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Metric Learning

Goal: “Learn” Distance Metric between Data

Important problem in Data Mining & Machine Learning

Can govern success or failure of data mining algorithm
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Metric Learning: Example I

Similarity by Person(identity) or by Pose
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Metric Learning: Example II

Consider a set of text documents

Each document is a review of a classical music piece

Might be clusterable in one of two ways

By Composer (Beethoven, Mozart, Mendelssohn)
By Form (Symphony, Sonata, Concerto)

Similarity by Composer or by Form
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Mahalanobis Distances

We restrict ourselves to learning Mahalanobis distances:

Distance parameterized by positive definite matrix Σ:

dΣ(x1, x2) = (x1 − x2)
T
Σ(x1 − x2)

Often Σ is the inverse of the covariance matrix

Generalizes squared Euclidean distance (Σ = I )

Rotates and scales input data
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Example: Four Blobs
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Example: Four Blobs
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Example: Four Blobs
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Problem Formulation

Metric Learning Goal:

minΣ dist(Σ,Σ0)
(xi − xj)

T
Σ(xi − xj) ≤ u if (i , j) ∈ S [similarity constraints]

(xi − xj)
T
Σ(xi − xj) ≥ ℓ if (i , j) ∈ D [dissimilarity constraints]

Learn spd matrix Σ that is “close” to the baseline spd matrix Σ0

Other linear constraints on Σ are possible

Constraints can arise from various scenarios

Unsupervised: Click-through feedback
Semi-supervised: must-link and cannot-link constraints
Supervised: points in the same class have “small” distance, etc.
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Problem Formulation

Metric Learning Goal:

minΣ dist(Σ,Σ0)
(xi − xj)

T
Σ(xi − xj) ≤ u if (i , j) ∈ S [similarity constraints]

(xi − xj)
T
Σ(xi − xj) ≥ ℓ if (i , j) ∈ D [dissimilarity constraints]

Learn spd matrix Σ that is “close” to the baseline spd matrix Σ0

Other linear constraints on Σ are possible

Constraints can arise from various scenarios

Unsupervised: Click-through feedback
Semi-supervised: must-link and cannot-link constraints
Supervised: points in the same class have “small” distance, etc.

QUESTION: What should “dist” be?
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LogDet Divergence

We use dist(Σ,Σ0) to be the Log-Determinant Divergence:

Dℓd(Σ,Σ0) = trace(ΣΣ
−1
0 ) − log det(ΣΣ

−1
0 ) − d

Our Goal:

minΣ Dℓd(Σ,Σ0)
(xi − xj)

T
Σ(xi − xj) ≤ u if (i , j) ∈ S [similarity constraints]

(xi − xj)
T
Σ(xi − xj) ≥ ℓ if (i , j) ∈ D [dissimilarity constraints]
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Preview

Salient points of our Approach:

Metric Learning is equivalent to “Kernel Learning”

Generalizes to Unseen Data Points

Can improve upon an input metric or kernel

No expensive eigenvector computation or semi-definite programming

Most existing methods fail to satisfy one or more of the above
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Brief Digression
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Bregman Divergences

Let ϕ : S → R be a differentiable, strictly convex function of “Legendre
type” (S ⊆ R

d)

The Bregman Divergence Dϕ : S × relint(S) → R is defined as

Dϕ(x, y) = ϕ(x) − ϕ(y) − (x − y)T∇ϕ(y)
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Bregman Divergences

Let ϕ : S → R be a differentiable, strictly convex function of “Legendre
type” (S ⊆ R

d)
The Bregman Divergence Dϕ : S × relint(S) → R is defined as

Dϕ(x, y) = ϕ(x) − ϕ(y) − (x − y)T∇ϕ(y)

y x

ϕ(z)= 1
2
zT z

h(z)

Dϕ(x,y)= 1
2
‖x−y‖2

Squared Euclidean distance is a Bregman divergence
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Bregman Divergences

Let ϕ : S → R be a differentiable, strictly convex function of “Legendre
type” (S ⊆ R

d)
The Bregman Divergence Dϕ : S × relint(S) → R is defined as

Dϕ(x, y) = ϕ(x) − ϕ(y) − (x − y)T∇ϕ(y)

y

x

Dϕ(x ,y)=x log x
y
−x+y

h(z)

ϕ(z)=z log z

Relative Entropy (or KL-divergence) is another Bregman divergence
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Bregman Divergences

Let ϕ : S → R be a differentiable, strictly convex function of “Legendre
type” (S ⊆ R

d)

The Bregman Divergence Dϕ : S × relint(S) → R is defined as

Dϕ(x, y) = ϕ(x) − ϕ(y) − (x − y)T∇ϕ(y)

y x

Dϕ(x ,y)= x
y
−log x

y
−1h(z)

ϕ(z)=− log z

Itakura-Saito Dist.(used in signal processing) is also a Bregman divergence
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Examples of Bregman Divergences

Function Name ϕ(x) Dϕ(x ,y)

Squared norm
1
2
x2 1

2
(x−y)2

Shannon entropy x log x−x x log x
y
−x+y

Bit entropy x log x+(1−x) log(1−x) x log x
y
+(1−x) log 1−x

1−y

Burg entropy − log x x
y
−log x

y
−1

Hellinger −
√

1−x2 (1−xy)(1−y2)−1/2−(1−x2)1/2

ℓp quasi-norm − xp (0<p<1) − xp+p xyp−1−(p−1) yp

ℓp norm |x |p (1<p<∞) |x |p−p x sgn y |y |p−1+(p−1)|y |p

Exponential ex ex−(x−y+1)ey

Inverse 1/x 1/x+x/y2−2/y
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Bregman Matrix Divergences

Define

Dϕ(X ,Y ) = ϕ(X ) − ϕ(Y ) − trace((∇ϕ(Y ))T (X − Y ))
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Bregman Matrix Divergences

Define

Dϕ(X ,Y ) = ϕ(X ) − ϕ(Y ) − trace((∇ϕ(Y ))T (X − Y ))

Squared Frobenius norm: ϕ(X ) = ‖X‖2
F . Then

Dϕ(X ,Y ) =
1

2
‖X − Y ‖2

F
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Bregman Matrix Divergences

Define

Dϕ(X ,Y ) = ϕ(X ) − ϕ(Y ) − trace((∇ϕ(Y ))T (X − Y ))

Squared Frobenius norm: ϕ(X ) = ‖X‖2
F . Then

Dϕ(X ,Y ) =
1

2
‖X − Y ‖2

F

von Neumann Divergence: For X � 0, ϕ(X ) = trace(X log X ). Then

Dϕ(X ,Y ) = trace(X log X − X log Y − X + Y )

also called quantum relative entropy
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Bregman Matrix Divergences

Define

Dϕ(X ,Y ) = ϕ(X ) − ϕ(Y ) − trace((∇ϕ(Y ))T (X − Y ))

Squared Frobenius norm: ϕ(X ) = ‖X‖2
F . Then

Dϕ(X ,Y ) =
1

2
‖X − Y ‖2

F

von Neumann Divergence: For X � 0, ϕ(X ) = trace(X log X ). Then

Dϕ(X ,Y ) = trace(X log X − X log Y − X + Y )

also called quantum relative entropy

LogDet divergence: For X ≻ 0, ϕ(X ) = − log det X . Then

Dϕ(X ,Y ) = trace(XY−1) − log det(XY −1) − d
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LogDet Divergence: Properties I

Dℓd(X ,Y ) = trace(XY−1) − log det(XY−1) − d

Properties:

Not symmetric
Triangle inequality does not hold
Can be unbounded
Convex in first argument (not in second)
Pythagorean Property holds:

Dℓd (X , Y ) ≥ Dℓd(X , PΩ(Y )) + Dℓd(PΩ(Y ), Y )

Divergence between inverses:

Dℓd(X , Y ) = Dℓd(Y −1, X−1)
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LogDet Divergence: Properties II

Dℓd(X ,Y ) = trace(XY −1) − log det(XY−1) − d ,

=

d
∑

i=1

d
∑

j=1

(vT
i uj)

2

(

λi

θj

− log
λi

θj

− 1

)

Properties:

Scale-invariance

Dℓd(X , Y ) = Dℓd(αX , αY ), α ≥ 0

In fact, for any invertible M

Dℓd (X , Y ) = Dℓd(MTXM , MTYM)
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LogDet Divergence: Properties II

Dℓd(X ,Y ) = trace(XY −1) − log det(XY−1) − d ,

=
r

∑

i=1

r
∑

j=1

(vT
i uj)

2

(

λi

θj

− log
λi

θj

− 1

)

Properties:
Scale-invariance

Dℓd(X , Y ) = Dℓd(αX , αY ), α ≥ 0

In fact, for any invertible M

Dℓd (X , Y ) = Dℓd(MTXM , MTYM)

Definition can be extended to rank-deficient matrices
Finiteness:

Dℓd(X , Y ) is finite iff X and Y have the same range space
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Information-Theoretic Interpretation

Differential Relative Entropy between two Multivariate Gaussians:

∫

N (x|µ,Σ0) log

(N (x|µ,Σ0)

N (x|µ,Σ)

)

dx =
1

2
Dℓd(Σ,Σ0)

Thus, the following two problems are equivalent

Relative Entropy Formulation LogDet Formulation

minΣ

∫

N (x|µ,Σ0) log N (x|µ,Σ0)
N (x|µ,Σ) dx minΣ Dℓd(Σ,Σ0)

tr(Σ(xi − xj)(xi − xT
j ) ≤ u ⇔ tr(Σ(xi − xj)(xi − xT

j ) ≤ u

tr(Σ(xi − xj)(xi − xj)
T ) ≥ ℓ tr(Σ(xi − xj)(xi − xj)

T ) ≥ ℓ

Σ � 0 Σ � 0
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Stein’s Loss

LogDet divergence is known as Stein’s loss in the statistics community

Stein’s loss is the unique scale invariant loss-function for which the
uniform minimum variance unbiased estimator is also a minimum risk
equivariant estimator
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Quasi-Newton Optimization

LogDet Divergence arises in the BFGS and DFS updates

Quasi-Newton methods
Approximate Hessian of the function to be minimized

[Fletcher, 1991] BFGS update can be written as:

min
B

Dℓd(B ,Bt)

subject to B st = yt (“Secant Equation”)

st = xt+1 − xt , yt = ∇ft+1 −∇ft

Closed-form solution:

Bt+1 = Bt −
Btsss

T
t Bt

sT
t Btst

+
yty

T
t

sT
t yt

Similar form for DFS update
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Algorithm: Bregman Projections for LogDet

Algorithm: Cyclic Bregman Projections (successively onto each linear
constraint) — converges to globally optimal solution

Use Bregman projections to update the Mahalanobis matrix:

min
Σ

Dℓd(Σ,Σt)

s.t. (xi − xj )
T
Σ(xi − xj ) ≤ u

Can be solved by rank-one update:

Σt+1 = Σt + βtΣt(xi − xj)(xi − xj)
T
Σt

Advantages:
Automatic enforcement of positive semidefiniteness
Simple, closed-form projections
No eigenvector calculation
Easy to incorporate slack for each constraint
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Example: Noisy XOR
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No linear transformation for XOR grouping
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Kernel Methods

Map input data to higher-dimensional “feature” space:

x → ϕ(x)

Idea: Run machine learning algorithm in feature space

Noisy XOR Example:

x →





x2
1√

2x1x2

x2
2




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Kernel Methods

Map input data to higher-dimensional “feature” space:

x → ϕ(x)

Idea: Run machine learning algorithm in feature space

Noisy XOR Example:

x →





x2
1√

2x1x2

x2
2





Kernel function: K (x, y) = 〈ϕ(x), ϕ(y)〉

“Kernel trick” — no need to explicitly form high-dimensional features

Noisy XOR Example: 〈ϕ(x), ϕ(y)〉 = (xTy)2
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Connection to Kernel Learning

LogDet Formulation (1) Kernel Formulation (2)
minΣ Dℓd(Σ,Σ0) minK Dℓd(K ,K0)

s.t. tr(Σ(xi − xj)(xi − xj)
T ) ≤ u s.t. tr(K (ei − ej)(ei − ej)

T ) ≤ u
tr(Σ(xi − xj)(xi − xj)

T ) ≥ ℓ tr(K (ei − ej)(ei − ej)
T ) ≥ ℓ

Σ � 0 K � 0

(1) optimizes w.r.t. the d × d Mahalanobis matrix Σ

(2) optimizes w.r.t. the N × N kernel matrix K

Let K0 = XT
Σ0X , where X is the input data

Let Σ
∗ be optimal solution to (1) and K ∗ be optimal solution to (2)

Theorem: K ∗ = XT
Σ

∗X
In fact, Σ

∗ = UKU∗ + WW ∗, where UU∗ is the orthogonal projector
onto Range(X ), and WW ∗ onto Null(X )
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Kernelization

Metric learning in kernel space

Assume input kernel function κ(x, y) = ϕ(x)Tϕ(y)
Want to learn

dΣ(ϕ(x), ϕ(y)) = (ϕ(x) − ϕ(y))TΣ(ϕ(x) − ϕ(y))

Equivalently: learn a new kernel function of the form

κ̃(x, y) = ϕ(x)TΣϕ(y)

How to learn this only using κ(x, y)?

Learned kernel can be shown to be of the form

κ̃(x, y) = κ(x, y) +
∑

i

∑

j

σijκ(x, xi)κ(y, xj)

Can update σij parameters while optimizing the kernel formulation
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Related Work

Distance Metric Learning [Xing, Ng, Jordan & Russell, 2002]

Large margin nearest neighbor(LMNN) [Weinberger, Blitzer & Saul,
2005]

Collapsing Classes (MCML) [Globerson & Roweis, 2005]

Online Metric Learning (POLA) [Shalev-Shwartz, Singer & Ng, 2004]

Many others!
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Experimental Results

Framework

k-nearest neighbor (k = 4)

ℓ and u determined by 5th and 95th percentile of distribution

20c2 constraints, chosen randomly

2-fold cross validation

Algorithms

Information-theoretic Metric Learning (offline and online)

Large-Margin Nearest Neighbors (LMNN) [Weinberger et al.]

Metric Learning by Collapsing Classes (MCML) [Globerson and Roweis]

Baseline Metrics: Euclidean and Inverse Covariance
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Results: UCI Data Sets

Ran ITML with Σ0 = I
(ITML-MaxEnt) and the
inverse covariance
(InverseCovariance)

Ran online algorithm for 105

iterations

Wine Ionosphere Scale Iris Soybean
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Application 1: “Clarify”

“Clarify” improves error reporting for software that uses black box
components

Motivation: Black box components complicate error messaging

Solution: Error diagnosis via machine learning

Representation: System collects program features during run-time

Function counts
Call-site counts
Counts of program paths
Program execution represented as a vector of counts

Class labels: Program execution errors

Nearest neighbor software support

Match program executions with others
Underlying distance measure should reflect this similarity
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Results: Clarify

Very high dimensionality

Feature selection reduces the
number of features to 20

Latex Mpg321 Foxpro Iptables

ITML−MaxEnt
ITML−Inverse Covariance
Euclidean
Inverse Covariance
MCML
LMNN

E
rr

or

0.
0

0.
1

0.
2

0.
3

Inderjit S. Dhillon University of Texas at Austin Metric and Kernel Learning



Application 2: Learning Image Similarity

Goal: Learn a metric to compare images

Start with a baseline measure

Use the pyramid match kernel [Grauman and Darrell]
Compares sets of image features
Efficient and effective measure of similarity between images

Application of metric learning in kernel space

Other metric learning methods (LMNN, etc) cannot be applied
Does metric learning work in kernel space?
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Caltech 101 Results

Data Set: Caltech 101

Standard benchmark for multi-category image recognition

101 classes of images

Wide variance in pose etc.

Challenging data set

Experimental Setup

15 images per class in training set; rest in test set (2454 images)

Performed 1-NN using original PMK and learned PMK
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Caltech 101 Results

700 800 900 1000 1100 1200 1300 1400 1500

0.35

0.4
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Learned PMK
Original PMK

When constraints are drawn from all training data, kNN accuracy is
52%, versus 32% for original PMK ([Jain, Kulis & Grauman, 2007])

Data set is well-studied—best performance with 15 training images per
class is 60%

Uses different features (geometric-blur)
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Metric Learning in High Dimensions

Text analysis & Software analysis: Feature sets larger than 1,000

Learning full distance matrix requires over 1 million parameters!

Overfitting problems, intractable

Solution: Learning low-rank Mahalanobis matrices

LogDet divergence can be generalized to low-rank matrices

Dℓd(X ,Y ) is finite ↔ X and Y have the same range space

Extending ITML to the low-rank case

If Σ0 is low-rank → Σ is low-rank
Clustered Mahalanobis matrices
If Σ0 is a block matrix, then Σ will also be a block matrix
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Low-rank Metric Learning: Preliminary Results

Classification accuracy for Low-Rank ITML

Classic3: Text dataset, PCA basis

Mpg321, Gcc: Software analysis, Clustered basis
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Conclusions

Metric Learning Formulation

Uses LogDet divergence

Information-theoretic interpretation

Equivalent to kernel learning problem

Can improve upon input metric or kernel
Generalizes to unseen data points

Algorithm

Bregman projections result in simple rank-one updates

Can be kernelized

Online variant has provable regret bounds

Empirical Evaluation

Method is competitive with existing techniques

Scalable to large data sets

Applied to nearest-neighbor software support & image recognition
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