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Outline

Clustering Graphs: Spectral Clustering & A Surprising Equivalence

Matrix Co-Clustering
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Clustering

Partition objects into groups so that

objects within the same group are similar to each other

objects in different groups are dissimilar to each other

Examples:

Bioinformatics: Identifying similar genes

Text Mining: Organizing document collections

Image/Audio Analysis: Image and Speech segmentation

Web Search: Clustering web search results

Social Network Analysis: Identifying social groups
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Clustering Graphs
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Graph Partitioning/Clustering

In many applications, goal is to partition/cluster nodes of a graph:

High School Friendship Network

[James Moody. American Journal of Sociology, 2001]
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Graph Partitioning/Clustering

In many applications, goal is to partition/cluster nodes of a graph:

The Internet

[The Internet Mapping Project, Hal Burch and Bill Cheswick, Lumeta Corp, 1999]
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Graph Clustering Objectives

How do we measure the quality of a graph clustering?
Could simply minimize the edge-cut in the graph

Can lead to clusters that are highly unbalanced in size

Could minimize the edge-cut in the graph while constraining the
clusters to be equal in size

Not a natural restriction in data analysis

Popular objectives include normalized cut, ratio cut and ratio
association

Normalized Cut: minimize

c∑

i=1

links(Vi ,V \ Vi )

degree(Vi )

Ratio Cut: minimize
c∑

i=1

links(Vi ,V \ Vi )

|Vi |

[Shi & Malik, IEEE Pattern Analysis & Machine Intelligence, 2000]

[Chan, Schlag & Zien, IEEE Integrated Circuits & Systems, 1994]
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Spectral Clustering

Take a real relaxation of the clustering objective

Globally optimal solution of the relaxed problem is given by eigenvectors

For ratio cut: compute smallest eigenvectors of the Laplacian L = D − A
For normalized cut: compute smallest eigenvectors of the normalized
Laplacian I − D−1/2AD−1/2

Post-process eigenvectors to obtain a discrete clustering

Problem: Can be expensive if many eigenvectors of a very large graph
are to be computed
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K-Means Clustering
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Goal: partition points into k clusters
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K-Means Clustering
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Minimizes squared Euclidean distance from points to their cluster centroids
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The k-means Algorithm

Given a set of vectors and an initial clustering, alternate between
computing cluster means and assigning points to the closest mean

1 Initialize clusters πc and cluster means mc for all clusters c .
2 For every vector ai and all clusters c , compute

d(ai , c) = ‖ai − mc‖
2

and
c∗(ai ) = argminc d(ai , c)

3 Update clusters: πc = {a : c∗(ai ) = c}.
4 Update means: mc = 1

|πc |

∑
ai∈πc

ai

5 If not converged, go to Step 2. Otherwise, output final clustering.
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From k-means to Weighted Kernel k-means

Introduce weights wi for each point ai : use the weighted mean instead

Expanding the distance computation yields:

‖ai −mc‖
2 = ai · ai −

2
∑

aj∈πc
wjai · aj

∑
ai∈πc

wj

+

∑
ai ,aj∈πc

wjwlaj · al

(
∑

aj∈πc
wj)2

Computation can be done only using inner products of data points

Given a kernel matrix K that gives inner products in feature space, can
compute distances using the above formula

Objective function for weighted kernel k-means:

Minimize D({πk
c=1}) =

k∑

c=1

∑

ai∈πc

wi‖ϕ(ai ) − mc‖
2

where mc =

∑
ai∈πc

wiϕ(ai )∑
ai∈πc

wi
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The Weighted Kernel k-means Algorithm

Given a kernel matrix (positive semi-definite similarity matrix), run
k-means in the feature space

1 Initialize clusters πc

2 For every vector ai and all clusters c , compute

d(ai , c) = Kii −
2

∑
aj∈πc

wjKij∑
aj∈πc

wj

+

∑
aj ,al∈πc

wjwlKjl

(
∑

aj∈πc
wj)2

and
c∗(ai) = argminc d(ai , c)

3 Update clusters: πc = {a : c∗(ai ) = c}.
4 If not converged, go to Step 2. Otherwise, output final clustering.
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Equivalence to Graph Clustering

“Surprising” Theoretical Equivalence:

Weighted graph clustering objective is mathematically identical to the
weighted kernel k-means objective

Follows by rewriting both objectives as trace maximization problems

Popular graph clustering objectives and corresponding weights and
kernels for weighted kernel k-means given affinity matrix A:

Objective Node Weight Kernel

Ratio Association 1 for each node K = σI + A

Ratio Cut 1 for each node K = σI − L

Kernighan-Lin 1 for each node K = σI − L

Normalized Cut Degree of the node K = σD−1 + D−1AD−1

Implication: Can minimize graph cuts such as normalized cut and ratio
cut without any eigenvector computation.
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The Multilevel Approach

Coarsening Refining

Input Graph

Initial Clustering

Final Clustering

[CHACO, Hendrickson & Leland, 1994]

[METIS, Karypis & Kumar, 1999]
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The Multilevel Approach

Phase I: Coarsening

Coarsen the graph by merging nodes together to form smaller and
smaller graphs
Use a simple greedy heuristic specialized to each graph cut objective
function

Phase II: Base Clustering

Once the graph is small enough, perform a base clustering
Variety of techniques possible for this step

Phase III: Refining

Uncoarsen the graph, level by level
Use weighted kernel k-means to refine the clusterings at each level
Input clustering to weighted kernel k-means is the clustering from the
previous level
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Experiments: gene network

Mycobacterium tuberculosis gene network: 1381 genes & 9766 functional
linkages.

Spy plots of the functional linkage matrix before and after clustering
(128 clusters)—each dot indicates a non-zero entry
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Experiments: gene network

Mycobacterium tuberculosis gene network: 1381 genes & 9766 functional
linkages.

Normalized cut values generated by Graclus and the spectral method

# clusters 4 8 16 32 64 128

Graclus 0 .009 .018 .53824 3.1013 18.735

Spectral 0 .036556 .1259 .92395 5.3647 25.463
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Experiments: IMDB movie data set

IMDB data set contains 1.4 million nodes and 4.3 million edges.

We generate 5000 clusters using Graclus, which takes 12 minutes.

If we use the spectral method, we would have to store 5000
eigenvectors of length 1.4M; that is 24 GB main memory.

An example cluster: Harry Potter

Movies Actors
Harry Potter and the Sorcerer’s Stone Daniel Radcliffe, Rupert Grint,
Harry Potter and the Chamber of Secrets Emma Watson, Peter Best,
Harry Potter and the Prisoner of Azkaban Joshua Herdman, Harry Melling,
Harry Potter and the Goblet of Fire Robert Pattinson, James Phelps,
Harry Potter and the Order of the Phoenix Tom Felton, Devon Murray,
Harry Potter: Behind the Magic Jamie Waylett, Shefali Chowdhury,
Harry Potter und die Kammer des Schreckens: Stanislav Ianevski, Jamie Yeates,

Das grobe RTL Special zum Film Bonnie Wright, Alfred Enoch, Scott Fern,
J.K. Rowling: Harry Potter and Me Chris Rankin, Matthew Lewis, Katie Leung

Sean Biggerstaff, Oliver Phelps

Inderjit S. Dhillon University of Texas at Austin Graph Clustering and Co-clustering



Experiments: IMDB movie data set

IMDB data set contains 1.4 million nodes and 4.3 million edges.

Normalized cut values and computation time for a varied number of
clusters, using Graclus and the spectral method

Normalized cut values—lower cut values are better
# clusters 2 4 8 16 32 64 128 256
Graclus .049 .163 .456 1.39 3.72 9.42 24.13 64.04
Spectral .00 .016 .775 2.34 5.65 - - -

Computation time (in seconds)
Graclus 34.57 37.3 37.96 46.61 49.93 53.95 64.83 81.42
Spectral 261.32 521.69 597.23 1678.05 5817.96 - - -
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Experiments: Benchmark graph clustering

Test graphs:

Graph name No. of nodes No. of edges Application

copter2 55476 352238 Helicopter mesh

memplus 17758 54196 Memory circuit

pcrystk02 13965 477309 Structural engineering

ramage02 16830 1424761 Navier Stokes equations

Inderjit S. Dhillon University of Texas at Austin Graph Clustering and Co-clustering



Experiments: Benchmark graph clustering

Computation time:
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Experiments: Benchmark graph clustering

Quality (normalized cut and ratio association):
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Co-clustering

Given a data matrix, partition the rows as well as columns

Original Matrix

z x z − − x

+ ◦ + ∗ ∗ ◦

z x z − − x

+ ◦ + ∗ ∗ ◦

+ ◦ + ∗ ∗ ◦

After co-clustering and permutation

x x − − z z

x x − − z z

◦ ◦ ∗ ∗ + +

◦ ◦ ∗ ∗ + +

◦ ◦ ∗ ∗ + +
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Text Mining

Sample term-document matrix:

      

 

 

 

 

 

 

nz = 176347

Matrix Characteristics:

Large
Sparse
Nonnegative
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Bioinformatics

Sample gene-condition matrix:
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Matrix Characteristics:

Smaller
Dense
Negative as well as positive entries
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Co-clustering Applications

Bioinformatics: co-cluster genes and conditions
[Kluger, Basri, Chang & Gerstein, Genome Biology, 2003], [Cho, Dhillon, Guan & Sra, SIAM DM 2004]

Text Mining: co-cluster terms and documents (and categories)
[Dhillon, Mallela & Modha, KDD 2003], [Gao, Liu, Zheng, Cheng & Ma, KDD 2005], [Takamura & Matsumoto,

Information Processing Society of Japan (IPSJ) Journal, 2003]

Natural Language Processing: co-cluster terms & their contexts for
Named Entity Recognition
[Rohwer & Freitag, HLT-NAACL 2004], [Freitag, ACL 2004]

Image Analysis: co-cluster images and features
[Qiu, ICPR 2004], [Guan, Qiu & Xue, IEEE Multimedia Signal Processing, 2005]

Video Content Analysis: co-cluster video segments & prototype images,
co-cluster auditory scenes & key audio effects for scene categorization
[Zhong, Shi & Visontai, IEEE CVPR 2004], [Cai, Lu, & Cai, IEEE Acoustics, Speech and Signal Processing (ICASSP05)]

Miscellaneous: co-cluster advertisers and keywords
[Carrasco, Fain, Lang & Zhukov, ICDM, 2003]
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Co-Clustering & Matrix Approximation

Let A = [a1, . . . , an] be an m × n data matrix

Goal: partition A into k row clusters and ℓ column clusters

How do we judge the quality of co-clustering?
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Co-Clustering & Matrix Approximation

Let A = [a1, . . . , an] be an m × n data matrix

Goal: partition A into k row clusters and ℓ column clusters

How do we judge the quality of co-clustering?

Use quality of “associated” matrix approximation

Associate matrix approximation using the Minimum Bregman
Information (MBI) principle

Objective: Find optimal co-clustering ↔ optimal MBI approximation
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Minimum Bregman Information

Matrix Approximation from a co-clustering:
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Minimum Bregman Information

Matrix Approximation from a co-clustering:

Alice

Inderjit S. Dhillon University of Texas at Austin Graph Clustering and Co-clustering



Minimum Bregman Information

Matrix Approximation from a co-clustering:

Alice

Knows input matrix A
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Minimum Bregman Information

Matrix Approximation from a co-clustering:

Alice Bob

Knows input matrix A
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Minimum Bregman Information

Matrix Approximation from a co-clustering:

Alice Bob

Knows input matrix A Does not know A

Inderjit S. Dhillon University of Texas at Austin Graph Clustering and Co-clustering



Minimum Bregman Information

Matrix Approximation from a co-clustering:

Alice Bob

Knows input matrix A Does not know A

Determines a co-clustering
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Minimum Bregman Information

Matrix Approximation from a co-clustering:

Alice
Transmits co-clustering
& summary statistics

Bob

Knows input matrix A Does not know A

Determines a co-clustering
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Minimum Bregman Information

Matrix Approximation from a co-clustering:

Alice
Transmits co-clustering
& summary statistics

Bob

Knows input matrix A Does not know A

Reconstructs

Determines a co-clustering an approximation Â given
co-clustering & summary statistics
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Minimum Bregman Information

Matrix Approximation from a co-clustering:

Alice
Transmits co-clustering
& summary statistics

Bob

Knows input matrix A Does not know A

Reconstructs

Determines a co-clustering an approximation Â given
co-clustering & summary statistics

Key Idea: Bob will reconstruct Â using the Minimum Bregman
Information principle:

Â = argmin
X satisfies

summary statistics

m∑

i=1

n∑

j=1

Dϕ(Xij , µA)

generalizes the maximum entropy approach
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Results — Document Clustering

Document data set with 3 known clusters

Co-clustering with Relative Entropy

superior performance as compared to just column clustering
performs implicit dimensionality reduction at each iteration

(3 doc;20 word) (3 doc;500 word) (3 doc;2500 word)
1389 1 2 1364 3 18 920 49 292

9 1455 33 5 1446 21 31 1239 404
0 4 998 29 11 994 447 172 337

Confusion matrices for a document data set with different number of word clusters
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Co-clustered term-document matrix
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Results — Bioinformatics

Gene Expression Leukemia data

Matrix contains expression levels of genes in different tissue samples
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Results — Bioinformatics

Gene Expression Leukemia data

Matrix contains expression levels of genes in different tissue samples

Co-clustering recovers cancer samples & functionally related genes

10 20 30 40 50 60 70
  J02923_at
  M19722_at
  M33552_at
  M63138_at
  U89336_cds1_at
  X14046_at
  X16663_at
  X62055_at
  X95735_at
  X89109_s_at
  U19713_s_at
  L09209_s_at
  X64072_s_at
  M15395_at
  M21005_at
  M27891_at
  J03077_s_at
  M26311_s_at
  J03801_f_at
  M19045_f_at
  X14008_rna1_f_at
  M12886_at
  M13792_at
  M16279_at
  U14603_at
  U50743_at
  U23852_s_at
  U49835_s_at
  X00437_s_at
  X76223_s_at
  X00274_at
  M13560_s_at
  HG3576−HT3779_f_at
  M33600_f_at
  D88270_at
  M11722_at
  M92287_at
  U51240_at
  X67951_at
  X82240_rna1_at
  M28826_at
  U67171_at
  X03934_at
  X14975_at
  X69433_at

Tissue  Samples
G

en
es

−2 −1 0 1 2 3 4 5 6

(R1)

(R2)

(R4)

(R5)

(R6)

(T−ALL) (AML) (B−ALL)

(R3)

Inderjit S. Dhillon University of Texas at Austin Graph Clustering and Co-clustering



Conclusions

A mathematical equivalence between spectral graph clustering
objectives and weighted kernel k-means objectives

Superfast multilevel algorithm uses kernel k-means in its refinement
phase

Rich co-clustering framework/formulation/algorithm

Co-clustering is becoming a technology
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