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NNMF Origins

NNMF (Nonnegative Matrix Factorization) can be used to
approximate high-dimensional data having nonnegative
components.

Lee and Seung (1999) demonstrated its use as a sum-by-parts
representation of image data in order to both identify and
classify image features.

Xu et al. (2003) demonstrated how NNMF-based indexing
could outperform SVD-based Latent Semantic Indexing (LSI)
for some information retrieval tasks.
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NNMF for Image Processing
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Sparse NNMF verses Dense SVD Bases; Lee and Seung (1999)
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NNMF for Text Mining (Medlars)
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Derivation

Given an m × n term-by-document (sparse) matrix X .

Compute two reduced-dim. matrices W ,H so that X � WH;
W is m × r and H is r × n, with r � n.

Optimization problem:

min
W ,H

‖X − WH‖2
F ,

subject to Wij ≥ 0 and Hij ≥ 0, ∀i , j .

General approach: construct initial estimates for W and H
and then improve them via alternating iterations.
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Minimization Challenges and Formulations
[Berry et al., 2007]

Local Minima: Non-convexity of functional
f (W , H) = 1

2‖X − WH‖2
F in both W and H.

Non-unique Solutions: WDD−1H is nonnegative for any
nonnegative (and invertible) D.

NNMF Formulations:
Lee and Seung (2001) – information theoretic formulation
based on Kullback-Leibler divergence of X from WH.
Guillamet, Bressan, and Vitria (2001) – diagonal weight matrix
Q used (XQ ≈ WHQ) to compensate for feature redundancy
(columns of W ).
Wang, Jiar, Hu, and Turk (2004) – constraint-based
formulation using Fisher linear discriminant analysis to improve
extraction of spatially localized features.
Other Cost Function Formulations – Hamza and Brady (2006),
Dhillon and Sra (2005), Cichocki, Zdunek, and Amari (2006)
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Multiplicative Method (MM)

Multiplicative update rules for W and H (Lee and Seung,
1999):

1 Initialize W and H with nonnegative values, and scale the
columns of W to unit norm.

2 Iterate for each c , j , and i until convergence or after k
iterations:

1 Hcj ← Hcj
(W TX )cj

(W TWH)cj + ε

2 Wic ←Wic
(XHT )ic

(WHHT )ic + ε
3 Scale the columns of W to unit norm.

Setting ε = 10−9 will suffice to avoid division by zero
[Shahnaz et al., 2006].

9 / 62

Multiplicative Method (MM) contd.

Multiplicative Update MATLAB R©Code for NNMF

W = rand(m,k); % W initially random

H = rand(k,n); % H initially random

for i = 1 : maxiter
H = H .* (WTA) ./ (WTWH + ε);
W = W .* (AHT) ./ (WHHT + ε);

end
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Lee and Seung MM Convergence

Convergence: when the MM algorithm converges to a limit
point in the interior of the feasible region, the point is a
stationary point. The stationary point may or may not be a
local minimum. If the limit point lies on the boundary of the
feasible region, one cannot determine its stationarity
[Berry et al., 2007].

Modifications: Gonzalez and Zhang (2005) accelerated
convergence somewhat but stationarity issue remains; Lin
(2005) modified the algorithm to guarantee convergence to a
stationary point; Dhillon and Sra (2005) derived update rules
that incorporate weights for the importance of certain features
of the approximation.
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Alternating Least Squares Formulation

Basic ALS Approach:
ALS algorithms exploit the convexity of W or H (not both) in the
underlying optimization problem. The basic iteration involves

(LS) Solve for H in W TWH = W TX .
(NN) Set negative elements of H to 0.
(LS) Solve for W in HHTW T = HXT .
(NN) Set negative elements of W to 0.

ALS Recovery and Constraints:

Unlike the MM algorithm, an element of W (or H) that
becomes 0 does not have to remain 0; method can
escape/recover from a poor path.

Paatero (1999) and Langville et al.(2006) have improved the
computational complexity of the ALS approach; sparsity and
nonnegativity contraints are enforced.
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Alternating Least Squares Algorithms, contd.

ALS Convergence:

Polak (1971) showed that every limit point of a sequence of
alternating variable iterates is a stationary point.

Lawson and Hanson (1995) produced the Non-Negative Least
Squares (NNLS) that was shown to converge to a local
minimum.

The price for convergence of ALS algorithms is the usual high
cost per iteration – Bro and de Jong (1997).
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Hoyer’s Method

From neural network applications, Hoyer (2002) enforced
statistical sparsity for the weight matrix H in order to enhance
the parts-based data representations in the matrix W .

Mu et al. (2003) suggested a regularization approach to
achieve statistical sparsity in the matrix H: point count
regularization; penalize the number of nonzeros in H rather
than

∑
ij Hij .

Goal of increased sparsity – better representation of parts or
features spanned by the corpus (X ) [Berry and Browne, 2005].
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GD-CLS – Hybrid Approach

First use MM to compute an approximation to W for each
iteration – a gradient descent (GD) optimization step.

Then, compute the weight matrix H using a constrained least
squares (CLS) model to penalize non-smoothness (i.e.,
non-sparsity) in H – common Tikohonov regularization
technique used in image processing (Prasad et al., 2003).

Convergence to a non-stationary point evidenced (proof still
needed).
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GD-CLS Algorithm

1 Initialize W and H with nonnegative values, and scale the
columns of W to unit norm.

2 Iterate until convergence or after k iterations:

1 Wic ← Wic
(XHT )ic

(WHHT )ic + ε
, for c and i

2 Rescale the columns of W to unit norm.
3 Solve the constrained least squares problem:

min
Hj

{‖Xj − WHj‖2
2 + λ‖Hj‖2

2},

where the subscript j denotes the j th column, for j = 1, . . . ,m.

Any negative values in Hj are set to zero. The parameter λ is
a regularization value that is used to balance the reduction of
the metric ‖Xj − WHj‖2

2 with enforcement of smoothness and
sparsity in H.
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Two Penalty Term Formulation

Introduce smoothing on Wk (feature vectors) in addition to
Hk :

min
W ,H

{‖X − WH‖2
F + α‖W ‖2

F + β‖H‖2
F},

where ‖ · ‖F is the Frobenius norm.

Constrained NNMF (CNMF) iteration:

Hcj ← Hcj
(W TX )cj − βHcj

(W TWH)cj + ε

Wic ← Wic
(XHT )ic − αWic

(WHHT )ic + ε
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Improving Feature Interpretability

Gauging Parameters for Constrained Optimization

How sparse (or smooth) should factors (W , H) be to produce as
many interpretable features as possible?

To what extent do different norms (l1, l2, l∞) improve/degradate
feature quality or span? At what cost?

Can a nonnegative feature space be built from objects in both
images and text? Are there opportunities for multimodal document
similarity?
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Anomaly Detection (ASRS)

Classify events described by documents from the Airline
Safety Reporting System (ASRS) into 22 anomaly categories;
contest from SDM07 Text Mining Workshop.

General Text Parsing (GTP) Software Environment in C++
[Giles et al., 2003] used to parse both ASRS training set and a
combined ASRS training and test set:

Dataset Terms ASRS Documents
Training 15,722 21,519

Training+Test 17,994 28,596 (7,077)

Global and document frequency of required to be at least 2;
stoplist of 493 common words used; char length of any term
∈ [2, 200].

Download Information:
GTP: http://www.cs.utk.edu/∼lsi

ASRS: http://www.cs.utk.edu/tmw07
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Term Weighting Schemes

Assessment of Term Importance: for m × n
term-by-message matrix X = [xij ], define

xij = lijgidj ,

where lij is the local weight for term i occurring in message j ,
gi is the global weight for term i in the subcollection, and dj

is a document normalization factor (set dj = 1).

Common Term Weighting Choices:
Name Local Global
txx Term Frequency None

lij = fij gi = 1

lex Logarithmic Entropy (Define: pij = fij/
∑

j fij)

lij = log(1 + fij) gi = 1 + (
∑

j pij log(pij))/ log n)
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Parameterization

Important Constants:

α, the threshold on the relevance score or (target
value) tij for document i and anomaly/label j ;
we use R submatrix of H to cluster documents
by the k features — assume documents describing
similar anomalies share similar features.

δ, the threshold on the column elements of H, which
will filter out the association of features with both
the training (R) and test (T) documents;

σ, the percentage of documents used to define the
training set (or number of columns of R).
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Initialization Schematic
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Anomaly to Feature Mapping and Scoring Schematic
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Training/Testing Performance (ROC Curves)

Best/Worst ROC curves (False Positive Rate versus True
Positive Rate)

ROC Area
Anomaly Type (Description) Training Contest

22 Security Concern/Threat .9040 .8925
5 Incursion (collision hazard) .8977 .8716
4 Excursion (loss of control) .8296 .7159

21 Illness/Injury Event .8201 .8172
12 Traffic Proximity Event .7954 .7751
7 Altitude Deviation .7931 .8085

18 Aircraft Damage/Encounter .7250 .7261
11 Terrain Proximity Event .7234 .7575
9 Speed Deviation .7060 .6893

10 Uncommanded (loss of control) .6784 .6504
13 Weather Issue .6287 .6018
2 Noncompliance (policy/proc.) .6009 .5551
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ROC Curves for Anomalies 1–5 (Test/Training)
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ROC Curves for Anomalies 11–15 (Test/Training)
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ROC Curves for Anomalies 21, 22 (Test/Training)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

21
22

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

21
22

Training Contest

27 / 62

Anomaly Summarization Prototype - Sentence Ranking

Sentence rank = f(global term weights) – B. Lamb
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Email Collection

By-product of the FERC investigation of Enron (originally
contained 15 million email messages).

This study used the improved corpus known as the Enron
Email set, which was edited by Dr. William Cohen at CMU.

This set had over 500,000 email messages. The majority were
sent in the 1999 to 2001 timeframe.
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Enron Historical 1999-2001

Ongoing, problematic, development of the Dabhol Power
Company (DPC) in the Indian state of Maharashtra.

Deregulation of the Calif. energy industry, which led to rolling
electricity blackouts in the summer of 2000 (and subsequent
investigations).

Revelation of Enron’s deceptive business and accounting
practices that led to an abrupt collapse of the energy colossus
in October, 2001; Enron filed for bankruptcy in December,
2001.
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private Collection

Parsed all mail directories (of all 150 accounts) with the
exception of all documents, calendar, contacts,

deleted items, discussion threads, inbox, notes inbox,

sent, sent items, and sent mail; 495-term stoplist used
and extracted terms must appear in more than 1 email and
more than once globally [Berry and Browne, 2005].

Distribution of messages sent in the year 2001:

Month Msgs Terms Month Msgs Terms

Jan 3,621 17,888 Jul 3,077 17,617

Feb 2,804 16,958 Aug 2,828 16,417

Mar 3,525 20,305 Sep 2,330 15,405

Apr 4,273 24,010 Oct 2,821 20,995

May 4,261 24,335 Nov 2,204 18,693

Jun 4,324 18,599 Dec 1,489 8,097
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Visualization of private Collection Term-Msg Matrix

NNMF-generated reordering of 92, 133× 65, 031 term-by-message matrix
(log-entropy weighting) using vismatrix [Gleich, 2006]; cluster docs in
X according to arg max

i
Hij , then cluster terms according to arg max

j
Wij .
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private with Log-Entropy Weighting

Identify rows of H from X � WH or Hk with λ = 0.1; r = 50
feature vectors (Wk) generated by GD-CLS:

Feature Cluster Topic Dominant
Index (k) Size Description Terms

10 497 California ca, cpuc, gov,
socalgas, sempra,
org, sce, gmssr,
aelaw, ci

23 43 Louise Kitchen evp, fortune,
named top britain, woman,
woman by ceo, avon, fiorina,
Fortune cfo, hewlett, packard

26 231 Fantasy game, wr, qb, play,
football rb, season, injury,

updated, fantasy, image

(Cluster size ≡ no. of Hk elements > rowmax/10)
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private with Log-Entropy Weighting

Additional topic clusters of significant size:

Feature Cluster Topic Dominant
Index (k) Size Description Terms

33 233 Texas UT, orange,
longhorn longhorn[s], texas,
football true, truorange,
newsletter recruiting, oklahoma,

defensive

34 65 Enron partnership[s],
collapse fastow, shares,

sec, stock, shareholder,
investors, equity, lay

39 235 Emails dabhol, dpc, india,
about India mseb, maharashtra,

indian, lenders, delhi,
foreign, minister
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2001 Topics Tracked by GD-CLS

r = 50 features, lex term weighting, λ = 0.1

(New York Times, May 22, 2005)
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Term Distribution in Feature Vectors
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Hoyer Sparsity Constraint

sparseness(x) =
√

n−‖x‖1/‖x‖2√
n−1

, [Hoyer, 2004]

Imposed as a penalty term of the form

J2(W) = (ω‖vec(W)‖2 − ‖vec(W)‖1)
2,

where ω =
√

mk − (
√

mk − 1)γ and vec(·) transforms a
matrix into a vector by column stacking.

Desired sparseness in W is specified by setting γ ∈ [0, 1];
sparseness is zero iff all vector components are equal (up to
signs) and is one iff the vector has a single nonzero.
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Sample Benchmarks for Smoothing and Sparsity
Constraints

Elapsed CPU times for CNMF on a 3.2GHz Intel Xeon 3.2GHz
(1024KB cache, 4.1GB RAM)

k = 50 feature vectors generated, log-entropy noun-weighting
used on 7, 424 × 289, 695 noun-by-message matrix, random
W0,H0

W-Constraint Iterations Parameters CPU time

L2 norm 100 α = 0.1, β = 0 19.6m
L2 norm 100 α = 0.01, β = 0 20.1m
L2 norm 100 α = 0.001, β = 0 19.6m
Hoyer 30 α = 0.01, β = 0, γ = 0.8 2.8m
Hoyer 30 α = 0.001, β = 0, γ = 0.8 2.9m
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Annotation Project

Subset of 2001 private collection:

Month Total Classified Usable

Jan,Sep 5591 1100 699
Feb 2804 900 460
Mar 3525 1200 533
Apr 4273 1500 705
May 4261 1800 894
June 4324 1025 538

Total 24778 7525 3829

Approx. 40 topics identified after NNMF initial clustering with
k = 50 features.
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Annotation Project, contd.

Human classfiers: M. Browne (extensive background reading
on Enron collapse) and B. Singer (junior Economics major).

Classify email content versus type (see UC Berkeley Enron
Email Analysis Group
http://bailando.sims.berkeley.edu/enron email.html

As of June 2007, distributed by the by U. Penn LDC
(Linguistic Data Consortium); see www.ldc.upenn.edu

Citation:

Dr. Michael W. Berry, Murray Browne
and Ben Signer, 2007
2001 Topic Annotated Enron Email Data Set
Linguistic Data Consortium, Philadelphia
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Multidimensional Data Analysis via PARAFAC

+ + ...Third dimension offers more 
explanatory power: uncovers new 

latent information and reveals 
subtle relationships

Build a 3-way array such that there is a 
term-author matrix for each month.

PARAFAC

Multilinear
algebra

term-author
matrix

term-author-month
array

Email graph

+ + ...

Nonnegative
PARAFAC
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Temporal Assessment via PARAFAC

David

Ellen

Bob

Frank
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Mathematical Notation

Kronecker product

A ⊗ B =

⎛
⎜⎝

A11B · · · A1nB
...

. . .
...

Am1B · · · AmnB

⎞
⎟⎠

Khatri-Rao product (columnwise Kronecker)

A � B =
(
A1 ⊗ B1 · · · An ⊗ Bn

)

Outer product

A1 ◦ B1 =

⎛
⎜⎝

A11B11 · · · A11Bm1
...

. . .
...

Am1B11 · · · Am1Bm1

⎞
⎟⎠
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PARAFAC Representations

PARAllel FACtors (Harshman, 1970)

Also known as CANDECOMP (Carroll & Chang, 1970)

Typically solved by Alternating Least Squares (ALS)

Alternative PARAFAC formulations

Xijk ≈
r∑

i=1

AirBjrCkr

X ≈
r∑

i=1

Ai ◦ Bi ◦ Ci , where X is a 3-way array (tensor).

Xk ≈ A diag(Ck:) BT , where Xk is a tensor slice.

X I×JK ≈ A(C � B)T , where X is matricized.
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PARAFAC (Visual) Representations

+ + ...

Scalar form Outer product form

Tensor slice form Matrix form

=
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Nonnegative PARAFAC Algorithm

Adapted from (Mørup, 2005) and based on NNMF by (Lee
and Seung, 2001)

||X I×JK − A(C � B)T ||F = ||X J×IK − B(C � A)T ||F
= ||XK×IJ − C (B � A)T ||F

Minimize over A, B, C using multiplicative update rule:

Aiρ ← Aiρ
(X I×JKZ )iρ

(AZTZ )iρ + ε
, Z = (C � B)

Bjρ ← Bjρ
(X J×IKZ )jρ

(BZTZ )jρ + ε
, Z = (C � A)

Ckρ ← Ckρ
(XK×IJZ )kρ

(CZTZ )kρ + ε
, Z = (B � A)
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Discussion Tracking Using Year 2001 Subset

197 authors (From:user id@enron.com) monitored over 12
months;

Parsing 34, 427 email subset with a base dictionary of 121, 393
terms (derived from 517, 431 emails) produced 69, 157 unique
terms; (term-author-month) array X has ∼ 1 million nonzeros.

Term frequency weighting with constraints (global frequency
≥ 10 and email frequency ≥ 2); expert-generated stoplist of
47, 154 words (M. Browne)

Rank-25 tensor: A (69, 157 × 25), B (197 × 25), C (12 × 25)

= + + ...

te
rm

s

tim
e
authors Month Emails Month Emails

Jan 7,050 Jul 2,166
Feb 6,387 Aug 2,074
Mar 6,871 Sep 2,192
Apr 7,382 Oct 5,719
May 5,989 Nov 4,011
Jun 2,510 Dec 1,382
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Tensor-Generated Group Discussions

NNTF Group Discussions in 2001
197 authors; 8 distinguishable discussions
“Kaminski/Education” topic previously unseen
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Gantt Charts from PARAFAC Models
NNTF/PARAFAC PARAFAC
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Day-level Analysis for PARAFAC (Three Groups)

Rank-25 tensor for 357 out of 365 days of 2001:
A (69, 157 × 25), B (197 × 25), C (357 × 25)
Groups 3,4,5:
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Day-level Analysis for NN-PARAFAC (Three Groups)

Rank-25 tensor (best minimizer) for 357 out of 365 days
of 2001: A (69, 157 × 25), B (197 × 25), C (357 × 25)
Groups 1,7,8:
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Day-level Analysis for NN-PARAFAC (Two Groups)

Groups 20 (California Energy) and 9 (Football) (from C factor
of best minimizer) in day-level analysis of 2001:

       Jan       Feb       Mar       Apr       May       Jun       Jul       Aug       Sep       Oct       Nov       Dec
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Four-way Tensor Results (Sept. 2007)

Apply NN-PARAFAC to term-author-recipient-day array
(39, 573 × 197 × 197 × 357); construct a rank-25 tensor
(best minimizer among 10 runs).

Goal: track more focused discussions between individuals/
small groups; for example, betting pool (football).
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Four-way Tensor Results (Sept. 2007)

Four-way tensor may track subconversation already found by
three-way tensor; for example, RTO (Regional Transmission
Organization) discussions.
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Four-way Tensor Results (October 2007)

Four-way tensor exposed conversation confirming bank fraud
related to the natural gas reserves in the Bammel Storage
field (Texas)—“The Enron whistle-blower who wasn’t” by
G. Farrell, USA Today, Oct. 11, 2007
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NNTF Optimal Rank?

No known algorithm for computing the rank of a k-way array
for k ≥ 3 [Kruskal, 1989].

The maximum rank is not a closed set for a given random
tensor.

The maximum rank of a m × n × k tensor is unknown; one
weak inequality is given by

max{m, n, k} ≤ rank ≤ min{m × n, m × k, n × k}

For our rank-25 NNTF, the size of the relative residual norm
suggests we are still far from the maximum rank of the 3-way
and 4-way arrays.
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Conclusions (NNMF for ASRS)

Training phase was a good predictor of performance (for most
anomalies).

Obvious room for improvement in matching certain anomalies
(e.g., 2. Noncompliance).

Summarization of anomalies using NNMF features needs
further work.

Effects of sparsity contraints on NNMF versus element-wise
filtering of H should be studied.
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Conclusions (NNMF/NNTF for Enron)

GD-CLS/NNMF Algorithm can effectively produce a
parts-based approximation X � WH of a sparse
term-by-message matrix X .

Smoothing on the features matrix (W ) as opposed to the
weight matrix H forces more reuse of higher weighted
(log-entropy) terms; yields potential control vocabulary for
topic tracking.

Surveillance systems based on NNMF/NNTF algorithms show
promise for monitoring discussions without the need to isolate
or perhaps incriminate individuals.

Potential applications include the monitoring/tracking of
company morale, employee feedback to policy decisions,
extracurricular activities, and blog discussions.
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Future Work

Further work needed in determining effects of alternative term
weighting schemes (for X ) and choices of control parameters
(e.g., α, β) for CNMF and NNTF/PARAFAC.

How does document (or message) clustering change with
different ranks (r) in GD-CLS and NNTF/PARAFAC?

How many dimensions (factors) for NNTF/PARAFAC are
really needed for mining electronic mail and similar corpora?
And, at what scale should each dimension be measured
(e.g., time)?

59 / 62

Improving Summarization and Steering

What versus why:

Extraction of textual concepts still requires human interpretation
(in the absence of ontologies or domain-specific classifications).

How can previous knowledge or experience be captured for feature
matching (or pruning)?

To what extent can feature vectors be annotated for future use or
as the text collection is updated? What is the cost for updating
NNMF/NNTF models?
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