

Network Connectivity

Network Connectivity + *Many Attributes*

Text, Timestamps, Authors,...

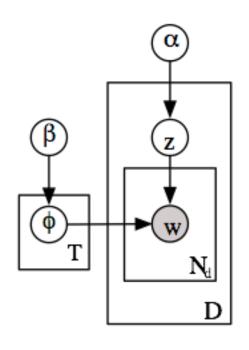
Objective:

Descriptive

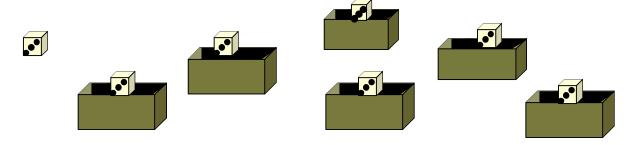
Small World, Betweeness Centrality,...

Predictive & Prescriptive

P(edge|...) P(attribute|...), P(group|...) P(collaborator|...)


Methodology:

Direct Measures, Agglomerative & Spectral Clustering,...



Generative, Latent Variable Models

A Probabilistic Approach

 Define a probabilistic generative model for documents.

 Learn the parameters of this model by fitting them to the data and a prior.

$$\phi^* = \text{arg max}_{\phi} \; p(\phi|\mathbf{D}_1\mathbf{D}_2...) = p(\mathbf{D}_1\mathbf{D}_2...|\phi) \; p(\phi)$$

Clustering words into topics with Latent Dirichlet Allocation

[Blei, Ng, Jordan 2003]

<u>Generative</u>

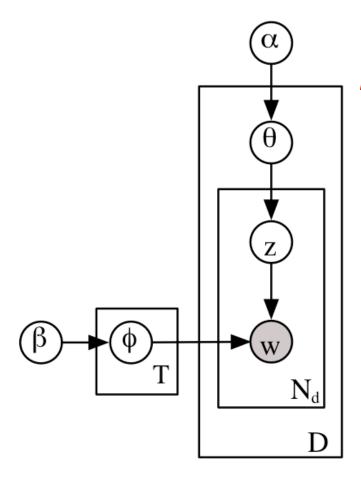
Process:

Example:

For each document:

Sample a distribution over topics, θ

For each word in doc


Sample a topic, z

Sample a word from the topic, w

70% Iraq war 30% US election

Iraq war

"bombing"

Example topics induced from a large collection of text

DISEASE	WATER	MIND	STORY	FIELD	SCIENCE	BALL	JOB
BACTERIA	FISH	WORLD	STORIES	MAGNETIC	STUDY	GAME	WORK
DISEASES	SEA	DREAM	TELL	MAGNET	SCIENTISTS	TEAM	JOBS
GERMS	SWIM	DREAMS	CHARACTER	WIRE	SCIENTIFIC	FOOTBALL	CAREER
FEVER	SWIMMING		CHARACTERS	NEEDLE	KNOWLEDGE	BASEBALL	EXPERIENCE
CAUSE	POOL	IMAGINATION	AUTHOR	CURRENT	WORK	PLAYERS	EMPLOYMENT
CAUSED	LIKE	MOMENT	READ	COIL	RESEARCH	PLAY	OPPORTUNITIES
SPREAD	SHELL	THOUGHTS	TOLD	POLES	CHEMISTRY	FIELD	WORKING
VIRUSES	SHARK	OWN	SETTING	IRON	TECHNOLOGY	PLAYER	TRAINING
INFECTION	TANK	REAL	TALES	COMPASS	MANY E	BASKETBALI	
VIRUS	SHELLS	LIFE	PLOT	LINES	MATHEMATICS	COACH	CAREERS
MICROORGANISM		IMAGINE	TELLING	CORE	BIOLOGY	PLAYED	POSITIONS
PERSON	DIVING	SENSE	SHORT	ELECTRIC	FIELD	PLAYING	FIND
INFECTIOUS	DOLPHINS	CONSCIOUSNESS	S FICTION	DIRECTION	PHYSICS	HIT	POSITION
COMMON	SWAM	STRANGE	ACTION	FORCE	LABORATORY	TENNIS	FIELD
CAUSING	LONG	FEELING	TRUE	MAGNETS	STUDIES	TEAMS	OCCUPATIONS
SMALLPOX	SEAL	WHOLE	EVENTS	BE	WORLD	GAMES	REQUIRE
BODY	DIVE	BEING	TELLS	MAGNETISM	1 SCIENTIST	SPORTS	OPPORTUNITY
INFECTIONS	DOLPHIN	MIGHT	TALE	POLE	STUDYING	BAT	EARN
CERTAIN	UNDERWATER	HOPE	NOVEL	INDUCED	SCIENCES	TERRY	ABLE

[Tennenbaum et al]

Example topics induced from a large collection of text

DISEASE	WATER	MIND	STORY	FIELD	SCIENCE	BALL	JOB
BACTERIA	FISH	WORLD	STORIES	MAGNETIC	STUDY	GAME	WORK
DISEASES	SEA	DREAM	TELL	MAGNET	SCIENTISTS	TEAM	JOBS
GERMS	SWIM	DREAMS	CHARACTER	WIRE	SCIENTIFIC	FOOTBALL	CAREER
FEVER	SWIMMING		CHARACTERS	NEEDLE	KNOWLEDGE	BASEBALL	EXPERIENCE
CAUSE	POOL	IMAGINATION	AUTHOR	CURRENT	WORK	PLAYERS	EMPLOYMENT
CAUSED	LIKE	MOMENT	READ	COIL	RESEARCH	PLAY	OPPORTUNITIES
SPREAD	SHELL	THOUGHTS	TOLD	POLES	CHEMISTRY	FIELD	WORKING
VIRUSES	SHARK	OWN	SETTING	IRON	TECHNOLOGY	PLAYER	TRAINING
INFECTION	TANK	REAL	TALES	COMPASS	MANY I	BASKETBALL	
VIRUS	SHELLS	LIFE	PLOT	LINES	MATHEMATICS	COACH	CAREERS
MICROORGANISM		IMAGINE	TELLING	CORE	BIOLOGY	PLAYED	POSITIONS
PERSON	DIVING	SENSE	SHORT	ELECTRIC	FIELD	PLAYING	FIND
INFECTIOUS	DOLPHINS	CONSCIOUSNES	S FICTION	DIRECTION	PHYSICS	HIT	POSITION
COMMON	SWAM	STRANGE	ACTION	FORCE	LABORATORY	TENNIS	FIELD
CAUSING	LONG	FEELING	TRUE	MAGNETS	STUDIES	TEAMS	OCCUPATIONS
SMALLPOX	SEAL	WHOLE	EVENTS	BE	WORLD	GAMES	REQUIRE
BODY	DIVE	BEING	TELLS	MAGNETISM		SPORTS	OPPORTUNITY
INFECTIONS	DOLPHIN	MIGHT	TALE	POLE	STUDYING	BAT	EARN
CERTAIN	UNDERWATER	HOPE	NOVEL	INDUCED	SCIENCES	TERRY	ABLE

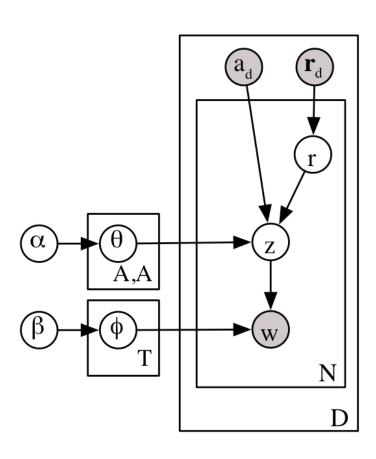
[Tennenbaum et al]

Outline

- Social Network Analysis
 - Roles (Author-Recipient-Topic Model)
 - Groups (Group-Topic Model)
 - Trends over time (Topics-over-Time Model, TOT)
 - Preferential Attachment (Community-Author-Topic, CAT)
- Undirected Graphical Models
 - Flexible Objective Functions (Multi-Conditional Learning, MCL)
 - Topics for Prediction (Multinomial-Components-Analysis, MCA)
- Demo: Rexa, a Web portal for researchers
 - Topical Impact Measures (Diversity,...)

From LDA to Author-Recipient-Topic

(ART)


Latent Dirichlet Allocation

(LDA) [Blei, Ng, Jordan, 2003]

Inference and Estimation

$$p(\theta, \phi, \mathbf{x}_d, \mathbf{z}_d, \mathbf{w}_d | \alpha, \beta, a_d, \mathbf{r}_d) = p(\theta | \alpha) p(\phi | \beta) \prod_{n=1}^{N_d} p(x_{dn} | \mathbf{r}_d) p(z_{dn} | \theta_{a_d, x_{dn}}) p(w_{dn} | \phi_{z_{dn}})$$

Gibbs Sampling:

- Easy to implement
- Reasonably fast

$$P(z_i | \mathbf{z}_{-i}, \mathbf{x}, \mathbf{w}) \propto \frac{n_{z_i}^{w_v} + \beta_v}{\sum_v n_{z_i}^{w_v} + \beta_v} \frac{n_{x_i}^{z_i} + \alpha_{z_i}}{\sum_{z'} n_{x_i}^{z'} + \alpha_{z'}}$$

$$P(\mathbf{r}_i | \mathbf{z}, \mathbf{r}_{-i}, \mathbf{w}) \propto \frac{n_{x_i}^{z_i} + \alpha_{z_i}}{\sum_{z'} n_{x_i}^{z'} + \alpha_{z'}}$$

Enron Email Corpus

- 250k email messages
- 23k people

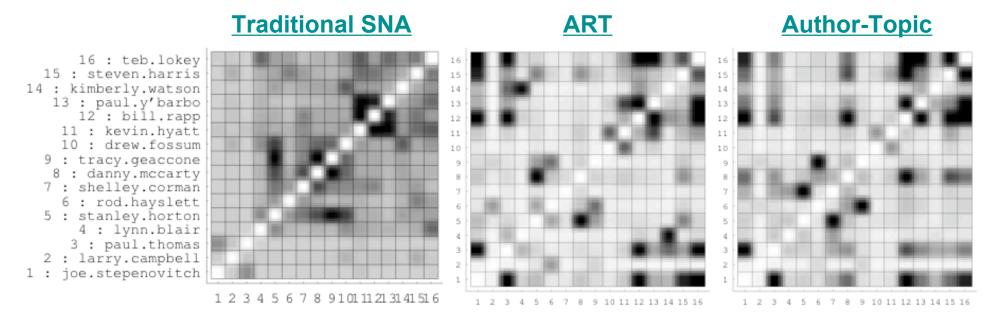
```
Date: Wed, 11 Apr 2001 06:56:00 -0700 (PDT)
From: debra.perlingiere@enron.com
To: steve.hooser@enron.com
Subject: Enron/TransAltaContract dated Jan 1, 2001
Please see below. Katalin Kiss of TransAlta has requested an
electronic copy of our final draft? Are you OK with this? If
so, the only version I have is the original draft without
revisions.
DP
Debra Perlingiere
Enron North America Corp.
Legal Department
1400 Smith Street, EB 3885
Houston, Texas 77002
dperlin@enron.com
```

Topics, and prominent senders / receivers Topic names, discovered by ART Topic names, by hand \(\)

Topic	Topic 5 Topic 17		Topic 27		Topic 45		
"Legal Cor	ıtracts''	"Document	Review"	"Time Scheduling"		"Sports Pool"	
section	0.0299	attached	0.0742	day	0.0419	game	0.0170
party	0.0265	agreement	0.0493	friday	0.0418	draft	0.0156
language	0.0226	review	0.0340	morning	0.0369	week	0.0135
contract	0.0203	questions	0.0257	monday	0.0282	team	0.0135
date	0.0155	draft	0.0245	office	0.0282	eric	0.0130
enron	0.0151	letter	0.0239	wednesday	0.0267	make	0.0125
parties	0.0149	comments	0.0207	tuesday	0.0261	free	0.0107
notice	0.0126	copy	0.0165	time	0.0218	year	0.0106
days	0.0112	revised	0.0161	good	0.0214	pick	0.0097
include	0.0111	document	0.0156	thursday	0.0191	phillip	0.0095
M.Hain	0.0549	G.Nemec	0.0737	J.Dasovich	0.0340	E.Bass	0.3050
J.Steffes		B.Tycholiz		R.Shapiro		M.Lenhart	
J.Dasovich	0.0377	G.Nemec	0.0551	J.Dasovich	0.0289	E.Bass	0.0780
R.Shapiro		M.Whitt		J.Steffes		P.Love	
D.Hyvl	0.0362	B.Tycholiz	0.0325	C.Clair	0.0175	M.Motley	0.0522
K.Ward		G.Nemec		M.Taylor		M.Grigsby	

Topics, and prominent senders / receivers discovered by ART

Topic 34 Topic		37	Topic 41		Topic 42		
"Operat	ions"	"Power Market"		"Government Relations"		"Wireless"	
operations	0.0321	market	0.0567	state	0.0404	blackberry	0.0726
team	0.0234	power	0.0563	california	0.0367	net	0.0557
office	0.0173	price	0.0280	power	0.0337	www	0.0409
list	0.0144	system	0.0206	energy	0.0239	website	0.0375
bob	0.0129	prices	0.0182	electricity	0.0203	report	0.0373
open	0.0126	high	0.0124	davis	0.0183	wireless	0.0364
meeting	0.0107	based	0.0120	utilities	0.0158	handheld	0.0362
gas	0.0107	buy	0.0117	commission	0.0136	stan	0.0282
business	0.0106	customers	0.0110	governor	0.0132	fyi	0.0271
houston	0.0099	costs	0.0106	prices	0.0089	named	0.0260
S.Beck	0.2158	J.Dasovich	0.1231	J.Dasovich	0.3338	R.Haylett	0.1432
L.Kitchen		J.Steffes		R.Shapiro		T.Geaccone	
S.Beck	0.0826	J.Dasovich	0.1133	J.Dasovich	0.2440	T.Geaccone	0.0737
J.Lavorato		R.Shapiro		J.Steffes		R.Haylett	
S.Beck	0.0530	M.Taylor	0.0218	J.Dasovich	0.1394	R.Haylett	0.0420
S.White		E.Sager		R.Sanders		D.Fossum	


Beck = "Chief Operations Officer"

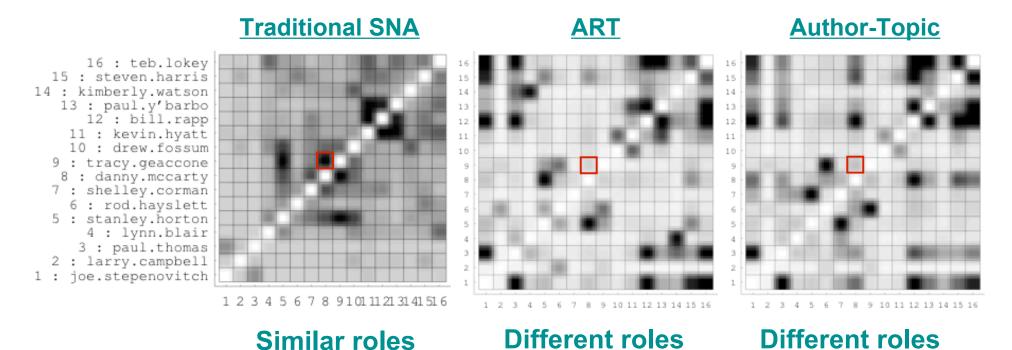
Dasovich = "Government Relations Executive"

Shapiro = "Vice President of Regulatory Affairs"

Steffes = "Vice President of Government Affairs"

Comparing Role Discovery

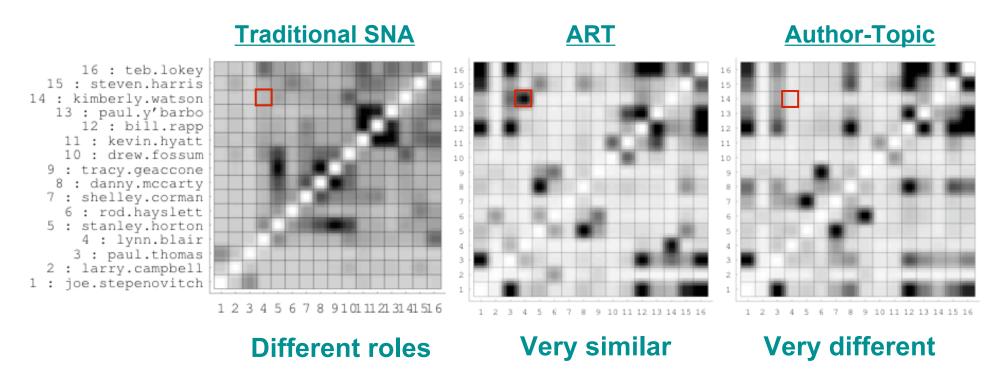
connection strength (A,B) =


distribution over recipients

distribution over authored topics

distribution over authored topics

Comparing Role Discovery


Tracy Geaconne ⇔ Dan McCarty

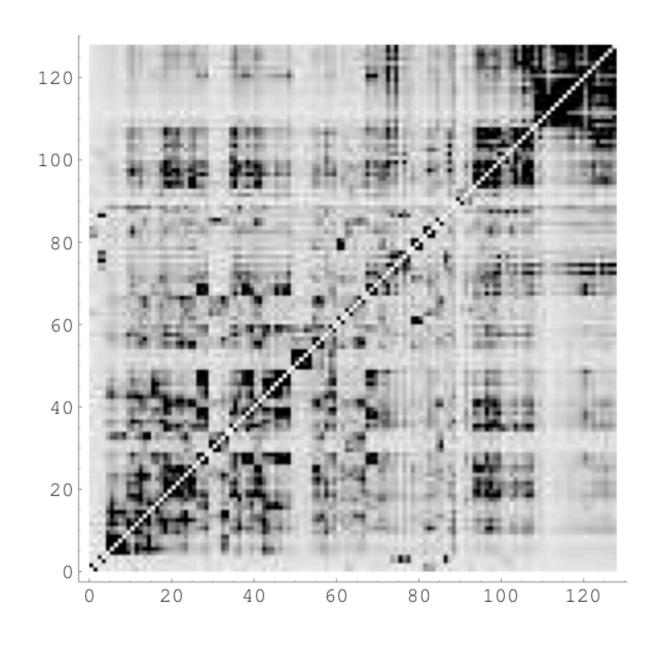
Geaconne = "Secretary" McCarty = "Vice President"

Comparing Role Discovery

Lynn Blair ⇔ Kimberly Watson

Blair = "Gas pipeline logistics"
Watson = "Pipeline facilities planning"

McCallum Email Corpus 2004


- January October 2004
- 23k email messages
- 825 people

```
From: kate@cs.umass.edu
Subject: NIPS and ....
Date: June 14, 2004 2:27:41 PM EDT
To: mccallum@cs.umass.edu

There is pertinent stuff on the first yellow folder that is completed either travel or other things, so please sign that first folder anyway. Then, here is the reminder of the things I'm still waiting for:

NIPS registration receipt.
CALO registration receipt.
Thanks,
Kate
```

McCallum Email Blockstructure

Four most prominent topics in discussions with ____?

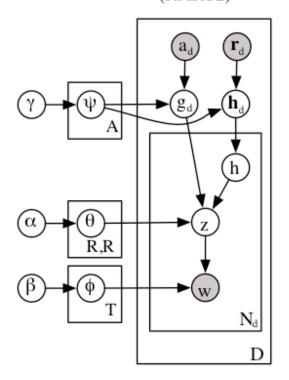
Topi	Topic 5 Topic 31		Topic 38		Topic 41		
"Grant Pr	oposals"	"Meeting Setup"		"ML Models"		"Friendly Discourse"	
proposal	0.0397	today	0.0512	model	0.0479	great	0.0516
data	0.0310	tomorrow	0.0454	models	0.0444	good	0.0393
budget	0.0289	time	0.0413	inference	0.0191	don	0.0223
work	0.0245	11	0.0391	conditional	0.0181	sounds	0.0219
year	0.0238	meeting	0.0339	methods	0.0144	work	0.0196
glenn	0.0225	week	0.0255	number	0.0136	wishes	0.0182
nsf	0.0209	talk	0.0246	sequence	0.0126	talk	0.0175
project	0.0188	meet	0.0233	learning	0.0126	interesting	0.0168
sets	0.0157	morning	0.0228	graphical	0.0121	time	0.0162
support	0.0156	monday	0.0208	random	0.0121	hear	0.0132

Topic 5		Topic	31	Topic 38		Topic	41
"Grant Pr	"Grant Proposals" "Meeting Setup"		"ML Models"		"Friendly Di	"Friendly Discourse"	
proposal	0.0397	today	0.0512	model	0.0479	great	0.0516
data	0.0310	tomorrow	0.0454	models	0.0444	good	0.0393
budget	0.0289	time	0.0413	inference	0.0191	don	0.0223
work	0.0245	11	0.0391	conditional	0.0181	sounds	0.0219
year	0.0238	meeting	0.0339	methods	0.0144	work	0.0196
glenn	0.0225	week	0.0255	number	0.0136	wishes	0.0182
nsf	0.0209	talk	0.0246	sequence	0.0126	talk	0.0175
project	0.0188	meet	0.0233	learning	0.0126	interesting	0.0168
sets	0.0157	morning	0.0228	graphical	0.0121	time	0.0162
support	0.0156	monday	0.0208	random	0.0121	hear	0.0132
smyth	0.1290	ronb	0.0339	casutton	0.0498	mccallum	0.0558
mccallum		mccallum		mccallum		culotta	
mccallum	0.0746	wellner	0.0314	icml04-webadmin	0.0366	mccallum	0.0530
stowell		mccallum		icml04-chairs		casutton	
mccallum	0.0739	casutton	0.0217	mccallum	0.0343	mccallum	0.0274
lafferty		mccallum		casutton		ronb	
mccallum	0.0532	mccallum	0.0200	nips04workflow	0.0322	mccallum	0.0255
smyth		casutton		mccallum		saunders	
pereira	0.0339	mccallum	0.0200	weinman	0.0250	mccallum	0.0181
lafferty		wellner		mccallum		pereira	

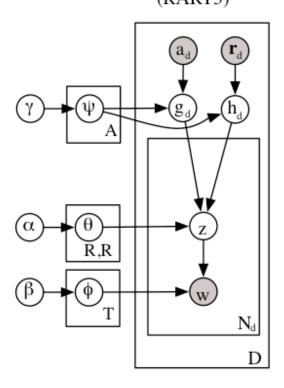
Two most prominent topics in discussions with ?

Topic 1

Words	Prob
love	0.030514
house	0.015402
	0.013659
time	0.012351
great	0.011334
hope	0.011043
dinner	0.00959
saturday	0.009154
left	0.009154
II	0.009009
	0.008282
visit	0.008137
evening	0.008137
stay	0.007847
bring	0.007701
weekend	0.007411
road	0.00712
sunday	0.006829
kids	0.006539
flight	0.006539


Topic 2

Words	Prob
today	0.051152
tomorrow	0.045393
time	0.041289
	0.039145
meeting	0.033877
week	0.025484
talk	0.024626
meet	0.023279
morning	0.022789
monday	0.020767
back	0.019358
call	0.016418
free	0.015621
home	0.013967
won	0.013783
day	0.01311
hope	0.012987
leave	0.012987
office	0.012742
tuesday	0.012558


Role-Author-Recipient-Topic Models

Role-Author-Recipient-Topic Model 1 (RART1)

Role-Author-Recipient-Topic Model 2 (RART2)

Role-Author-Recipient-Topic Model 3 (RART3)

Results with RART: People in "Role #3" in Academic Email

olc lead Linux sysadmin

gauthier sysadmin for CIIR group

irsystem mailing list CIIR sysadmins

system mailing list for dept. sysadmins

• allan Prof., chair of "computing committee"

valerie second Linux sysadmin

tech mailing list for dept. hardware

steve head of dept. I.T. support

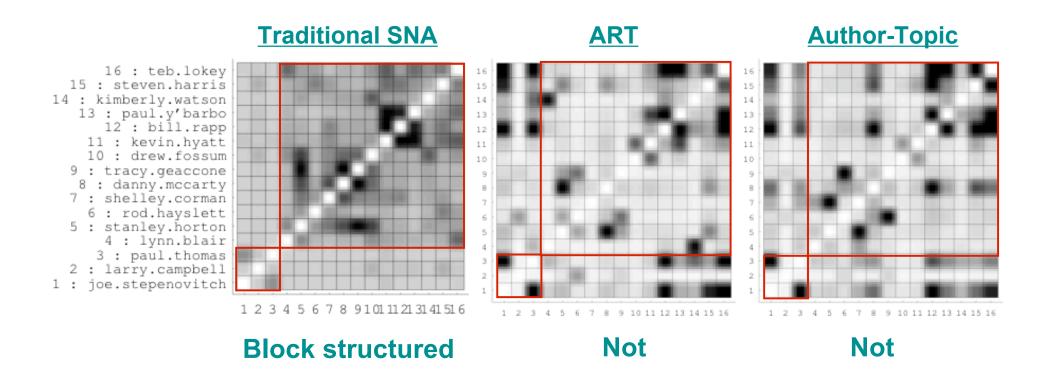
Roles for allan (James Allan)

• Role #3 I.T. support

Role #2 Natural Language researcher

Roles for pereira (Fernando Pereira)

•Role #2 Natural Language researcher


•Role #4 SRI CALO project participant

•Role #6 Grant proposal writer

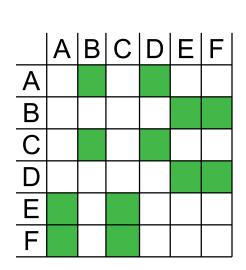
•Role #10 Grant proposal coordinator

•Role #8 Guests at McCallum's house

ART: Roles but not Groups

Enron TransWestern Division

Outline


- Social Network Analysis
 - Roles (Author-Recipient-Topic Model)
 - Groups (Group-Topic Model)
 - Trends over time (Topics-over-Time Model, TOT)
 - Preferential Attachment (Community-Author-Topic, CAT)
- Undirected Graphical Models
 - Flexible Objective Functions (Multi-Conditional Learning, MCL)
 - Topics for Prediction (Multinomial-Components-Analysis, MCA)
- Demo: Rexa, a Web portal for researchers
 - Topical Impact Measures (Diversity,...)

Groups and Topics

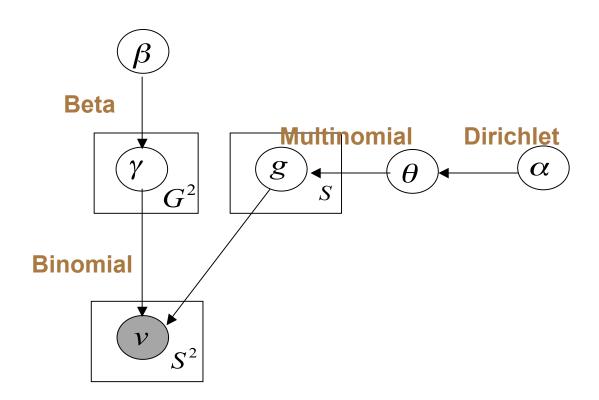
- Input:
 - Observed relations between people
 - Attributes on those relations (text, or categorical)
- Output:
 - Attributes clustered into "topics"
 - Groups of people---varying depending on topic

Adjacency Matrix Representing Relations

Student Roster	Academic Admiration
A dams	Acad(A, B) Acad(C, B)
B ennett	Acad(A, D) Acad(C, D)
Carter	Acad(B, E) Acad(D, E)
D avis	Acad(B, F) Acad(D, F)
Edwards	Acad(E, A) Acad(F, A)
Frederking	Acad(E, C) Acad(F, C)

		Α	В	С	D	Е	F
_		G1	G2	G1	G2	G3	G3
Α	G1						
В	G2						
C	G1						
D	G2						
E	G3						
F	G3						

				В			
		G1	G1	G2	G2	G3	G3
	G1						
С	G1						
В	G2						
	G2						
Ε	G3						
F	G3						


Group Model: Partitioning Entities into Groups

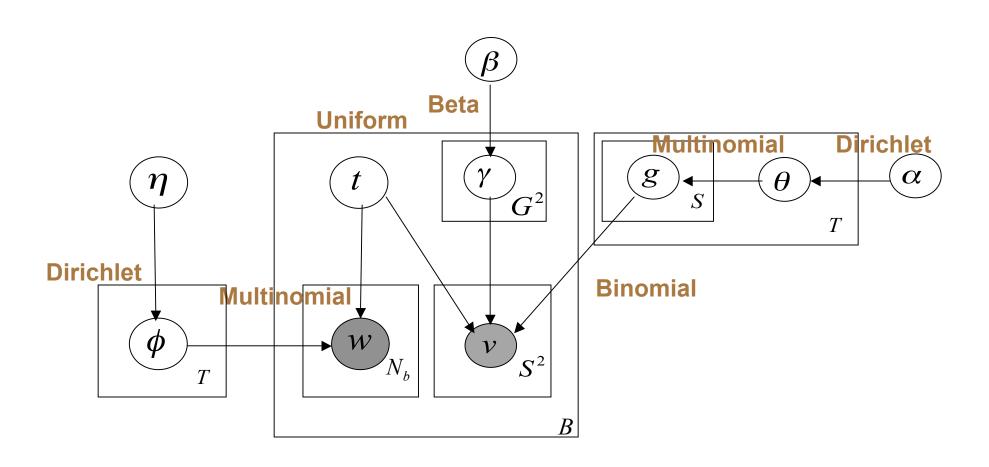
Stochastic Blockstructures for Relations

[Nowicki, Snijders 2001]

S: number of entities

G: number of groups

Enhanced with arbitrary number of groups in [Kemp, Griffiths, Tenenbaum 2004]


Two Relations with Different Attributes

Student Roster	Academic Admiration	Social Admiration
Adams	Acad(A, B) Acad(C, B)	Soci(A, B) Soci(A, D) Soci(A, F)
Bennett	Acad(A, D) Acad(C, D)	Soci(B, A) Soci(B, C) Soci(B, E)
Carter	Acad(B, E) Acad(D, E)	Soci(C, B) Soci(C, D) Soci(C, F)
D avis	Acad(B, F) Acad(D, F)	Soci(D, A) Soci(D, C) Soci(D, E)
Edwards	Acad(E, A) Acad(F, A)	Soci(E, B) Soci(E, D) Soci(E, F)
Frederking	Acad(E, C) Acad(F, C)	Soci(F, A) Soci(F, C) Soci(F, E)

			7				
			C				
		G1	G1	G2	G2	G3	G3
	G1						
С	G1						
В	G2						
D	G2						
Ε	G3						
F	G3						_

			_ < _ >	-			
				I	В		
		G1	G1	G1	G2	G2	G2
	G1						
С	G1						
Ε	G1						
В	G2						
D	G2						
F	G2						

The Group-Topic Model: Discovering Groups and Topics Simultaneously

Dataset #1:

U.S. Senate

- 16 years of voting records in the US Senate (1989 2005)
- a Senator may respond Yea or Nay to a resolution
- 3423 resolutions with text attributes (index terms)
- 191 Senators in total across 16 years

S.543

Title: An Act to reform Federal deposit insurance, protect the deposit insurance funds, recapitalize the Bank Insurance Fund, improve supervision and regulation of insured depository institutions, and for other purposes.

Sponsor: Sen Riegle, Donald W., Jr. [MI] (introduced 3/5/1991) Cosponsors (2) Latest Major Action: 12/19/1991 Became Public Law No: 102-242.

Index terms: Banks and banking Accounting Administrative fees Cost control

Credit Deposit insurance Depressed areas and other 110 terms

Adams (D-WA), **Nay** Akaka (D-HI), **Yea** Bentsen (D-TX), **Yea** Biden (D-DE), **Yea** Bond (R-MO), **Yea** Bradley (D-NJ), **Nay** Conrad (D-ND), **Nay**

Topics Discovered (U.S. Senate)

Mixture of Unigrams

Group-Topic Model

Education	Energy	Military Misc.	Economic	
education	energy	government	federal	
school	power	military	labor	
aid	water	foreign	insurance	
children	nuclear	tax	aid	
drug	gas	congress	tax	
students	petrol	aid	business	
elementary	research	law	employee	
prevention	pollution	policy	care	

Education + Domestic	Foreign	Economic	Social Security + Medicare
education	foreign	labor	social
school	trade	insurance	security
federal	chemicals	tax	insurance
aid	tariff	congress	medical
government	congress	income	care
tax	drugs	minimum	medicare
energy	communicable	wage	disability
research	diseases	business	assistance

Groups Discovered (US Senate)

Groups from topic *Education + Domestic*

Group 1	Group 3	Group 4
73 Republicans	Cohen(R-ME)	Armstrong(R-CO)
Krueger(D-TX)	Danforth(R-MO)	Garn(R-UT)
Group 2	Durenberger(R-MN)	Humphrey(R-NH)
90 Democrats	Hatfield(R-OR)	McCain(R-AZ)
Chafee, L. (R-RI)	Heinz(R-PA)	McClure(R-ID)
Jeffords(I-VT)	Jeffords(R-VT)	Roth(R-DE)
	Kassebaum(R-KS)	Symms(R-ID)
	Packwood(R-OR)	Wallop(R-WY)
	Specter(R-PA)	Brown(R-CO)
	Snowe(R-ME)	DeWine(R-OH)
	Collins(R-ME)	Thompson(R-TN)
	, , , ,	Fitzgerald(R-IL)
		Voinovich(R-OH)
		Miller(D-GA)
		Coleman(R-MN)

Senators Who Change Coalition the most Dependent on Topic

Senator	Group Switch Index
Shelby(D-AL)	0.6182
Heflin(D-AL)	0.6049
Voinovich(R-OH)	0.6012
Johnston(D-LA)	0.5878
Armstrong(R-CO)	0.5747

e.g. Senator Shelby (D-AL) votes
with the Republicans on Economic
with the Democrats on Education + Domestic
with a small group of maverick Republicans on Social Security + Medicaid

Dataset #2:

The UN General Assembly

- Voting records of the UN General Assembly (1990 2003)
- A country may choose to vote Yes, No or Abstain
- 931 resolutions with text attributes (titles)
- 192 countries in total
- Also experiments later with resolutions from 1960-2003

Vote on Permanent Sovereignty of Palestinian People, 87th plenary meeting

The draft resolution on permanent sovereignty of the Palestinian people in the occupied Palestinian territory, including Jerusalem, and of the Arab population in the occupied Syrian Golan over their natural resources (document A/54/591) was adopted by a recorded vote of 145 in favour to 3 against with 6 abstentions:

In favour: Afghanistan, Argentina, Belgium, Brazil, Canada, China, France, Germany, India, Japan, Mexico, Netherlands, New Zealand, Pakistan, Panama, Russian Federation, South Africa, Spain, Turkey, and other 126 countries.

Against: Israel, Marshall Islands, United States.

Abstain: Australia, Cameroon, Georgia, Kazakhstan, Uzbekistan, Zambia.

Topics Discovered (UN)

Mixture of Unigrams

Everything Nuclear	Human Rights	Security in Middle East
nuclear	rights	occupied
weapons	human	israel
use	palestine	syria
implementation	situation	security
countries	israel	calls

Group-Topic Model

<u> </u>				
Nuclear Non-proliferation	Nuclear Arms Race	Human Rights		
nuclear	nuclear	rights		
states	arms	human		
united	prevention	palestine		
weapons	race	occupied		
nations	space	israel		

Groups Discovered (UN)

The countries list for each group are ordered by their 2005 GDP (PPP) and only 5 countries are shown in groups that have more than 5 members.

G	Nuclear Arsenal	Human Rights	Nuclear Arms Race			
R	nuclear	rights	nuclear			
0	states	human	arms			
U	united	palestine	prevention			
P	weapons	occupied	race			
\downarrow	nations	israel	space			
	Brazil	Brazil	UK			
	Columbia	Mexico	France			
1	Chile	Columbia	Spain			
	Peru	Chile	Monaco			
	Venezuela	Peru	East-Timor			
	USA	Nicaragua	India			
	Japan	/ Papua	Russia			
2	Germany	Rwanda	Micronesia			
	UK	Swaziland				
	Russia	Fiji				
	China	USA	Japan			
	India	/ Japan	Germany			
3	Mexico	Germany	Italy			
	Iran	\ UK	Poland			
	Pakistan	Russia	Hungary			
	Kazakhstan	China	China			
	Belarus	India	Brazil			
4	Yugoslavia	Indonesia	Mexico			
	Azerbaijan	Thailand	Indonesia			
	Cyprus	Philippines	Iran			
	Thailand	Belarus	USA			
	Philippines	Turkmenistan	Israel			
5	Malaysia	Azerbaijan	Palau			
	Nigeria	Uruguay				
	Tunisia	Kyrgyzstan				

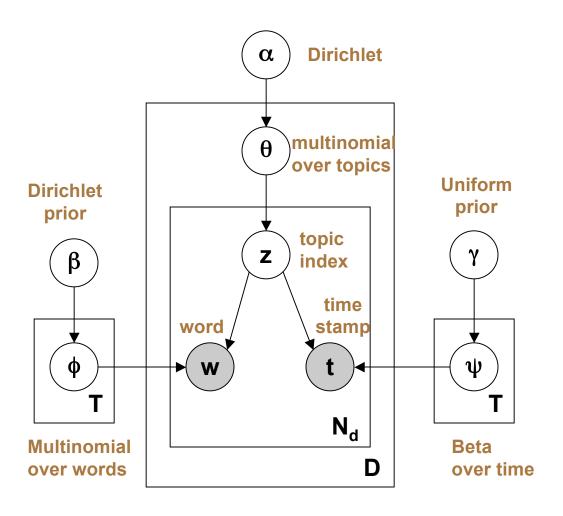
Groups and Topics, Trends over Time (UN)

Time				Group distributions for Topic 3							
Period	Topic 1	Topic 2	Topic 3	Group 1 Group2		Group3	Group4	Group5			
	Nuclear	Procedure	Africa Indep.	India	USA	Argentina	USSR	Turkey			
	operative	committee	calling	Indonesia	Japan	Colombia	/ Poland				
60-75	general	amendment	right	Iran	UK	Chile	Hungary				
	nuclear	assembly	africa	Thailand	France	Venezuela –	Bulgaria				
	power	deciding	self	Philippines	Italy	Dominican	Belarus				
	Independence	Finance	Weapons	Cuba	India	Algeria	USSR	USA			
	territories	budget	nuclear	Albania	Indonesia	Iraq	Poland	Japan			
65-80	independence	appropriation	UN		Pakistan	Syria	Hungary	UK			
	self	contribution	international		Saudi	Libya	Bulgaria	France			
	colonial	income	weapons		Egypt	Afganistan	Belarus	Italy			
	N. Weapons	Israel	Rights	Mexico	China	USA	Brazil	India			
	nuclear	israel	africa	Indonesia		Japan	Turkey	USSR			
70-85	international	measures	territories	Iran	UK		Argentina	Poland			
	UN	hebron	south	Thailand		France	Colombia	Vietnam			
	human	expelling	right	Philippines		Italy	Chile	Hungary			
	Rights	Israel/Pal.	Disarmament	Mexico	USA	Algeria	China	India			
	south	israel	UN	Indonesia	Japan	X Vietnam \	Brazil				
75-90	africa	arab	international	Iran	UK	Iraq	Argentina				
	israel	occupied	nuclear	Thailand	France	X Syria /	Colombia				
	rights	palestine	disarmament	Philippines	USSR	Libya	Chile				
	Disarmament	Conflict	Pal. Rights	USA	China	Japan	Guatemala	Malawi			
	nuclear	need	rights	Israel	India	UK	St Vincent				
80-95	US	israel	palestine		Russia	France	Dominican				
	disarmament	palestine	israel		Spain	Italy					
	international	secretary	occupied		Hungary	Canada					
	Weapons	Rights	Israel/Pal.	Poland	China	USA	Russia	Cameroon			
	nuclear	rights	israeli	Czech R.	India	Japan	Argentina	Congo			
85-00	weapons	human	palestine	Hungary	Brazil	UK	Ukraine	Ivory C.			
	use	fundamental	occupied	Bulgaria	Mexico	France	Belarus	Liberia			
	international	freedoms	disarmament	Albania	Indonesia	Italy	Malta				

Outline

- Social Network Analysis
 - Roles (Author-Recipient-Topic Model)
 - Groups (Group-Topic Model)
 - Trends over time (Topics-over-Time Model, TOT)
 - Path Analysis (Topical Sequence Model, TSM)
 - Preferential Attachment (Community-Author-Topic, CAT)
- Undirected Graphical Models
 - Flexible Objective Functions (Multi-Conditional Learning, MCL)
 - Topics for Prediction (Multinomial-Components-Analysis, MCA)
- Demo: Rexa, a Web portal for researchers
 - Topical Impact Measures (Diversity,...)

Groups and Topics, Trends over Time (UN)


Time				Group distributions for Topic 3							
Period	Topic 1	Topic 2	Topic 3	Group 1 Group2		Group3	Group4	Group5			
	Nuclear	Procedure	Africa Indep.	India	USA	Argentina	USSR	Turkey			
	operative	committee	calling	Indonesia	Japan	Colombia	/ Poland				
60-75	general	amendment	right	Iran	UK	Chile	Hungary				
	nuclear	assembly	africa	Thailand	France	Venezuela –	Bulgaria				
	power	deciding	self	Philippines	Italy	Dominican	Belarus				
	Independence	Finance	Weapons	Cuba	India	Algeria	USSR	USA			
	territories	budget	nuclear	Albania	Indonesia	Iraq	Poland	Japan			
65-80	independence	appropriation	UN		Pakistan	Syria	Hungary	UK			
	self	contribution	international		Saudi	Libya	Bulgaria	France			
	colonial	income	weapons		Egypt	Afganistan	Belarus	Italy			
	N. Weapons	Israel	Rights	Mexico	China	USA	Brazil	India			
	nuclear	israel	africa	Indonesia		Japan	Turkey	USSR			
70-85	international	measures	territories	Iran	UK		Argentina	Poland			
	UN	hebron	south	Thailand		France	Colombia	Vietnam			
	human	expelling	right	Philippines		Italy	Chile	Hungary			
	Rights	Israel/Pal.	Disarmament	Mexico	USA	Algeria	China	India			
	south	israel	UN	Indonesia	Japan	X Vietnam \	Brazil				
75-90	africa	arab	international	Iran	UK	Iraq	Argentina				
	israel	occupied	nuclear	Thailand	France	X Syria /	Colombia				
	rights	palestine	disarmament	Philippines	USSR	Libya	Chile				
	Disarmament	Conflict	Pal. Rights	USA	China	Japan	Guatemala	Malawi			
	nuclear	need	rights	Israel	India	UK	St Vincent				
80-95	US	israel	palestine		Russia	France	Dominican				
	disarmament	palestine	israel		Spain	Italy					
	international	secretary	occupied		Hungary	Canada					
	Weapons	Rights	Israel/Pal.	Poland	China	USA	Russia	Cameroon			
	nuclear	rights	israeli	Czech R.	India	Japan	Argentina	Congo			
85-00	weapons	human	palestine	Hungary	Brazil	UK	Ukraine	Ivory C.			
	use	fundamental	occupied	Bulgaria	Mexico	France	Belarus	Liberia			
	international	freedoms	disarmament	Albania	Indonesia	Italy	Malta				

Want to Model Trends over Time

- Pattern appears only briefly
 - Capture its statistics in focused way
 - Don't confuse it with patterns elsewhere in time
- Is prevalence of topic growing or waning?
- How do roles, groups, influence shift over time?

Topics over Time (TOT)

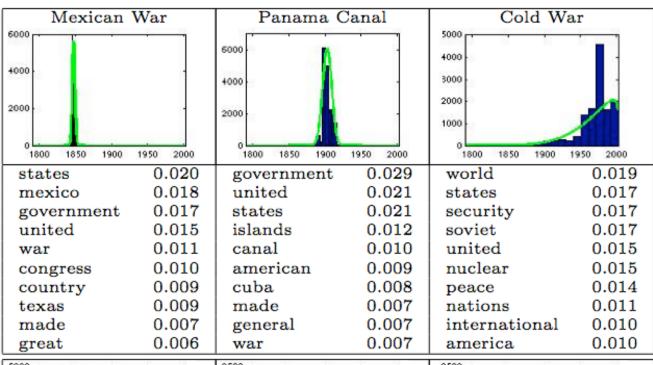
[Wang, McCallum, KDD 2006]

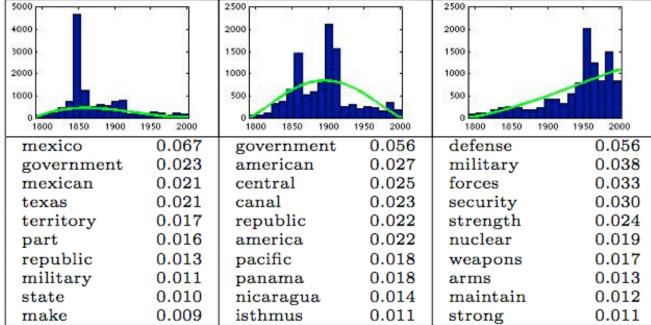
State of the Union Address

208 Addresses delivered between January 8, 1790 and January 29, 2002.

To increase the number of documents, we split the addresses into paragraphs and treated them as 'documents'. One-line paragraphs were excluded. Stopping was applied.

- 17156 'documents'
- 21534 words
- 669,425 tokens

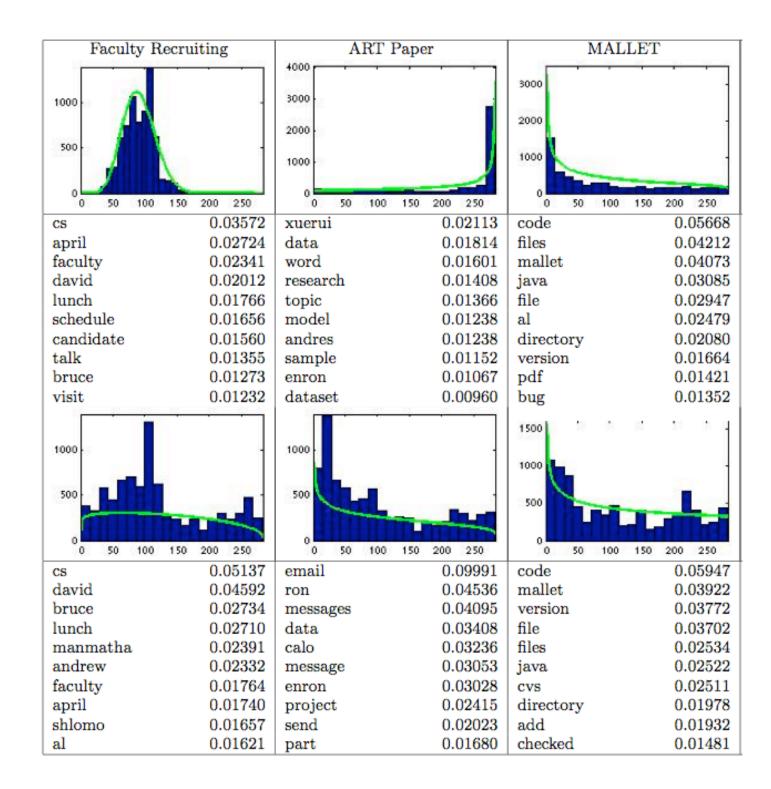

Our scheme of taxation, by means of which this needless surplus is taken from the people and put into the public Treasury, consists of a tariff or duty levied upon importations from abroad and internal-revenue taxes levied upon the consumption of tobacco and spirituous and malt liquors. It must be conceded that none of the things subjected to internal-revenue taxation are, strictly speaking, necessaries. There appears to be no just complaint of this taxation by the consumers of these articles, and there seems to be nothing so well able to bear the burden without hardship to any portion of the people.


Comparing

TOT

against

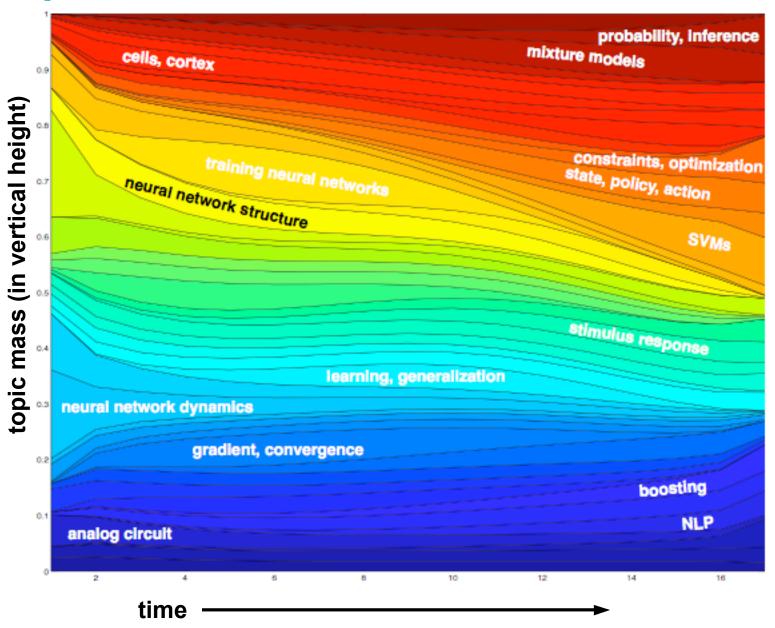
LDA



TOT

versus

LDA

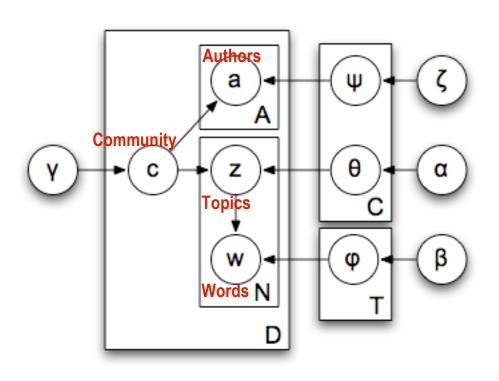

on my email

Topic Distributions Conditioned on Time

in NIPS

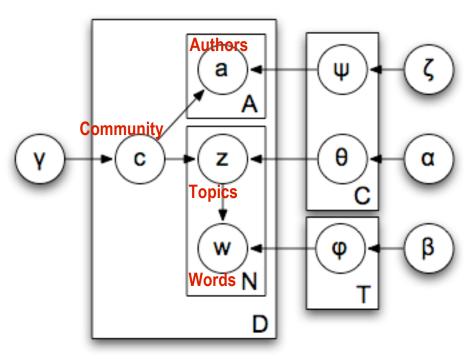
conference papers

Outline


- Social Network Analysis
 - Roles (Author-Recipient-Topic Model)
 - Groups (Group-Topic Model)
 - Trends over time (Topics-over-Time Model, TOT)
 - Preferential Attachment (Community-Author-Topic, CAT)
- Undirected Graphical Models
 - Flexible Objective Functions (Multi-Conditional Learning, MCL)
 - Topics for Prediction (Multinomial-Components-Analysis, MCA)
- Demo: Rexa, a Web portal for researchers
 - Topical Impact Measures (Diversity,...)

How do new links form in social networks?

- 1) Randomly (Poisson graph)
- 2) Pick someone popular (Preferential attachment)
- 3) Pick someone with mutual friends (Adamic & Adar, Liben-Nowell & Kleinberg)
- 4) Pick someone from one of your "communities" (Mimno, Wallach & McCallum 2007)


Can we find communities that help predict links?

A Community-based Generative Model for Text and Co-authorships

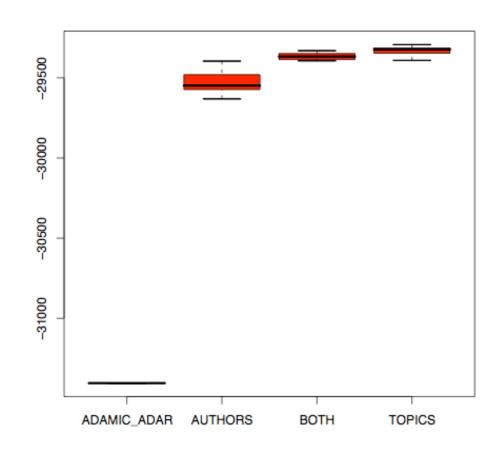
- 1) To generate a document, we first pick a community.
- 2) The community then determines the choice of authors and topics.
- 3) From topics, we pick words.

A Community-based Generative Model for Text and Co-authorships

Graphical Model can answer various queries!

P(author₃ | author₁, author₂)

P(author₃ | author₁, author₂, text)


P(community | authors)

P (authors | community)

P (text | community)

P (text | authors)

Link Prediction Probability of NIPS 2004-6 Co-authorships

(Preferential attachment is much worse, at -40,121.)

Community-Author View

Ng_A Koller_D Parr_R Abbeel_P **Jordan_M** Merzenich_M Mel_B features, feature, markov, sequence, models, conditional, label, function, set number, results, paper, based, function, previous, resulting, introduction, general policy, learning, action, states, function, reward, actions, optimal, mdp control, controller, model, helicopter, system, neural, forward, learning, systems model, models, press, shows, figure, related, journal, underlying, correspond present, effect, figure, references, important, increase, similar, addition, increased learning, control, reinforcement, sutton, action, space, task, trajectory, methods

Jordan M

Jaakkola_T Saul_L Bach_F_R Singh_S Wainwright_M Nguyen_X propagation, belief, tree, nodes, node, approximation, variational, networks, bound number, results, paper, based, function, previous, resulting, introduction, general theorem, case, proof, function, assume, set, section, algorithm, bound field, boltzmann, approximations, exact, jordan, parameters, set, step, network log, models, inference, variables, model, distribution, variational, parameters, matr problem, algorithm, optimization, methods, solution, method, problems, proposed, clustering, spectral, graph, matrix, cut, data, clusters, eigenvectors, normalized

Community-Author-Topic View

Griffiths_T_L
Singer_Y
Blei_D
Goldwater_S
Jordan_M
Johnson_M
Campbell W

words, model, word, documents, document, text, topic, distribution, mixture suffix, algorithm, feature, adaptor, space, model, kernels, strings, natural learning, category, naive, definition, estimation, single, figure, applied, obtain set, labels, analysis, adclus, pmm, function, evaluation, problem, alphabet number, results, paper, based, function, previous, resulting, introduction, general prior, posterior, distribution, bayesian, likelihood, data, models, probability, model target, task, visual, figure, contrast, attention, search, orientation, discrimination

Jordan_M

Willsky_A
Jaakkola_T
Saul_L
Wiegerinck_W
Kappen_H
Wainwright_M

propagation, belief, tree, nodes, node, approximation, variational, networks, bounc field, boltzmann, approximations, exact, jordan, parameters, set, step, network log, models, inference, variables, model, distribution, variational, parameters, matr network, variables, node, inference, distribution, nodes, algorithm, message, tree number, results, paper, based, function, previous, resulting, introduction, general theorem, case, proof, function, assume, set, section, algorithm, bound mixture, data, gaussian, density, likelihood, parameters, distribution, model, function

Kawato_M
Jordan_M
Barto_A
Vatilities

control, motor, learning, arm, model, movement, feedback, movements, hand eye, vor, visual, desired, field, controller, force, cerebellum, vestibular neural, data, activity, figure, firing, movement, motor, speech, dynamics

Outline

- Social Network Analysis
 - Roles (Author-Recipient-Topic Model)
 - Groups (Group-Topic Model)
 - Trends over time (Topics-over-Time Model, TOT)
 - Preferential Attachment (Community-Author-Topic, CAT)
- Undirected Graphical Models
 - Flexible Objective Functions (Multi-Conditional Learning, MCL)
 - Topics for Prediction (Multinomial-Components-Analysis, MCA)
- Demo: Rexa, a Web portal for researchers
 - Topical Impact Measures (Diversity,...)

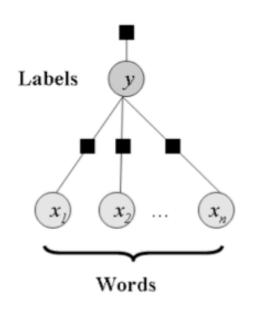
Want a "topic model" with the advantages of Conditional Random Fields

- Use arbitrary, overlapping features of the input.
- Undirected graphical model, so we don't have to think about avoiding cycles.
- Integrate naturally with our other CRF components.
- Train "discriminatively"
- What does this mean?
 Topic models are unsupervised!

Natural semi-supervised training

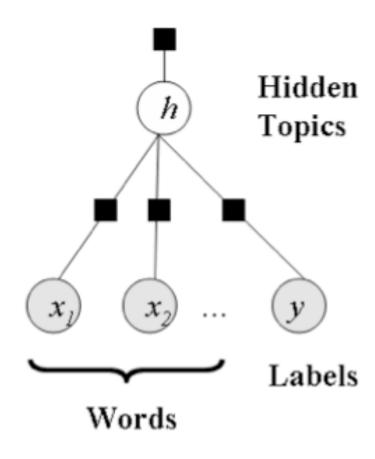
"Multi-Conditional Mixtures"

Latent Variable Models fit by Multi-way Conditional Probability

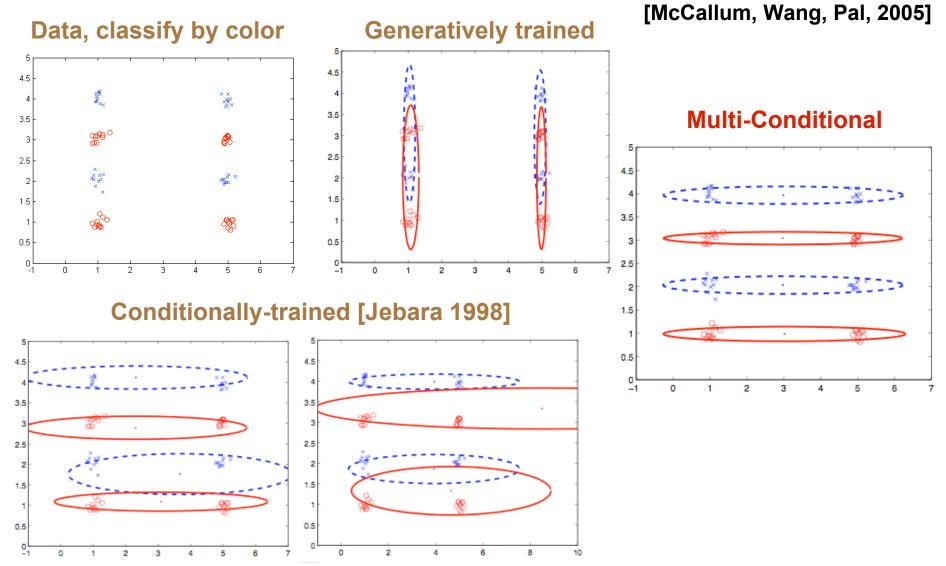

[McCallum, Wang, Pal, 2005], [McCallum, Pal, Wang, 2006]

- For clustering structured data,
 ala Latent Dirichlet Allocation & its successors
- But an undirected model,
 like the Harmonium [Welling, Rosen-Zvi, Hinton, 2005]
- But trained by a "multi-conditional" objective:
 O = P(A|B,C) P(B|A,C) P(C|A,B)
 e.g. A,B,C are different modalities

"Multi-Conditional Learning" (Regularization)

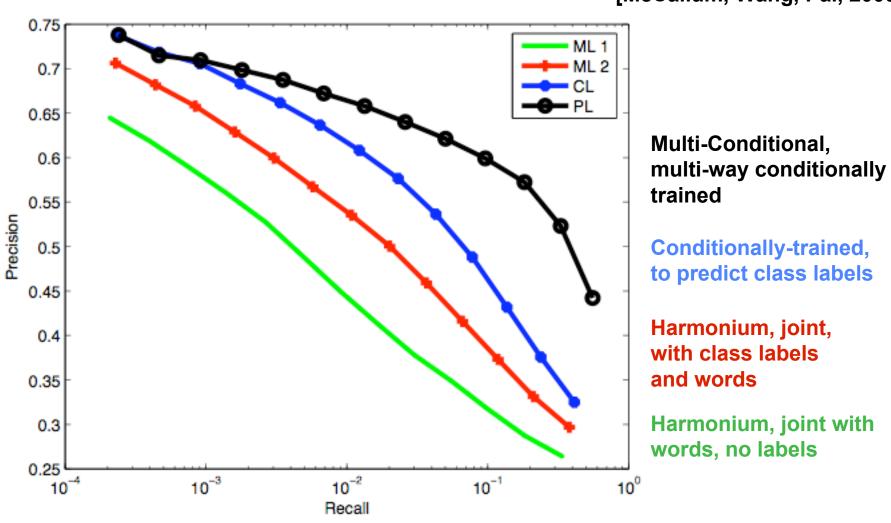

[McCallum, Pal, Wang, 2006]

$$p(y|x)p(x|y)^{\alpha}$$



Data	Naive Bayes	MaxEnt	MCL
news	85.3 (0.61)	82.9 (0.82)	85.9 (0.89)
news (2000)	76.4 (0.88)	77.4 (0.81)	77.7 (0.48)
comp	85.1 (1.78)	83.7 (0.68)	83.4 (0.94)
comp (2000)	81.8 (1.36)	82.2 (0.75)	84.0 (1.05)
talk	84.6 (1.02)	82.3 (1.43)	83.7 (1.27)
talk (2000)	83.7 (2.17)	81.6 (2.27)	84.3 (1.21)
sector	75.6 (2.05)	88.0 (1.13)	87.4 (0.84)
sector (2000)	73.9 (0.78)	82.0 (1.03)	83.2 (1.56)
tech	91.0 (1.33)	.91.8 (2.24)	93.1 (1.69)
tech (2000)	92.9 (2.46)	91.4 (2.03)	94.5 (1.81)
finan	92.3 (2.36)	89.2 (1.52)	91.5 (2.57)
finan (2000)	87.3 (3.31)	89.6 (1.82)	94.6 (1.79)
health	93.5 (4.36)	94.0 (3.74)	95.5 (4.00)
health (2000)	95.0 (5.00)	91.0 (3.39)	95.5 (4.30)
movie	78.6 (1.20)	82.6 (2.96)	82.7 (2.50)
movie (2000)	90.9 (1.98)	88.8 (1.96)	94.0 (1.05)
sraa	95.9 (0.15)	96.1 (0.23)	96.7 (0.09)
sraa (2000)	93.7 (0.20)	94.7 (0.13)	95.0 (0.21)
webkb	87.9 (2.14)	92.4 (0.84)	92.4 (1.04)
webkb (2000)	84.7 (1.20)	92.4 (1.07)	92.7 (1.40)

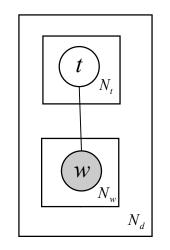
Multi-Conditional Mixtures

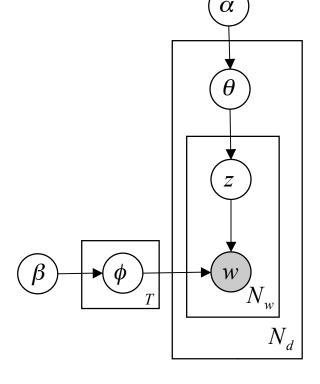

Predictive Random Fields mixture of Gaussians on synthetic data

Multi-Conditional Mixtures vs. Harmoniun

on document retrieval task

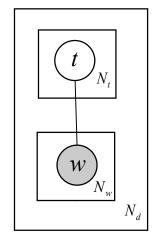
[McCallum, Wang, Pal, 2005]




Multiple Topics per Document: "Multinomial Components Analysis" (MCA)

- Undirected (Random Field) Topic Model
- Conditionally log-Normal Topics
- Conditionally Multinomial Words

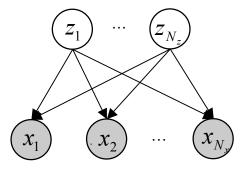
N_t topics w_1 w_2 w_2 w_N w_N


Contrast

w/ LDA

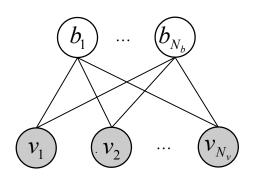
Further Contrast - MCA, PCA, RAP

- Multinomial Component Analysis (MCA)
- Principal Component Analysis (PCA)
- Rate Adapting Poisson (RAP) Model


MCA

N_w draws from a discrete distribution, (words in doc)

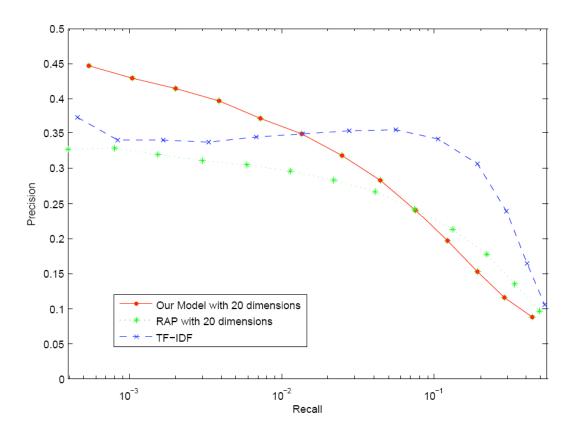
PCA


N_z unobserved, Gaussian variables

N_x observed, Gaussian variables, fixed dimension

RAP

N_b binary topics

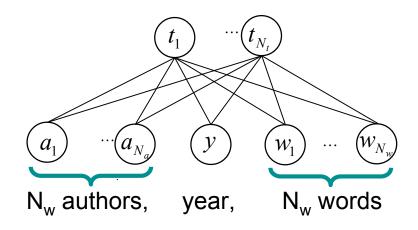


N_v Poisson counts for each word in <u>vocabulary</u>

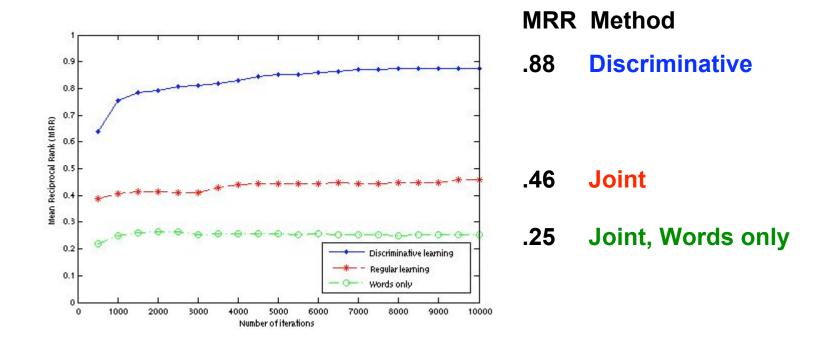
Our Model (MCA) vs. TFIDF vs. RAP

MRR Method

- .45 Our Model
- .37 TFIDF
- .33 RAP



- Precision vs. Recall on 20 Newsgroups, 100 word vocabulary
- 20 dimensional hidden topic space
- Cosine Distance Comparisons (.9, .1 Train, Test Split)
- Compared with TFIDF and Rate Adapting Poisson (RAP) Model


NIPS Topics

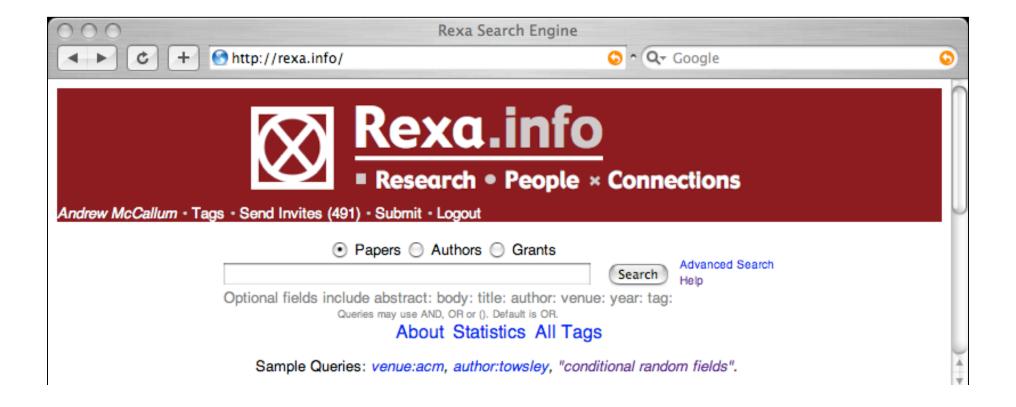
Biological Neuroscience			Reinforcement Learning			Probabilistic Methods					
cells	.439	training	556	learning	.318	image	536	data	.364	state	512
cell	.361	networks	500	policy	.266	data	444	model	.307	time	454
firing	.360	error	472	reinforcement	.252	images	431	mixture	.271	neuron	449
cortex	.357	network	470	control	.239	recognition	345	gaussian	.260	neural	429
cortical	.355	speech	465	state	.234	feature	315	likelihood	.225	system	422
stimulus	.327	neural	461	action	.233	object	271	image	.221	control	405
spike	.314	classifier	436	actions	.158	visual	270	distribution	.217	neurons	373
synaptic	.310	class	412	weight	.153	features	263	bayesian	.213	analog	363
synapses	.275	word	410	states	.151	gaussian	241	images	.204	network	359
motion	.268	state	407	controller	.150	classification	233	em	.189	circuit	335
orientation	.262	recognition	406	optimal	.125	mixture	227	density	.183	action	334
excitatory	.255	classifiers	386	weights	.121	models	217	models	.182	synaptic	317
visual	.253	classification	370	error	.117	model	211	posterior	.163	chip	316
inhibitory	.243	set	359	time	.115	likelihood	190	prior	.148	networks	287
response	.243	hmm	354	neuron	.105	set	189	regression	.146	states	285
stimuli	.240	algorithm	344	sutton	.102	orientation	184	kernel	.144	memory	279
spatial	.238	hidden	342	gradient	.101	classifier	180	log	.135	recurrent	263
direction	.233	test	337	recurrent	.101	face	179	classification	.134	current	263
membrane	.231	mixture	334	agent	.096	class	171	class	.133	policy	259
eye	.229	data	333	learn	.096	test	169	parameters	.124	reinforcement	256

Richer Model with Multiple Modalities

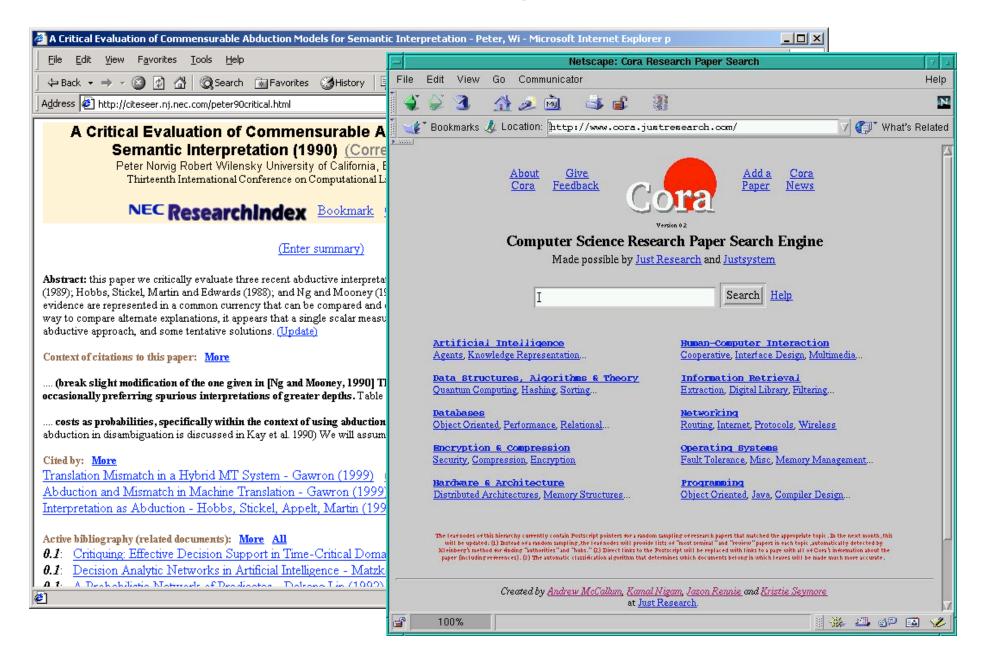
Predicting NIPS Authors

- Comparing Models, Mean Reciprocal Rank (MRR)
- Cosine Distance Comparisons (.9, .1 Train, Test Split)

Outline


- Social Network Analysis
 - Roles (Author-Recipient-Topic Model)
 - Groups (Group-Topic Model)
 - Trends over time (Topics-over-Time Model, TOT)
 - Preferential Attachment (Community-Author-Topic, CAT)
- Undirected Graphical Models
 - Flexible Objective Functions (Multi-Conditional Learning, MCL)
 - Topics for Prediction (Multinomial-Components-Analysis, MCA)
- Demo: Rexa, a Web portal for researchers
 - Topical Impact Measures (Diversity,...)

Social Networks in Research Literature


- Better understand structure of our own research area.
- Structure helps us learn a new field.
- Aid collaboration
- Map how ideas travel through social networks of researchers.
- Aids for hiring and finding reviewers!
- Measure impact of papers or people.

Our Data

- Over 1.6 million research papers, gathered as part of Rexa.info portal.
- Cross linked references / citations.

Previous Systems

Search

Scholar

Results 1 - 10 of about 154 for "conditional random fields". (0.09 seconds)

[PDF] Conditional random fields: Probabilistic models for segmenting and labeling sequence data

J Lafferty, A McCallum, F Pereira - View as HTML - Cited by 117

Page 1. Conditional Random Fields: Probabilistic Models. for Segmenting and Labeling

Sequence Data. John Lafferty j. LAFFERTY @ CS . CMU . EDU. Andrew McCallum ...

Proc. 18th International Conf. on Machine Learning, 2001 - aladdin.cs.cmu.edu - <u>cis.upenn.edu</u> - <u>nlp.cs.nyu.edu</u> - <u>portal.acm.org</u> - <u>all 5</u> versions »

[PDF] Shallow parsing with conditional random fields

F Sha, F Pereira - View as HTML - Cited by 34

Page 1. Shallow Parsing with Conditional Random Fields. Fei Sha and Fernando

Pereira Department of Computer and Information Science ...

Proceedings of Human Language Technology, NAACL, 2003 - Idc.upenn.edu - <u>acl.eldoc.ub.rug.nl</u> - <u>acl.Idc.upenn.edu</u> - <u>tangra.si.umich.edu</u> - all 8 versions »

[PDF] Efficiently inducing features of conditional random fields

A McCallum - View as HTML - Cited by 16

Page 1. Efficiently Inducing Features of Conditional Random Fields. Andrew McCallum

Computer Science Department University of Massachusetts ...

Nineteenth Conference on Uncertainty in Artificial ..., 2003 - ciir.cs.umass.edu - cs.umass.edu - cs.umass.edu

[PDF] Table extraction using conditional random fields

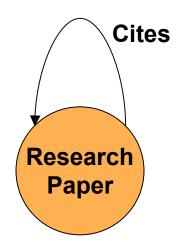
D Pinto, A McCallum, X Wei, WB Croft - Cited by 15

Page 1. Table Extraction Using Conditional Random Fields. David Pinto, Andrew

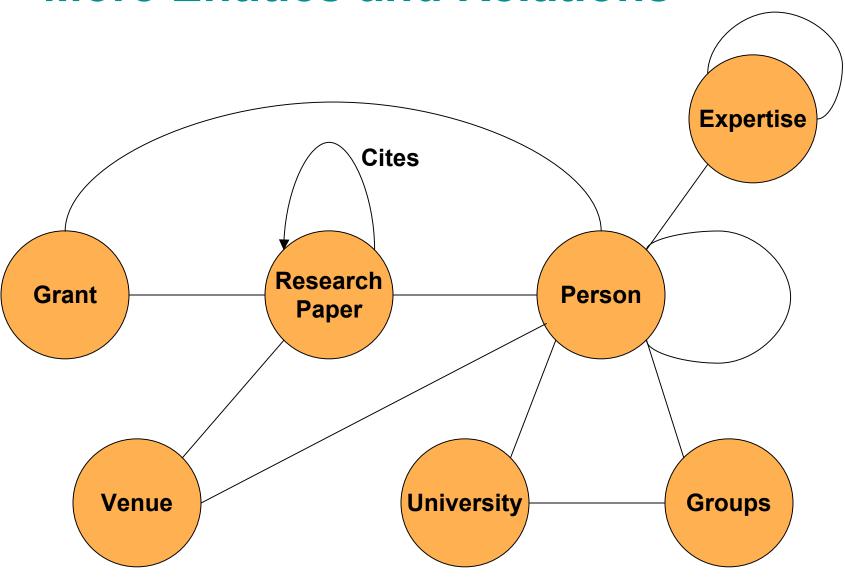
McCallum, Xing Wei, W. Bruce Croft Center for Intelligent ...

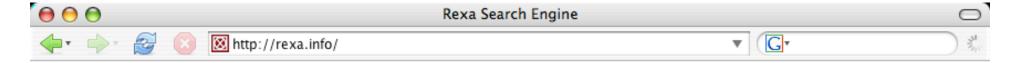
SIGIR'03, 2003 - portal.acm.org - cs.umass.edu - cs.umass.edu - ciir.cs.umass.edu - all 5 versions »

[PDF] Early Results for Named Entity Recognition with Conditional Random Fields, Feature Induction and Web ...


A McCallum, W Li - View as HTML - Cited by 9

Page 1. Early Results for Named Entity Recognition with Conditional Random


Fields, Feature Induction and Web-Enhanced Lexicons. Andrew ...


2002

Previous Systems

More Entities and Relations

Andrew McCallum • Tags • Send Invites (477) • Submit • Logout

About Statistics All Tags

Sample Queries: abstract: "reinforcement learning", author: towsley, "conditional random fields".

Search and analysis on 379,011 full text papers, 7,050,439 unique paper references & 879,678 authors.

Sponsored by:

Our work in automated information extraction and co-reference is far from finished.

Please excuse the inaccuracies and missing data while we continue our work in progress.

Version 1.0 © 2006 Created by: IESL, Department of Computer Science, University of Massachusetts

About Rexa • Help • Privacy Policy • Robot • Send feedback to rexa-discuss@cs.umass.edu.

Mttp://rexa.info/results?pager.offset=0&pager.offset=0&searchIndex=paper ▼

Rexa

Andrew McCallum · Tags · Send Invites (477) · Submit · Logout

Papers Authors table extraction

Grants

Optional fields include abstract: body: title: author: venue: year: tag:

Queries may use AND, OR or (). Default is OR.

Search among papers using query table extraction

Results 1-10 of about 151488

Search

 Table extraction using conditional random fields David Pinto, Andrew McCallum, Xin Wei, W. Bruce Croft SIGIR, 2003

The ability to find tables and extract information from them is a necessary component of data mining, question answering, and other information retrieval tasks. Documents often contain tables in order to communicate densely packed, multi-dimensional information. Tables do this by employing layout patterns to efficiently indicate fields and records in two-dimensional form. Their rich combination of formatting and content present difficulties for traditional language modeling techniques, however. This paper presents ... (17 citations)

- 2. Learning table extraction from examples
 - A. Tengli, Yun Yang, Nianli Ma

In Proceedings of the 20th International Conference on Computational Linguistics (COLING, 2004 (0 citations)

Computational Aspects of Resilient Data Extraction from Semistructured Sources
 Hasan Davulcu, Guizhen Yang, Michael Kifer, idhar Ramakrishnan
 PODS, 2000

Automatic data **extraction** from semistructured sources such as HTML pages is rapidly growing into a problem of signi#cant importance, spurred by the growing popularity of the so called "shopbots" that enable end users to compare prices of goods and other services at various web sites without having to manually browse and fill out forms at each one of these sites. The main problem one has to contend with when designing (5 citations)

 Learning Information Extraction Rules for Semi-Structured and Free Text Stephen Soderland

Machine Learning vol 34, pages 233, 1999

A wealth of on-line text information can be made available to automatic processing by information **extraction** (IE) systems. Each IE application needs a separate set of rules tuned to the domain and writing style. WHISK helps to overcome this knowledgeengineering bottleneck by learning text **extraction** rules automatically. WHISK is designed to handle text styles ranging from highly structured to free text, including text that is neither rigidly formatted nor composed (82 citations)

Automatic Table Ground Truth Generation and a Background-Analysis-Based Table Structure Extraction Method

M http://rexa.info/paper?id=5CC36DAB028BF4CB0F5EA126434704AD390A8 ▼

■ Research • People × Connections

Andrew McCallum · Tags · Send Invites (477) · Submit · Logout

Papers Authors Grants

Search

Optional fields include abstract: body: title: author: venue: year: tag: Queries may use AND, OR or (). Default is OR.

Table extraction using conditional random fields

David Pinto, Andrew McCallum, Xin Wei, W. Bruce Croft SIGIR, 2003 [Edit] [Email link]

layout features conditional random fields [Add Note]

Download: ciir.cs.umass.edu,

www.cs.umass.edu. Rexa cached

Find in: Google, GScholar, Citeseer, DBLP, Yahoo! MSN, Rexa Raw

Abstract:

The ability to find tables and extract information from them is a necessary component of data mining, question answering, and other information retrieval tasks. Documents often contain tables in order to communicate densely packed, multi-dimensional information. Tables do this by employing layout patterns to efficiently indicate fields and records in two-dimensional form. Their rich combination of formatting and content present difficulties for traditional language modeling techniques, however. This paper presents the use of conditional random fields (CRFs) for table extraction, and compares them with hidden Markov models (HMMs). Unlike HMMs, ... [Expand]

References: (16) Sorted by date I citations I alphabetically

- Fei Sha, Fernando C N Pereira. Shallow Parsing with Conditional Random Fields. HLT-NAACL, 2003 (42 citations)
- Andrew Kachites McCallum. MALLET: a machine learning for language toolkit. 2002 (9 citations)
- David Pinto, Michael S. Brandstein, RE Coleman, W. Bruce Croft, Matthew King, Wei Li, Xin Wei. QuASM: a system for question answering using semi-structured data. JCDL, 2002 (2 citations)
- Martin J. Wainwright, Tommi Jaakkola, Alan S. Willsky. Exact MAP Estimates by (Hyper)tree Agreement. NIPS, 2002 (5
- John Lafferty, Andrew McCallum, Fernando C N Pereira.

linf

information extraction

3 tags 1 tags

inference

Bibtex Entry: | Eatt

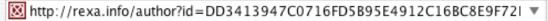
@inproceedings{pinto2003table,

author = "David Pinto and Andrew McCallum and Xin Wei and W. Bruce Croft".

title = "Table extraction using conditional random fields", booktitle = "SIGIR", pages = "235", year = "2003" }

Topics:

experimental results (20.2%), classification (13.1%), information retrieval (10.1%), speech recognition (9.1%), operations (7.1%), en automatique (6.1%), data (4%), escherichia coli (3%)


Citings: (17) Sorted by date I citations I alphabetically

- Trevor Cohn, Alvy Ray Smith, Melissa Osborne. Scaling Conditional Random Fields Using Error-Correcting Codes. Association for Computational Linguistics, pages 10-17, 2005 (2) citations)
- Charles A. Sutton, Khashayar Rohanimanesh, Andrew McCallum. Dynamic conditional random fields: factorized probabilistic models for labeling and segmenting sequence data. ICML, 2004 (8 citations)

■ Research • People × Connections

Andrew McCallum • Tags • Send Invites (477) • Submit • Logout

Papers Authors Grants

Search

Optional fields include abstract: body: title: author: venue: year: tag: Queries may use AND, OR or (). Default is OR.

W. Bruce Croft [Google][EditInfo][Send Invite][Email link]

Distinguished Professor

Department of Computer Science, University of Massachusetts

BRUCE CROFT, Amherst, MA, 01003-9264

Email: croftg@cs.umass.edu

URL: http://ciir.cs.umass.edu/personnel/croft.html

Publications: (1 to 40 of 233) (total 1436 citations) Sorted by date I citations

2004

- Donald Metzler, W. Bruce Croft. Combining the language model and inference network approaches to retrieval. Inf. Process. Manage. vol 40, pages 735, 2004 (1 citation)
- Xiaoyong Liu, W. Bruce Croft. Cluster-based retrieval using language models. SIGIR, 2004 (0 citations)
- Andrés Corrada-Emmanuel, W. Bruce Croft, Answer models for question answering passage retrieval. SIGIR, 2004 (0 citations)
- Chirag Shah, W. Bruce Croft. Evaluating high accuracy retrieval techniques. SIGIR, 2004 (1 citation)
- Haizheng Zhang, W. Bruce Croft, Brian N. Levine, Victor R. Lesser. A Multi-Agent Approach for Peer-to-Peer Based Information Retrieval System. AAMAS, 2004 (1 citation)
- Donald Metzler, Victor Lavrenko, W. Bruce Croft. Formal multiple-bernoulli models for language modeling. SIGIR, 2004 (0 citations)
- Stephen Cronen-Townsend, Yu Zhou, W. Bruce Croft. A framework for selective query expansion. CIKM, 2004 (0 citations)

W. Bruce Croft. Language Models for Information Retrieval.

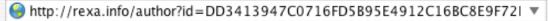
Co-authors I Cited authors I Citing authors: (1 to 40 of 257) Sorted by date I number I name

- Victor Lavrenko, 2004 2003 2002 2002 2001 2001 2222 2222
- Stephen Cronen-Townsend, 2004 2002 2001 ????
- Donald Metzler, 2004 2004 2003
- Xiaoyong Liu, 2004 2002
- Andrés Corrada-Emmanuel, 2004
- Victor R. Lesser, 2004
- Brian N. Levine, 2004
- Chirag Shah, 2004
- Haizheng Zhang, 2004
- Yu Zhou, 2004
- James P. Callan, 2003 2001 1997 1996 1996 1995 1993 1993 1993 1992 1992 ???? ???? ????
- Howard R. Turtle, 2003 1999 1997 1996 1993 1992

Done

2003

Adblock



~ 70

~ 40

■ Research • People × Connections

Andrew McCallum • Tags • Send Invites (477) • Submit • Logout

Papers Authors Grants

Search

Optional fields include abstract: body: title: author: venue: year: tag: Queries may use AND, OR or (), Default is OR.

W. Bruce Croft [Google][EditInfo][Send Invite][Email link]

Distinguished Professor

Department of Computer Science, University of Massachusetts

BRUCE CROFT, Amherst, MA, 01003-9264

Email: croftg@cs.umass.edu

URL: http://ciir.cs.umass.edu/personnel/croft.html

Publications: (1 to 40 of 233) (total 1436 citations) Sorted by date | citations

- James P. Callan, Zhihong Lu, W. Bruce Croft. Searching ~ 90 Distributed Collections with Inference Networks, SIGIR, 1995 (84 citations)
 - James P. Callan, W. Bruce Croft, Stephen M. Harding. The INQUERY Retrieval System. DEXA, 1992 (80 citations)
- Jay M. Ponte, W. Bruce Croft. A Language Modeling Approach to ~ 80 Information Retrieval. SIGIR, 1998 (77 citations)
 - Jinxi Xu, W. Bruce Croft. Query Expansion Using Local and Global Document Analysis. SIGIR, 1996 (63 citations)
 - Nicholas J. Belkin, W. Bruce Croft. Information Filtering and Information Retrieval: Two Sides of the Same Coin. Commun. ACM vol 35, pages 29, 1992 (63 citations)
- Howard R. Turtle, W. Bruce Croft. Evaluation of an Inference ~ 50 Network-Based Retrieval Model. ACM Trans. Inf. Syst. vol 9, pages 187, 1991 (48 citations)
 - · Isidro Laso Ballesteros, W. Bruce Croft. Phrasal Translation and Query Expansion Techniques for Cross-language Information Retrieval. SIGIR, 1997 (39 citations)
 - · Isidro Laso Ballesteros, W. Bruce Croft. Resolving Ambiguity for Cross-Language Retrieval, SIGIR, 1998 (36 citations)

Co-authors I Cited authors I Citing authors: (1 to 40 of 257) Sorted by date I number I name

- Victor Lavrenko, 2004 2003 2002 2002 2001 2001 7777 7777
- Stephen Cronen-Townsend, 2004 2002 2001 ????
- Donald Metzler, 2004 2004 2003
- Xiaoyong Liu, 2004 2002
- Andrés Corrada-Emmanuel, 2004
- Victor R. Lesser, 2004
- Brian N. Levine, 2004
- Chirag Shah, 2004
- Haizheng Zhang, 2004
- Yu Zhou, 2004
- James P. Callan, 2003 2001 1997 1996 1996 1995 1993 1993 1993 1992 1992 ???? ???? ????
- Howard R. Turtle, 2003 1999 1997 1996 1993 1992 1992 1991 1991 1991 1990 1990 1990 1989

M http://rexa.info/author?id=DD3413947C0716FD5B95E4912C16BC8E9F72I ▼

■ Research • People × Connections

Andrew McCallum • Tags • Send Invites (477) • Submit • Logout

Papers Authors Grants

Search

Optional fields include abstract: body: title: author: venue: year: tag: Queries may use AND, OR or (). Default is OR.

W. Bruce Croft [Google][EditInfo][Send Invite][Email link]

Distinguished Professor

Department of Computer Science, University of Massachusetts

BRUCE CROFT, Amherst, MA, 01003-9264

Email: croftg@cs.umass.edu

URL: http://ciir.cs.umass.edu/personnel/croft.html

Publications: (1 to 40 of 233) (total 1436 citations) Sorted by date I citations

2004

- Donald Metzler, W. Bruce Croft, Combining the language model and inference network approaches to retrieval. Inf. Process. Manage. vol 40, pages 735, 2004 (1 citation)
- Xiaoyong Liu, W. Bruce Croft. Cluster-based retrieval using language models. SIGIR, 2004 (0 citations)
- Andrés Corrada-Emmanuel, W. Bruce Croft, Answer models for question answering passage retrieval. SIGIR, 2004 (0 citations)
- Chirag Shah, W. Bruce Croft. Evaluating high accuracy retrieval techniques. SIGIR, 2004 (1 citation)
- Haizheng Zhang, W. Bruce Croft, Brian N. Levine, Victor R. Lesser. A Multi-Agent Approach for Peer-to-Peer Based Information Retrieval System. AAMAS, 2004 (1 citation)
- Donald Metzler, Victor Lavrenko, W. Bruce Croft. Formal multiple-bernoulli models for language modeling. SIGIR, 2004 (0 citations)
- Stephen Cronen-Townsend, Yu Zhou, W. Bruce Croft. A framework for selective query expansion. CIKM, 2004 (0 citations)

W. Bruce Croft. Language Models for Information Retrieval.

Co-authors I Cited authors I Citing authors: (1 to 40 of 257) Sorted by date I number I name

- James P. Callan, 2003 2001 1997 1996 1996 1995 1993 1993 1993 1992 1992 ???? ???? ????
- Howard R. Turtle, 2003 1999 1997 1996 1993 1992 1992 1991 1991 1991 1990 1990 1990 1989
- John Broglio, 1996 1996 1996 1995 1995 1994 1994 1994 1994 1994 1993
- Nicholas J. Belkin, 2003 2002 1993 1992 1990 1987 1987 1987 ????
- Victor Lavrenko, 2004 2003 2002 2002 2001 2001 ???? ????
- James Allan, 2003 2003 2002 2000 1997 1996 1995
- Jinxi Xu, 2003 2000 1999 1998 1998 1996 1995
- Isidro Laso Ballesteros, 1998 1998 1998 1997 1997 1996 1996

2003

M http://rexa.info/author?id=DD3413947C0716FD5B95E4912C16BC8E9F72I ▼

Rexa: W. Bruce Croft

■ Research • People × Connections

Andrew McCallum • Tags • Send Invites (477) • Submit • Logout

Papers Authors Grants

Search

Optional fields include abstract: body: title: author: venue: year: tag: Queries may use AND, OR or (). Default is OR.

W. Bruce Croft [Google][EditInfo][Send Invite][Email link]

Distinguished Professor

Department of Computer Science, University of Massachusetts

BRUCE CROFT, Amherst, MA, 01003-9264

Email: croftg@cs.umass.edu

URL: http://ciir.cs.umass.edu/personnel/croft.html

Publications: (1 to 40 of 233) (total 1436 citations) Sorted by date I citations

2004

2003

- Donald Metzler, W. Bruce Croft. Combining the language model and inference network approaches to retrieval. Inf. Process. Manage. vol 40, pages 735, 2004 (1 citation)
- Xiaoyong Liu, W. Bruce Croft. Cluster-based retrieval using language models. SIGIR, 2004 (0 citations)
- Andrés Corrada-Emmanuel, W. Bruce Croft, Answer models for question answering passage retrieval. SIGIR, 2004 (0 citations)
- Chirag Shah, W. Bruce Croft, Evaluating high accuracy retrieval techniques. SIGIR, 2004 (1 citation)
- Haizheng Zhang, W. Bruce Croft, Brian N. Levine, Victor R. Lesser. A Multi-Agent Approach for Peer-to-Peer Based Information Retrieval System. AAMAS, 2004 (1 citation)
- Donald Metzler, Victor Lavrenko, W. Bruce Croft. Formal multiple-bernoulli models for language modeling. SIGIR, 2004 (0 citations)
- Stephen Cronen-Townsend, Yu Zhou, W. Bruce Croft. A framework for selective query expansion. CIKM, 2004 (0 citations)

 W. Bruce Croft. Language Models for Information Retrieval. ICDE, 2003 (0 citations)

W. Bruce Croft, John Lafferty. Language Modeling for Information

Co-authors I Cited authors I Citing authors: (1 to 40 of 368) Sorted by date I number I name

- W. Bruce Croft, 2004 2003 2002 2002 2002 2001 2000 2000 1999 1999 1998 1998 1997 1997 1997 2222 2222
- James P. Callan, 2001 1999 1997 1995 1995 1995 *1994 1994* 1994 *1994 1993 1992*
- Ellen M. Voorhees, 2002 2001 2000 2000 1999 1994 1993 1993 1983
- James Allan, 1999 1998 1997 1995 1993 ????
- Howard R. Turtle. 1994 1992 1991 1991 1991 1990
- Justin Zobel, 2001 1996 1994 1994 1992
- John Broglio, 1996 1995 1994 1994 1994
- Hector Garcia-Molina, 1995 1994 1994 1993 ????
- Donna Harman, 1995 1992 1992 1991 1988

■ Research • People × Connections

Andrew McCallum • Tags • Send Invites (477) • Submit • Logout

Papers Authors Grants

Search

Optional fields include abstract: body: title: author: venue: year: tag: Queries may use AND, OR or (). Default is OR.

W. Bruce Croft [Google][EditInfo][Send Invite][Email link]

Distinguished Professor

Department of Computer Science, University of Massachusetts

BRUCE CROFT, Amherst, MA, 01003-9264

Email: croftg@cs.umass.edu

URL: http://ciir.cs.umass.edu/personnel/croft.html

Publications: (1 to 40 of 233) (total 1436 citations) Sorted by date I citations

2004

2003

- Donald Metzler, W. Bruce Croft. Combining the language model and inference network approaches to retrieval. Inf. Process. Manage. vol 40, pages 735, 2004 (1 citation)
- Xiaoyong Liu, W. Bruce Croft. Cluster-based retrieval using language models. SIGIR, 2004 (0 citations)
- Andrés Corrada-Emmanuel, W. Bruce Croft. Answer models for question answering passage retrieval. SIGIR, 2004 (0 citations)
- Chirag Shah, W. Bruce Croft. Evaluating high accuracy retrieval techniques. SIGIR, 2004 (1 citation)
- Haizheng Zhang, W. Bruce Croft, Brian N. Levine, Victor R. Lesser. A Multi-Agent Approach for Peer-to-Peer Based Information Retrieval System. AAMAS, 2004 (1 citation)
- Donald Metzler, Victor Lavrenko, W. Bruce Croft. Formal multiple-bernoulli models for language modeling. SIGIR, 2004 (0 citations)
- Stephen Cronen-Townsend, Yu Zhou, W. Bruce Croft. A framework for selective query expansion. CIKM, 2004 (0 citations)

 W. Bruce Croft. Language Models for Information Retrieval. ICDE 2003 (0 citations)

Co-authors I Cited authors I Citing authors: (1 to 40 of 1527)

Sorted by date I number I name

- W. Bruce Croft, 2004 2004 2003 2002 2002 2002 2002 2001 1998 1997 1997 1997 1996 1995 1995 1994 1994 1993 1992 ???? ???? ???? ???? ???? 2222 2222 2222
- James Allan, 2004 2003 2002 2002 2001 2001 2000 1998 1998 1996 1996 1994 1993 ???? ???? ???? ???? ???? ???? ???? ???? ???? ????
- Douglas W. Oard, 2003 2003 2003 2002 1999 1998 1998 1996 1996 1995 ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????
- Victor Lavrenko, 2004 2004 2003 2002 2002 2001 2000 1998 1996 ???? ???? ???? ???? ???? ???? ???? ???? ????
- James P. Callan, 2004 2003 2002 2002 2001 2000 2000 1996 *1995 1994* 1994 *1994 1993 1992 ????*

■ Research • People × Connections

Andrew McCallum · Tags · Send Invites (477) · Submit · Logout

Papers Authors Grants

Search

Optional fields include abstract: body: title: author: venue: year: tag: Queries may use AND, OR or (). Default is OR.

Tolerating Latency by Prefetching Java Objects

Brendon Cahoon, Kathryn S. McKinley

To appear: Workshop on Hardware Support for Objects and Microarchitectures for Java, 1999 [Edit] [Email link]

Download: ftp.cs.umass.edu, Rexa cached

Find in: Google, GScholar, Citeseer,

DBLP, Yahoo! MSN, Rexa Raw

(Add tags at right) What is a tag? [Add Note]

<tvpe a tag and press return>

+ to read + read + reading group + recommended + hot + seminal + survey

+ tutorial + classic + controversial + enjoyable

Abstract:

In recent years, processor speed has become increasingly faster than memory speed. One technique for improving memory performance is data prefetching which is successful in array-based codes but only now are researchers applying to pointer-based codes. In this paper, we evaluate a data prefetching technique, called greedy prefetching, for tolerating latency in Java programs. In greedy prefetching, when a loop or recursive method updates an object o, we prefetch objects to which Massachusetts", o refers. We describe inter- and intraprocedural algorithms for computing objects to prefetch and we present preliminary results ... [Expand]

References: (17) Sorted by date I citations I alphabetically

- Alvin Roth, Gurindar S. Sohi. Effective Jump-Pointer Prefetching for Linked Data Structures. ISCA, 1999 (26) citations)
- Trishul M. Chilimbi, Mark D. Hill, James R. Larus. Cache-Conscious Structure Layout. PLDI, 1999 (54 citations)
- Shai Rubin, David Bernstein, Michael Rodeh, Virtual Cache Line: A New Technique to Improve Cache Exploitation for Recursive Data Structures. CC, 1999 (3 citations)
- · Brad Calder, Chandra Krintz, Simmi John, Todd M. Austin. Cache-Conscious Data Placement. ASPLOS, 1998 (27 citations)

Bibtex Entry: [Edit]

year = "1999" }

@inproceedings{cahoon1999tolerating, author = "Brendon Cahoon and Kathryn S. McKinley". title = "Tolerating Latency by Prefetching Java Objects". booktitle = "To appear: Workshop on Hardware Support for Objects and Microarchitectures for Java". institution = "Department of Computer Science, University of

Topics:

cache (26.9%), experimental results (20.9%), memory (9%), object (6%), high (4.5%), java (4.5%), algorithms (4.5%), accuracy (4.5%), techniques (4.5%)

Grants: (1)

 James F. Kurose, John A. Stankovic, Donald F. Towsley, Krithi Ramamritham, J. Eliot B Moss, W. Richards Adrion, W. Bruce Croft, Kathryn McKinley. CISE Research Infrastructure: Infrastructure to Support Research on Networked Multimedia Information Systems. NSF EIA, 1995

Mttp://rexa.info/grant?id=8F07FF9BAB69A62C95048A2EFC6A2BA6F254031 ▼

G٠

Papers
 Authors
 Grants

Search

Optional fields include abstract: body: title: author: venue: year: tag:

Queries may use AND, OR or (). Default is OR.

CISE Research Infrastructure: Infrastructure to Support Research on Networked Multimedia Information Systems [Google]

James F. Kurose, John A. Stankovic, Donald F. Towsley, Krithi Ramamritham, J. Eliot B Moss, W. Richards Adrion, W. Bruce Croft, Kathryn McKinley

NSF Grant EIA-9502639, August 1, 1995 - December 29, 1999

Abstract:

This award provides support to equip a networked, experimental testbed to enable research in the development of the operating system, I/O, networking, object management, and information retrieval components of future networked multimedia information systems. The testbed will consist of two shared-memory multiprocessor facilities attached to several parallel mass storage I/O devices and a high-speed ATM network. The research team will be developing several key hardware and software technologies needed to support future networked, multimedia information systems. Specific research areas include operating systems, I/O, networking, object management and information retrieval.

Papers: (17) Sorted by date I citations I alphabetically

This may be only a partial list of papers for this grant.

- Emery D. Berger, Benjamin G. Zorn, Kathryn S. McKinley. Composing High-Performance Memory Allocators. PLDI, 2001 (7 citations)
- Brendon Cahoon, Kathryn S. McKinley. Data Flow Analysis for Software Prefetching Linked Data Structures in Java. IEEE PACT, 2001 (11 citations)
- Sally Floyd, Mark Handley, Jitendra Padhye, Jörg Widmer.
 Equation-based congestion control for unicast applications.
 SIGCOMM. 2000 (229 citations)
- Sally Floyd, Mark Handley, Jitendra Padhye. Equation-Based Congestion Control for Unicast Applications Lambda. 2000 (7 citations)
- Supratik Bhattacharyya, Don Towsley, James F. Kurose.
 Design and Analysis of Loss Indication Filters for Multicast Congestion Control. CMPSCI Technical Report TR 99-46,
 Department of Computer Science University of Massachusetts Amherst, 2000 (0 citations)
- Kathryn S. McKinley, Olivier Temam. Quantifying loop nest locality using SPEC'95 and the perfect benchmarks. ACM Trans. Comput. Syst. vol 17, pages 288, 1999 (9 citations)
- Brendon Cahoon, Kathryn S. McKinley. Tolerating Latency by Prefetching Java Objects. To appear: Workshop on Hardware Support for Objects and Microarchitectures for Java, 1999 (3 citations)
- Jitendra Padhye, James F. Kurose, Donald F. Towsley, Rajeev Koodli. A TCP-Friendly Rate Adjustment Protocol for Continuous Media Flows over Best Effort Networks CMPSCI

M http://rexa.info/results?pager.offset=0&pager.offset=0&searchIndex=autho ▼

"machine learning" AND "reinforcement learning"

Search

Optional fields include abstract: body: title: author: venue: year: tag: Queries may use AND, OR or (). Default is OR.

Papers Authors Grants

Andrew McCallum • Tags • Send Invites (477) • Submit • Logout

Search among authors using query "machine learning" AND "reinforcement learning"

Results 1-10 of about 307

Richard S. Sutton

editor. A Special Issue of Machine Learning on Reinforcement Learning, volume 8 Two problems with backpropagation and other steepestdescent learning procedures for networks Open Theoretical Questions in Reinforcement Learning editor

Between MDPs and Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning

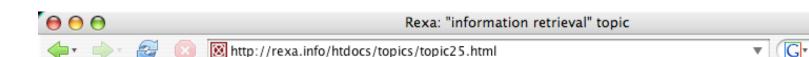
Thomas G. Dietterich

Divide and Conquer Methods for Machine Learning Presidential Young Investigator Award (Computer and Information Science Develop and Protype Methods for the Automatic Calibration and Validation of Computer Models of Complex Systems Off-the-shelf Learning Algorithms for Structural Supervised Learning Understanding and Scaling-Up Machine Learning Algorithms

3. Andrew G. Barto

Lyapunov Methods for Reinforcement Learning

Associative search network: a reinforcement learning associative memory


If desired, the present analysis of the stochastic neuronal dynamics can be replaced by an analysis of this deterministic neuronal dynamics

An approach to Learning Control Surfaces by Connectionist Systems

Reinforcement learning and its relationship to supervised learning

Martin A. Riedmiller

Learning to control dynamic systems Aspects of learning neural control High quality thermostat control by reinforcement learning - a case study Karlsruhe Brainstormers - Design Principles

Citations to this topic: 19697 (rank 59/400) Impact diversity: 2.91 (rank 387/400)

Topic: "information retrieval"

Topic terms: Words Phrases 0.1844 information retrieval 0.1290 retrieval 0.0600 documents 0.0773 relevance feedback 0.0569 document 0.0761 image retrieval 0.0469 indexing 0.0398 guery expansion 0.0469 information 0.0380 text retrieval 0.0463 content 0.0336 search engines 0.0391 auerv 0.0282 search engine 0.0273 relevance 0.0240 image databases 0.0208 latent semantic 0.0242 collection indexing

Citing topics

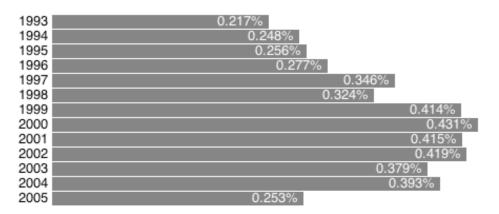
0.0241

- experimental results (3877)
- text (633)

search

- web (610)
- query language (481)
- word (415)
- video (296)
- image (257)
- search (242)
- semantic web (217)
- information (217)
- user (199)

Cited topics


0.0197 relevant documents

- information (1231)
- experimental results (1085)
- text (705)
- web (636)
- search (558)
- word (547)
- guery language (434)
- image (415)
- access (289)
- world wide web (287)
- neural networks (214)

Cooccurring topics

- word (0.03411)
- experimental results (0.03019)
- image (0.02958)
- text (0.02817)
- web (0.02627)

Trends: papers I % of all papers I citations I % of all cites (recent coverage sparse)

Top papers: Sorted by citations I broadest impact I earliest

- Gerard Salton, Chris Buckley. Term-Weighting Approaches in Automatic Text Retrieval. (257 citations)
- Myron Flickner, Harpreet S Sawhney, Jonathan J Ashley, Qiang Huang, Byron Dom, Monika Gorkani, Jim Hafner, Denis Lee, Dragutin Petkovic, David Steele, Peter Yanker. Query by Image and Video Content: The QBIC System. (250 citations)
- · Douglas R Cutting, Jan O Pedersen, David R Karger, John W Tukey. Scatter/Gather: A Cluster-based Approach to Browsing Large Document Collections. (140 citations)
- · Wayne Niblack, Ron Barber, William Equitz, Myron Flickner, Eduardo H Glasman, Dragutin Petkovic, Peter Yanker, Christos Faloutsos. Gabriel Taubin. The QBIC Project: Querying Images by Content, Using Color, Texture, and Shape. (137 citations)
- A Pentland, R Picard, S Sclaroff. Photobook: Content-based

Papers C Authors C Grants

Advanced Search Help

1.183%

(recent

1.078%

Optional fields include abstract: body: title: author: venue: year: tag:

Topic: "neural networks"

Topic terms:

Words Phrases 0.0955 neural 0.3318 neural networks 0.0908 learning 0.1565 neural network $0.0425\,\mathrm{artificial}$ neural 0.0837 training networks 0.0404 network 0.0227 organizing maps 0.0365 recurrent 0.0214 associative memory 0.0360 networks 0.0171 neural nets 0.0168 organizing map 0.0313 organizing 0.0163 hidden units 0.0253 trained 0.0125 artificial neural network 0.0222 connectionist 0.0198 weights 0.0112 recurrent networks

Citing topics

- experimental results (9332)
- classification (805)
- learning (709)
- visual cortex (614)
- basal ganglia (557)
- cognitive (397)
- bayesian (384)
- university (351)
- mobile robot (334)
- speech recognition (290)

breast cancer (218) genetic algorithms (321) bayesian (183)

recognition (183)

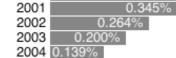
experimental results (656)

speech recognition (252)

visual cortex (499)

basal ganglia (410)

cognitive (411)


learning (387)

curves (228)

error (287)

Cited topics

1998 0.529% 1999 0.438%

coverage sparse)

1993

1994

1995

1996

1997

2000

2005 0.112%

Top papers: Sorted by citations I broadest impact I earliest

0.388%

- Kurt Hornik, Maxwell Stinchcombe, Halbert White. Multilayer Feed-forward Neural Networks Are Universal Approximators. (235) citations)
- Howard A Rowley, Shumeet Baluja, Takeo Kanade, Neural Network-Based Face Detection. (197 citations)
- Stuart Geman, Elie Bienenstock, R Doursat, Neural networks and the bias/variance dilema. (167 citations)
- Teuvo Kohonen. The self-organizing map. (163 citations)
- Scott E Fahlman, Christian Lebiere. The Cascade-Correlation Learning Architecture. (147 citations)
- Anders Krogh, Jesper Vedelsby. Neural Network Ensembles, Cross Validation, and Active Learning. (101 citations)
- P Tamayo. Interpreting patterns of gene expression with self-organizing maps: methods and application,. (100 citations)

Cooccurring topics

- fuzzy (0.01314)
- genetic algorithms (0.01227)
- de (0.01125)
- recognition (0.01102)
- features (0.01024)

0.763%

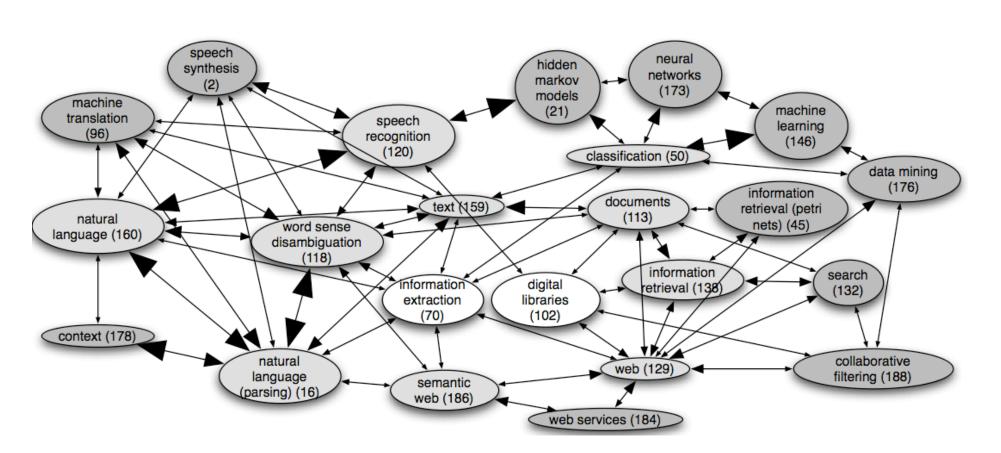
0.644%

Citations to this topic: 28048 (rank 22/400)

0.916%

Impact diversity: 3.66 (rank 278/400)

▼ [G •


Queries may use AND, OR or (). Default is OR.

Trends: papers I % of all papers I citations I % of all cites

Topical Transfer

Citation counts from one topic to another.

Map "producers and consumers"

Topical Bibliometric Impact Measures

[Mann, Mimno, McCallum, 2006]

- Topical Citation Counts
- Topical Impact Factors
- Topical Longevity
- Topical Precedence
- Topical Diversity
- Topical Transfer

Topical Transfer

Transfer from Digital Libraries to other topics

Other topic	Cit's	Paper Title	
Web Pages	31	Trawling the Web for Emerging Cyber- Communities, Kumar, Raghavan, 1999.	
Computer Vision	14	On being 'Undigital' with digital cameras: extending the dynamic	
Video	12	Lessons learned from the creation and deployment of a terabyte digital video libr	
Graphs	12	Trawling the Web for Emerging Cyber- Communities	
Web Pages	11	WebBase: a repository of Web pages	

Topical Diversity

Papers that had the most influence across many other fields...

Topical	Citations	Title	
Diversity			
4.00	618	A tutorial on hidden Markov models and selected applications in speech processing	
3.80	138	The self-organizing map	
3.77	163	Hierarchical mixtures of experts and the EM algorithm	
3.74	65	Quantifying Inductive Bias: AI Learning Algorithms and	
3.74	144	Knowledge Acquisition via Incremental Conceptual Clustering	
3.73	155	A Tutorial on Learning With Bayesian Networks	
3.72	244	Term-Weighting Approaches in Automatic Text Retrieval	
3.71	294	Finding Structure in Time	
3.7	173	An introduction to hidden Markov models	
3.7	132	Nearest neighbor pattern classification	

Topical Diversity

Entropy of the topic distribution among papers that cite this paper (this topic).

Topic	Impact Diversity
Simulated Annealing (52)	4.59
Pattern Recognition (125)	4.57
Probabilistic Modeling (3)	4.55
Finite Automata (66)	4.55
Probability (89)	4.5
Digital Libraries (102)	3.77
Machine Translation (96)	3.32
Mobile Robots (22)	3.31
Graphics (9)	3.21
Speech Recognition (120)	3.09
Computer Vision (49)	2.95

High Diversity

Low Diversity

Topical Bibliometric Impact Measures

[Mann, Mimno, McCallum, 2006]

- Topical Citation Counts
- Topical Impact Factors
- Topical Longevity
- Topical Precedence
- Topical Diversity
- Topical Transfer

Topical Precedence "Early-ness"

Within a topic, what are the earliest papers that received more than *n* citations?

Speech Recognition:

Some experiments on the recognition of speech, with one and two ears,

E. Colin Cherry (1953)

Spectrographic study of vowel reduction,

B. Lindblom (1963)

Automatic Lipreading to enhance speech recognition,

Eric D. Petajan (1965)

Effectiveness of linear prediction characteristics of the speech wave for...,

B. Atal (1974)

Automatic Recognition of Speakers from Their Voices,

B. Atal (1976)

Topical Precedence "Early-ness"

Within a topic, what are the earliest papers that received more than *n* citations?

Information Retrieval:

On Relevance, Probabilistic Indexing and Information Retrieval, Kuhns and Maron (1960)

Expected Search Length: A Single Measure of Retrieval Effectiveness Based on the Weak Ordering Action of Retrieval Systems,

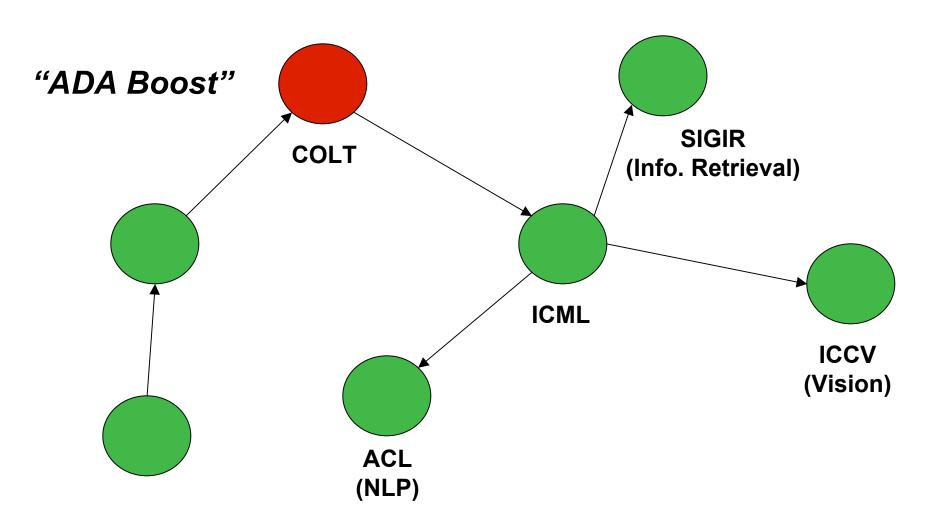
Cooper (1968)

Relevance feedback in information retrieval. Rocchio (1971)

Relevance feedback and the optimization of retrieval effectiveness,

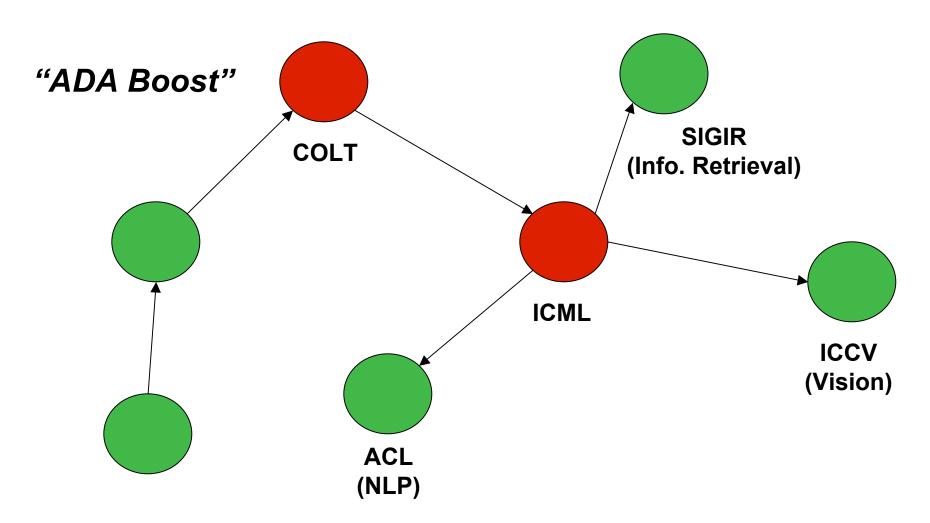
Salton (1971) New experiments in relevance feedback,

Ide (1971)

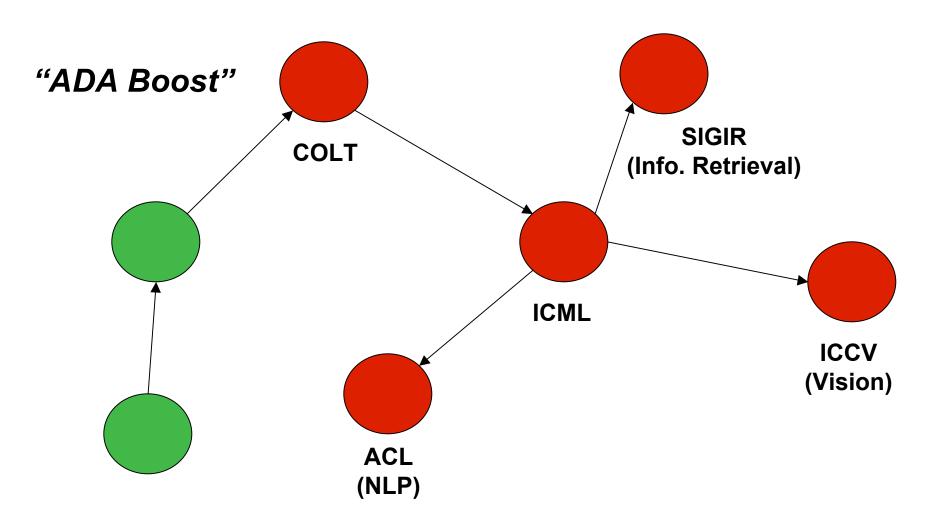

Automatic Indexing of a Sound Database Using Self-organizing Neural Nets, Feiten and Gunzel (1982)

Topical Transfer Through Time

- Can we predict which research topics will be "hot" at ICML next year?
- ...based on
 - the hot topics in "neighboring" venues last year
 - learned "neighborhood" distances for venue pairs


How do Ideas Progress Through Social Networks?

Hypothetical Example:


How do Ideas Progress Through Social Networks?

Hypothetical Example:

How do Ideas Progress Through Social Networks?

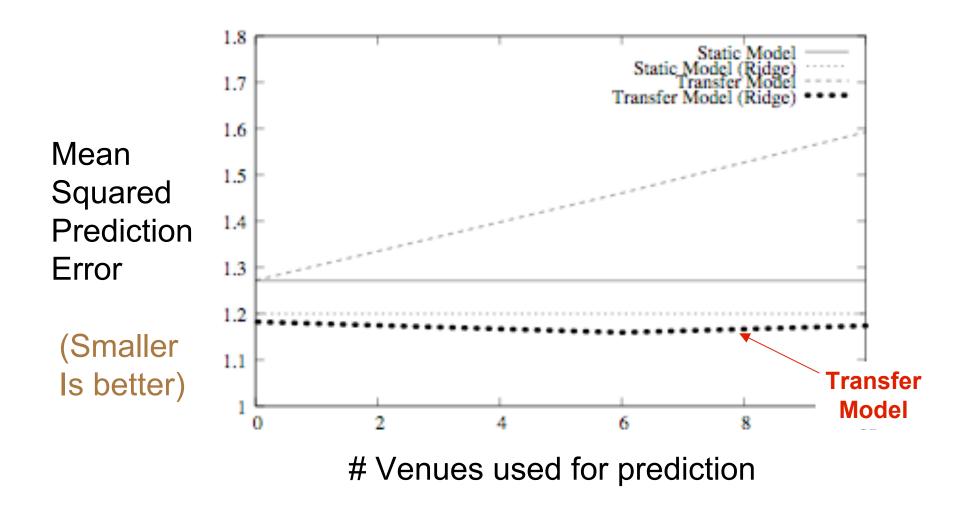
Hypothetical Example:

Topic Prediction Models

Static Model

$$Z_v^i = \lambda_v$$

Transfer Model
$$Z_v^i = \lambda_v + \sum_{v'} \theta_v^{v'} Z_{v'}^{i-1}$$


• Z_n^i : proportion of topic Z in venue v in year i

• λ_v : static topic coefficient

• $\theta_v^{v'}$: topic transfer coefficient

Linear Regression and Ridge Regression Used for Coefficient Training.

Preliminary Results

Transfer Model with Ridge Regression is a good Predictor

Outline

- Social Network Analysis
 - Roles (Author-Recipient-Topic Model)
 - Groups (Group-Topic Model)
 - Trends over time (Topics-over-Time Model, TOT)
 - Preferential Attachment (Community-Author-Topic, CAT)
- Undirected Graphical Models
 - Flexible Objective Functions (Multi-Conditional Learning, MCL)
 - Topics for Prediction (Multinomial-Components-Analysis, MCA)
- Demo: Rexa, a Web portal for researchers
 - Topical Impact Measures (Diversity,...)

Social Network Analysis (Pattern Discovery in Networks)

Data:

Network Connectivity

Network Connectivity + *Many Attributes*

Text, Timestamps, Authors,...

Objective:

Descriptive

Small World, Betweeness Centrality,...

Predictive & Prescriptive

P(edge|...) P(attribute|...), P(group|...) P(collaborator|...)

Methodology:

Direct Measures,
Agglomerative &
Spectral Clustering,...

Generative, Latent Variable Models