Lewis-Sigler Institute & CSD

PrincetonUniversity

The exchangeable graph model with applications to dynamic network analysis

Edo Airoldi

Computer Science Department & Lewis-Sigler Institute for Integrative Genomics Princeton University

Joint work with: David Blei, Kathleen Carley, Stephen Fienberg & Eric Xing

IPAM, November 6th, 2007, Los Angeles CA

PrincetonUniversity

Overview

- Problem: how can we think quantitatively about social structure and social dynamics?
- Data:
 - Sampson's monastery data
 - National survey of adolescent health
 - Linked-In
- Disclaimer: do not think probability, statistical methodology or learning, rather think substantive

IPAM, November 6th, 2007, Los Angeles CA

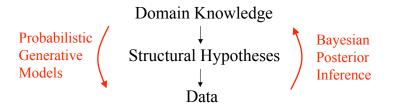
Edo Airoldi

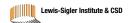
PrincetonUniversity

88

PrincetonUniversity

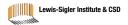
Key notions


- Complexity of observed connectivity is resolved in a <u>structure</u> of simple motifs and their evolution
- Mixed membership
- Dynamics
 - State-space models
 - Birth-death processes



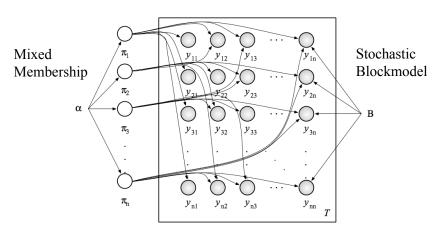
The role of structure

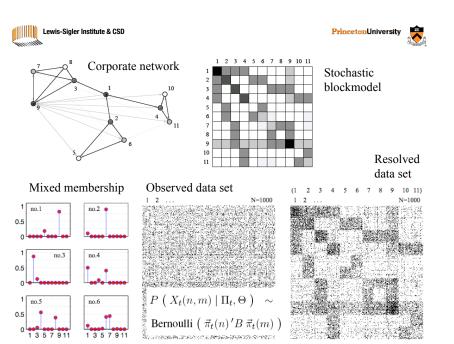
• Structural hypotheses drive inference


PrincetonUniversity

Agenda

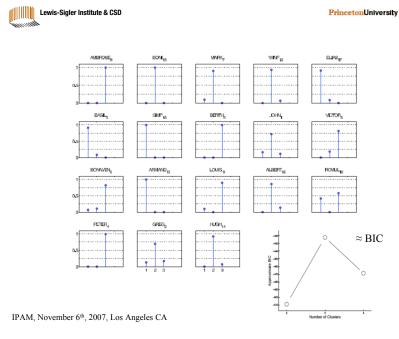
- Static network analysis
- Methodological themes
- Dynamics of social failure
- The exchangeable edge model
- Concluding remarks


IPAM, November 6th, 2007, Los Angeles CA


Edo Airoldi

PrincetonUniversity

A projection onto $\Pi \times B$


PrincetonUniversity

Sampson's monastery data

- How many factions are there?
- How do factions relate to one another?
- Who belongs to which faction?

Breiger et al. (1975)

A 12

Outcasts

17

Young

Turks

Lewis-Sigler Institute & CSD

Recovering observed connectivity

• Two model variants (node-specific, relationspecific) provide increasing levels of definition

node-specific

(summary)

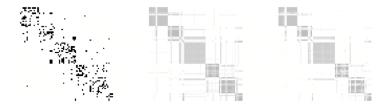
PrincetonUniversity

relation-specific (de-noising)

IPAM, November 6th, 2007, Los Angeles CA

Original data

Edo Airoldi


.

PrincetonUniversity

National study on adolescents

• A friendship network among 69 students in grades 7-12

Fig. 8. Original matrix of friendship relations (left), and estimated relations obtained by thresholding the posterior expectations $\pi_p B \pi_q R$ (center), and $\phi_p B \phi_q R$ (right).

IPAM, November 6th, 2007, Los Angeles CA

Lewis-Sigler Institute & CSD

Waverers

Loyal

Opposition

Edo Airoldi

PrincetonUniversity

Ambrose

Boniface

Winfrid

Simplicius Berthold

John Bosco

Victor Bonaventure

Amand

Louis

Albert

Peter

Hugh

Ramuald

Gregory

Mark

Elias Basil

2

3

4

5

6 7

8 9

10

11

12

13

14 15

16

17

18

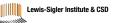
.

.

Lewis-Sigler	1	PrincetonUniver							
0.5									
1 0.5									
				*					
0.5									
0.5									
0.5 0 123456	123456	123456	123456	123456	123456	123456	123456	123456	

Fig. 7. The posterior mixed membership scores, π , for the 69 students in a school. Each panel correspond to a student; on the Y axis we measure the grade of membership, corresponding to the six grade levels from 7 to 12, on the X axis.

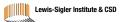
Problem revisited


Lewis-Sigler Institute & CSD

• Given: A collection of relational measurement on the same sets of objects (units of analysis)

(square matrices, or unipartite graphs, with integer, real or multivariate edge weights)

• Find: (i) A pool of recurrent connectivity patterns among blocks of nodes —how many and what they look like, and (ii) A mapping of nodes to connectivity patterns — at the block level


(PCA for relational data, with symmetry constraints)

	MMSB Clusters					MSB Clusters					LSCM Clusters							
Grade	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
7	13	1	0	0	0	0	13	1	0	0	0	0	13	1	0	0	0	0
8	0	9	2	0	0	1	0	10	2	0	0	0	0	11	1	0	0	0
9	0	0	16	0	0	0	0	0	10	0	0	6	0	0	7	6	3	0
10	0	0	0	10	0	0	0	0	0	10	0	0	0	0	0	0	3	7
11	0	0	1	0	11	1	0	0	1	0	11	1	0	0	0	0	3	10
12	0	0	0	0	0	4	0	0	0	0	0	4	0	0	0	0	0	4

Table 1: Grade levels versus (highest) expected posterior membership for the 69 students, according to three alternative models. MMSB is the proposed mixed membership stochastic blockmodel, MSB is a simpler stochastic block mixture model (Doreian et al., 2007), and LSCM is the latent space cluster model (Handcock et al., 2007).

$\hat{B} =$	0.3235 0.0 0.0 0.0 0.0 0.0	0.0 0.3614 0.0 0.0 0.0 0.0	0.0 0.0002 0.2607 0.0 0.0 0.0	$\begin{array}{c} 0.0 \\ 0.0 \\ 0.0 \\ 0.3751 \\ 0.0002 \\ 0.0 \end{array}$	0.0 0.0 0.00009 0.3795 0.0	0.0 0.0 0.0002 0.0 0.0 0.3719	
	0.0	0.0	0.0	0.0	0.0	0.3719	

PrincetonUniversity

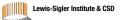
PrincetonUniversity

Summary

- Observed connectivity structure is described in terms of two main sources of variability:
- 1. Stochastic blockmodel
 - Blocks and block-to-block connectivity patterns (the community structure, global, asymmetric)
- 2. Membership map
 - Nodes-to-blocks map

 (mixed membership, object-specific, symmetric

PrincetonUniversity


193

Agenda

- Static network analysis
- Methodological themes
- Dynamics of social failure
- The exchangeable edge model
- Concluding remarks

IPAM, November 6th, 2007, Los Angeles CA


Edo Airoldi

PrincetonUniversity

- Inference on mixed membership
- Define: observations Y = R, latent variables $X = (\Pi, Z)$, and underlying constants $\Theta = (\alpha, B)$

$$\begin{split} p(Y|\Theta) &= \log \int_{\mathcal{X}} p(Y, X|\Theta) \, dX \\ &= \log \int_{\mathcal{X}} q(X) \, \frac{p(Y, X|\Theta)}{q(X)} \, dX \quad \text{(for any } q) \\ &\geq \int_{\mathcal{X}} q(X) \, \log \frac{p(Y, X|\Theta)}{q(X)} \, dX \quad \text{(Jensen's)} \\ &= \mathbb{E}_q \left[\log p(Y, X|\Theta) - \log q(X) \right] \quad =: \, \mathcal{L}(q, \Theta) \end{split}$$

- For each node $p \in \mathcal{N}$:
 - Draw a K dimensional mixed membership vector $\vec{\pi}_p \sim \text{Dirichlet} (\vec{\alpha})$.
- For each pair of nodes $(p,q) \in \mathcal{N} \times \mathcal{N}$:
 - Draw membership indicator for the initiator, $\vec{z}_{p \to q} \sim \text{Multinomial} (\vec{\pi}_p)$.
 - Draw membership indicator for the receiver, $\vec{z}_{q \to p} \sim \text{Multinomial} (\vec{\pi}_q)$.
 - Sample the value of their interaction, $R(p,q) \sim \text{Bernoulli} \left(\vec{z}_{p \to q}^{\top} B \vec{z}_{p \leftarrow q} \right)$.

 $p(R, \vec{\pi}_{1:N}, Z_{\rightarrow}, Z_{\leftarrow} | \vec{\alpha}, B)$

$$=\prod_{p,q} P(R(p,q)|\vec{z}_{p \rightarrow q},\vec{z}_{p \leftarrow q},B)P(\vec{z}_{p \rightarrow q}|\vec{\pi}_p)P(\vec{z}_{p \leftarrow q}|\vec{\pi}_q)\prod_p P(\vec{\pi}_p|\vec{\alpha}).$$

Lewis-Sigler Institute & CSD

PrincetonUniversity

Variational approximation

- The idea is to maximize lower bound over (X, Θ)
- Alas, not possible to compute

$$q^{(t)} = p(X|Y, \Theta^{(t-1)}),$$

• Posit parametric approximation for q using free parameters Δ

$$q^{(t)} \approx q^{(t)}_{\Delta^*(Y)}(X) = p(X|Y).$$

Large scale computation

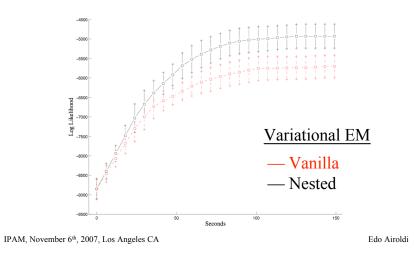
• Masses of data

Lewis-Sigler Institute & CSD

- 750K observations in a small problem (N=871)
- 2.5M observations in a medium problem (N=1567)
- Introduce parameter ρ to deal with sparsity
- Variational inference [Jordan et al., 2001]
 - Naïve implementation does not work
 - Develop a novel "nested" variational EM algorithm

IPAM, November 6th, 2007, Los Angeles CA

Edo Airoldi


PrincetonUniversity

PrincetonUniversity

1. Stochastic blockmodel, B

- Captures salient structure, at the block level (collapse nodes into groups, or blocks)
- Node-specific connectivity patterns are instances of (multiple) block-to-block connectivity patterns
- Connectivity among nodes within the same block is only specified on average

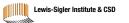
Lewis-Sigler Institute & CSD

2. Mixed membership, Π

- Extends the idea of a mixture
 - Mixture: variability of data top-down; global weights
 - MM: variability of data bottom-up, unit-specific weights
- Unit-specific descriptions useful for prediction
- Sparsity: to induce parsimony in the mixed membership map between nodes and patterns

 Enforced via prior distribution, or other means

3. Allocation paradigms, $Pr(\Pi)$


- Alternative specifications of mixed membership lead to different interpretations
- The simplex
 - Intuition: finite resources, more constrained
- The unit hyper-cube
 - Intuition: relevance, less constrained

IPAM, November 6th, 2007, Los Angeles CA

Edo Airoldi

193

~

PrincetonUniversity

Modeling social dynamics

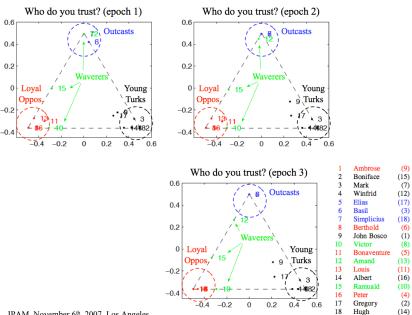
- Mixed membership analysis reduces pair-wise measurements to node-specific attributes
- Introduce smooth temporal evolution

$$X_t(n,m)$$
 s.t. $n,m=1,\ldots,N=18$ and $t=1,2,3$.

$$P\left(\vec{\pi}_{0}(n) \mid \Theta\right) \sim \mathbf{f} \circ Gaussian\left(\vec{0}, A\right),$$

$$P\left(\vec{\pi}_{t}(n) \mid \vec{\pi}_{t-1}(n), \Theta\right) \sim \mathbf{f} \circ \left[Gaussian\left(\vec{0}, A\right) + \mathbf{f}^{-1} \circ \vec{\pi}_{t-1}(n)\right],$$

$$P\left(X_{t}(n, m) \mid \Pi_{t}, \Theta\right) \sim \text{Bernoulli}\left(\vec{\pi}_{t}(n) B \vec{\pi}_{t}(m)\right),$$


Agenda

- Static network analysis
- Methodological themes
- Dynamics of social failure
- The exchangeable edge model
- Concluding remarks

IPAM, November 6th, 2007, Los Angeles CA

Edo Airoldi

(8)

IPAM, November 6th, 2007, Los Angeles

Social failure in isolated communities

• Analysis suggests elements of a dynamic theory

of social failure in isolated communities:

1. Fragmented social structure

3. Interstitial members as traitors

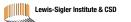
An abstraction exercise

Goal: new model of randomness for graphs

What are the essential features of our models?

2. Progressive polarization

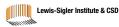
Agenda


Lewis-Sigler Institute & CSD

- Static network analysis
- Methodological themes
- Dynamics of social failure
- The exchangeable edge model
- Concluding remarks

IPAM, November 6th, 2007, Los Angeles CA

IPAM, November 6th, 2007, Los Angeles CA


Edo Airoldi

٠

٠

PrincetonUniversity

PrincetonUniversity

Edo Airoldi

The exchangeable graph model

- Random graphs (Erdos-Renyi-Gilbert)
 - For all (n,m) do
 Y(n,m) ~ Bernoulli (p)
- Exchangeable graphs
 - For all n do X_k(n) ~ Bernoulli (p), k = 1 ... K
 For all (n,m) do Y(n,m) = f (X(n),X(m))

IPAM, November 6th, 2007, Los Angeles CA

1. Node attributes

2. Scarcity (sparsity)

3. Latent variables

PrincetonUniversity

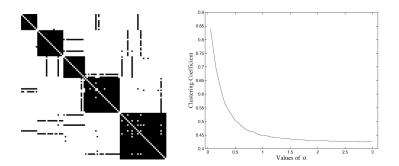
Some results

- Emergence of the giant component
- Emergence of community structure
 - No phase transition
- Lognormal graphs
 - True limit connectivity
 - Scale-free graphs as approximation
- Study connectivity induced by imputing edges

```
IPAM, November 6th, 2007, Los Angeles CA
```

Edo Airoldi

PrincetonUniversity


Agenda

- Static network analysis
- Methodological themes
- Dynamics of social failure
- The exchangeable edge model
- Concluding remarks

Emergence of community structure

• As negative correlation* among node-specific bit strings increases, communities emerge

PrincetonUniversity

Related work in biology

- 1. Inferring protein function from interacts (patches of connectivity correspond to stable complexes)
- Statistical discovery of signaling pathways from an ensemble of weakly informative data sources
 Data: interactions (e.g. Y2H), node attributes (e.g. microarrays, domains), path constraints (e.g. RNAi)
 Idea: signaling pathways as latent graphs

Take home points

- Mixed membership analysis as a quantitative tool for exploring static/dynamic social networks
- The exchangeable graph model as a new paradigm for theoretical explorations of graph connectivity

Manuscripts on arXiv:

- 1. Stochastic blockmodel: stat.ME 0705.4485
- 2. Exchangeable graph model: email me