Learning to Rank for Web Search

Chris Burges

Web Learning Group Microsoft Research

IPAM Workshop on Numerical Tools and Fast Algorithms for Massive Data Mining, Search Engines and Applications: October 22, 2007

Joint Work With:

- Qiang Wu
- Robert Ragno
- Ping Li
- Yisong Yue
- Robert Rounthwaite
- Quoc Viet Le
- T. Shaked
- Live Search Team

Web Ranking at 100,000 Feet

- Given a user's query, generate a large list of candidate urls
- For each url, compute a feature vector $\in \mathbb{R}^n$
- Most features depend on the query and the document
- Feed your feature vectors into your ranker $R^n \rightarrow R$
- Sort the urls by the returned scores

Contents

- IR Metrics: Are We Learning the Wrong Thing?
- Brief Overview of Web Search
- Recent Work
 - RankNet
 - LambdaRank
 - Robustness of Neural Nets to label noise
 - Optimal Combiners
 - Simultaneous Perturbation Stochastic Approx.
 - Gradient Boosting, DAGs for Ranking

Are We Learning the Wrong Thing?

An Example: SVMs for Classification

Information Retrieval Costs / Gains

• Precision: $\frac{number \ correct}{number \ accepted}$ Recall: $\frac{number \ correct}{number \ positives}$

- Average Precision: Compute precision for each positive, average over positions
- Mean Average Precision: Average AP over queries
- Mean Reciprocal Rank (TREC QA) $\frac{1}{N_Q} \sum_{i=1}^{N_Q} \frac{1}{r_i}$ Winner Takes All: $\frac{1}{N_Q} \sum_{i=1}^{N_Q} \delta(l_{i1}, 1)$
- Pairwise error and derivatives ('bpref')
- Fraction pairwise correct = area under ROC curve (fraction true positives vs. fraction false positives)

Information Retrieval Gains, cont.

We'd like a measure for several levels of relevance, that emphasizes the top ranked items: *Normalized Discounted Cumulative Gain (Jarvelin & Kekalainen, SIGIR 2000):*

$$DCG(truncation \ level) = \sum_{i=1}^{T} \frac{2^{r(i)} - 1}{\log(1+i)}$$

 $r \in \{0, \dots, 4\}$ human rating

$$NDCG \equiv \frac{DGC(T)}{\max(DCG(T))}$$

Information Retrieval Costs, cont.

All of these costs have the following in common:

- They depend only on the labels and the sorted order of the documents
- Viewed as a function of the scores output by some model, the costs are everywhere either:
 - Flat (zero gradient)
 - or
 - Discontinuous (gradient not defined)

One View of the Goal

Web Search: Overview

Why is Web Ranking Interesting?

- Economic: Internet advertising revenues were about \$4 billion in 1Q 2006 (IAB, PricewaterhouseCoopers).
- Generality: Key component of Information Retrieval, Collaborative Filtering, Spam Detection, Question Answering...
- **Scientific:** New practical problems are motivating us to consider new machine learning approaches.

Live Search – Some Statistics

- > 5 billion documents indexed
- 10s of millions of queries handled per day
- Thousands of machines
- Most queries served in less than 100 ms

Live Search Architecture

Microsoft Research

Web Learning Group

Live Search Architecture, cont.

Web Learning Group

Microsoft Research

Some Recent Approaches to Ranking

Recent Work

- "A Boosting Algorithm for Information Retrieval", J. Xu and H. Li, SIGIR '07 ("IR Boost")
- "Learning to Rank Using Classification and Gradient Boosting", P. Li, C. Burges and Q. Wu, MSR-TR-2007-74
- *"Direct Optimization of Ranking Measures",* Q.V. Le and A.J. Smola, <u>http://arxiv.org/PS_cache/arxiv/pdf/0704/0704.3359v1.pdf</u>, "DORM"
- "Learning to Rank: From Pairwise to Listwise Approach", Z. Cao, T. Qin, T-Y Liu, M-F Tsai, H. Li, ICML 07 ("ListRank")
- "FRank: A Ranking Method with Fidelity Loss", M-F. Tsai, T-Y Liu, T. Qin, H-H Chen, W-Y Ma, SIGIR 07
- "A Support Vector Method for Optimizing Average Precision", Y. Yue, T. Finley, F. Radlinksi and T. Joachims, SIGIR 07
- "Learning to Rank with Nonsmooth Cost Functions", C.J.C. Burges, R. Ragno and Q.V. Le, NIPS 06 ("LambdaRank")
- "Learning to Rank using Gradient Descent", C.J.C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender, *ICML 05* ("RankNet")

Less Recent Work

- "An Efficient Boosting Algorithm for Combining Preferences", Y. Freund, R. Iyer, R.E. Schapire and Y. Singer, JMLR 03 ("RankBoost")
- "PRanking with Ranking", K. Crammer and Y. Singer, KDD 02 ("PRank")
- "Online Ranking/Collaborative Filtering using the Perceptron Algorithm", E.F. Harrington, ICML 03
- *"Optimizing Search Engines Using Clickthrough Data",* T. Joachims, *KDD 02*
- *"Support Vector Learning for Ordinal Regression",* R. Herbrich, T. Graepel and K. Obermayer, *ICANN 99*
- "Using the Future to Sort Out the Present: RankProp and Multitask Learning for Medical Risk Evaluation", R. Caruana, S. Baluja and T. Mitchell, NIPS 96

Ranking as Machine Learning

- Given a set of text queries Q_i , i = 1, ..., m
- Each query has a large set of returned documents D_{ij} , j = 1, ..., n
- Use query, document, URL, anchor text, and more, to derive set of (several hundred) features
- For each query, rank returned documents in order of relevance
- Most systems map a feature vector to a single score, which is then sorted to obtain the ranking

RankNet: A Starting Point

Joint work with T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender, ICML 2005

Ranking with Neural Nets

- Don't need to learn ordinal regression (mapping points to actual rank values); just need to map features to reals.
- Train system on pairs (where first point is to be ranked higher or equal to second).
- However must evaluate on single points.
- Use cross entropy cost \rightarrow probabilistic model.
- Use gradient descent. Would work for any differentiable function: we chose neural net.

RankNet: Notes

- 5 human judged levels of relevance ("bad" ... "perfect").
- A net with (number of features) inputs and one output
- Sort documents by the score that their feature vectors (which are computed from query + doc + other data) are mapped to
- Compute NDCG on a set-aside validation set, keep the net that gives the best validation NDCG

A Probabilistic Ranking Cost Fn.

 Ranking labels tend to be noisier than classification labels

Specify $P(A \triangleright B)$ for each train pair $\{A, B\}$

• The pairs of training ranks need not be complete, or consistent, but the test results are

Map to reals: $f(x_1) > f(x_2) \leftrightarrow x_1 \triangleright x_2$

Probabilistic Ranking Cost Fn.

Modeled posteriors: $P_{ij} \equiv P(x_i \triangleright x_j)$

Target posteriors: \overline{P}_{ij}

Define $o_{ij} \equiv f(x_i) - f(x_j)$

Cross entropy cost:

$$C_{ij} \equiv C(o_{ij}) = -\bar{P}_{ij} \log P_{ij} - (1 - \bar{P}_{ij}) \log(1 - P_{ij})$$

Model output probabilities using logistic:

$$P_{ij} = \frac{\exp(o_{ij})}{1 + \exp(o_{ij})}$$

$$\Rightarrow C_{ij} = -\bar{P}_{ij}o_{ij} + \log(1 + \exp o_{ij})$$

Web Learning Group

Web Learning Group

Microsoft Research

Consistency Requirements

There must exist \overline{o}_{ij} such that:

$$\overline{P}_{ij} = \frac{\exp(\overline{o}_{ij})}{1 + \exp(\overline{o}_{ij})}$$

$$\overline{P}_{ik} = \frac{\overline{P}_{ij}\overline{P}_{jk}}{1 + 2\overline{P}_{ij}\overline{P}_{jk} - \overline{P}_{ij} - \overline{P}_{jk}}$$

Microsoft Research

Complete uncertainty propagates, similarly for complete certainty: $P(A \triangleright B) = 0.5, P(B \triangleright C) = 0.5 \Rightarrow P(A \triangleright C) = 0.5$ Confidences build: for 0 < P < 0.5 $\overline{P} < P$.

for
$$0.5 < P < 0.5$$
, $P_{ik} < P$;

More Formally:

How free are we to choose the \overline{P} 's?

Proposition: Specifying any set of adjacency posteriors is necessary and sufficient to uniquely determine a target posterior for every pair of samples.

Proposition: Let n > 0. Then if $\overline{P} > \frac{1}{2}$, then $\overline{P}_{i,i+n} \ge \overline{P}$ with equality when n = 1, and $\overline{P}_{i,i+n}$ increases strictly monotonically with n. If $\overline{P} < \frac{1}{2}$, then $\overline{P}_{i,i+n}$ decreases strictly monotonically with n. If $\overline{P} = \frac{1}{2}$, then $\overline{P}_{i,i+n} = \frac{1}{2} \forall n$.

The Bradley-Terry Model

Bradley and Terry, Biometrika 1952 consider models: $P(A_i | A_i \lor A_j)$ given, and model $P(A_i | A_i \lor A_j) = \frac{P_i}{P_i + P_j}$ (e.g. $P_i = N \exp(o_i)$).

RankNet: Data

Training on pairs prohibitive? No:

 Docs are only compared to other docs for the same query, and many docs have the same label.

	# Queries	# Documents	# Pairs
Train	11,336	384,314	3,464,289
Valid	2,384	2,726,714	-
Test	2,384	2,715,175	-

- Features from 4 'streams': anchor text, URL, document title, and document body.
- 569 features: most are joint (query/doc dependent).

Results

Mean NDCG:	Validation	Test (95%)
Quad PRank	0.379	0.327±.011
Linear PRank	0.410	0.412±.010
Large Margin PR	0.455	0.454±.011
1-layer Net	0.479	0.477±.010
2-layer Net	0.489	0.488±.010

Mean NDCG: Training Set			
1-layer Net	0.479±0.005		
2-layer Net	0.500±0.005		

RankNet Conclusions

- RankNet is simple to train...
- ...fast in test phase...
- and gives good results.
- For pair-based probability costs (e.g. click rates!) it's very well suited to the problem.
- However the cost function used is not NDCG: the latter is optimized only indirectly, using a validation set.

Can we do better?

LambdaRank.

Joint work with R. Ragno, Q.V. Le, NIPS 2006

RankNet Cost ~ Pairwise Cost

Web Learning Group

Microsoft Research

Pairwise Cost Revisited

Pairwise cost fine if no errors, but:

Web Learning Group

Microsoft Research

LambdaRank

Instead of using a smooth approximation to the cost, and taking derivatives, write down the derivatives directly.

Then use these derivatives to train a model using gradient descent, as usual.
A Simple Example

$$D_1, D_2: l_1 = 1, l_2 = 0$$

Imagine some cost *C*:

$$\frac{\partial C}{\partial s_1} = -\lambda_1(s_1, l_1, s_2, l_2)$$
$$\frac{\partial C}{\partial s_2} = -\lambda_2(s_1, l_1, s_2, l_2)$$

Web Learning Group

Letting $x = s_1 - s_2$:

$$\begin{aligned} x < 0: & \lambda_1 = 1 = -\lambda_2 \\ 0 \le x \le \delta: & \lambda_1 = \delta - x = -\lambda_2 \\ x > \delta: & \lambda_1 = \lambda_2 = 0 \end{aligned}$$

Then a cost function *C* exists:

$$\begin{aligned} x < 0: & C(s_1, l_1, s_2, l_2) = s_2 - s_1 + \frac{1}{2}\delta^2 \\ 0 \le x \le \delta: & C(s_1, l_1, s_2, l_2) = \frac{1}{2}(s_2 - s_1)^2 - \delta(s_1 - s_2) + \frac{1}{2}\delta^2 \\ x > \delta: & C(s_1, l_1, s_2, l_2) = 0 \end{aligned}$$

... furthermore it's convex

Web Learning Group

LambdaRank

- Choose the λ's to model the desired cost.
 (Need not use pairs!)
- Very general. Handles multivariate, nonsmooth costs.
- But, how to choose the λ 's?
- When will there exist a cost function C for your choice of λ 's?
- When will that C be convex?

Some Multilinear Algebra Basics

- An '*n*-form' on a manifold *M* is a totally antisymmetric tensor that lives in the dual of the tangent space of *M*
- You can apply the differential operator d to an nform to get an (n+1)-form
- A *closed* form *f* is one for which *df=0*
- An *exact* form g is one for which g=dh, for some form h
- *dd*=0 (every exact form is closed)

Poincare's Lemma

If $S \subset \mathbb{R}^n$ is an open set that is star-shaped with respect to the origin, then any closed form defined on S is exact.

Hence on such a set, a form is exact iff it is closed.

Define the 1-form $\lambda = \sum_{i} \lambda_{i} dx_{i}$

Then $\lambda = dC$ for some C iff $d\lambda = 0$.

Using classical notation: $\frac{\partial \lambda_i}{\partial x_i} = \frac{\partial \lambda_j}{\partial x_i} \quad \forall i, j : \text{Jacobian symmetric!}$

Web Learning Group

The Jacobian

- Square matrix, of side nDocs
- Family of Jacobians, one for each label set
- Symmetric \rightarrow cost function exists
- Positive semidefinite → cost function is convex
- (...like a kernel, but more general: depends on all points!)

A Physical Analogy

- Think of ranked documents as point masses, λ 's as forces
- If $\lambda = dC$, the forces are conservative they derive from a potential
- E.g. choosing the λ 's to be linear in the scores is equivalent to a spring model

LambdaRank Speedup for RankNet

- Most neural net training is stochastic (update weights after every pattern)
- Here we can compute and increment the gradients for each document (mini batch)
- Batch them, apply fprop and backprop once per doc, per query; *factorize the gradient.*

Speedup Results

The Lambda Function

NDCG gain in swapping members of a pair of docs, multiplied by RankNet cost gradient as a smoother:

$$\lambda_{ij} = \frac{N}{1 + e^{s_i - s_j}} \left| \left(2^{l(i)} - 2^{l(j)} \right) \left(\log\left(\frac{1}{1 + i}\right) - \log\left(\frac{1}{1 + j}\right) \right) \right|$$

Let D_i^+ (D_i^-) be the set of documents labeled higher (lower) than document *i*

$$\lambda_i \equiv \sum_{j \in D_i^-} \lambda_{ji} - \sum_{j \in D_i^+} \lambda_{ij}$$

Web Learning Group

Accuracy Results

10K train, 5K validation, 10K test queries

Robustness to Label Noise

- Query / URL pairs are very hard to label accurately
 - What was the user's intent?
 - If there are several possible intents, how to label? (Ensure diversity of results)
- Can measure label noise by overlapping judgments. Generate confusion matrix: e.g.

P(*other label is 'bad'*|*either label was 'excellent'*)

Measure Robustness

- Generate artificial data:
 - 300 features
 - 30 documents per query
 - 40K queries, 10K validation, 10K test
 - Generate clean labels
- Train LambdaRank
- Apply confusion matrix to train+valid data
- Retrain, but test on *clean* data

Robustness Results

	Best NDCG@10 on Validation during training	Test on Clean: NDCG@10/3/1	Test on Confused-Once: NDCG@10/3/1	Test on Confused- Twice NDCG@10/3/1
Train on Clean, Validate on Clean	0.705	0.704/0.634/0.587		
Train on Confused-Once, Validate on Confused-Once	0.529	0.698/0.626/0.578	0.526/0.437/0.389	
Train on Confused-Twice, Validate on Confused-Twice	0.439	0.695/0.624/0.573		0.438/0.347/0.303

- LambdaRank with 2 layer 10 hidden unit nets, is strongly regularized
- More flexible models do better on clean data

LambdaRank Conclusions

- LambdaRank is simple and general (it can handle any cost function) but... how to choose?
- It leverages existing neural net methods (only the training changes)
- It gives a very significant speedup for RankNet
- It gives better accuracy than RankNet
- LambdaRank + 2 layer nets are well suited to the level of noise
- It still does not directly optimize NDCG!

Can we do better?

Optimal Combiners: or, Turning the Unpleasantness of IR Metrics to Our Advantage

Key Observations

- The "flat or discontinuous" nature of IR metrics means that when linearly combining two rankers (s = (1 α)s₁ + αs₂) we only have to examine a finite number of values of α
- This examination is no more expensive than the gradient computation in RankNet $(O(N_Q m^2))$

How does this work?

The Algorithm

- Compute α for all pairs for each query.
- Sort values of α .
- Sweep through values of α , computing delta NDCG each time.
- Keep track of ranks as lines cross.
- Lemma: barring degeneracy (three or more lines meet at a point), ranks will always change by 1.
- Extend to n rankers by iterating.

How Is This Useful?

• Boosting is an iterative procedure for finding ranking functions of the form

$$F(x) = \sum_{i=1}^{n} w_i f_i(x)$$

- Each *f_i* may be viewed as a gradient in function space (Friedman, TR, 1999; Mason et al., NIPS 2000)
- Boosting has two steps: find f_i , find w_i
- Can use an optimal combiner to find w_i

Simultaneous Perturbation Stochastic Approximation

Joint work with Yisong Yue <u>http://research.microsoft.com/~cburges/tech_reports/tr-2007-115-spsa.pdf</u>

J. Spall, *Multivariate Stochastic Approximation using SPSA, IEEE Trans. Autom. Control, 1992*

Back to Basics

So you want to learn NDCG directly. *Why not just use gradient descent?*

The Finite Difference Method

Objective function L, parameters $w \in \mathbb{R}^d$, $c \ll 1$ and $[e_i]_j \equiv \delta_{ij}$

$$\hat{g}(w) = \begin{bmatrix} \frac{L(w+ce_1) - L(w-ce_1)}{2c} \\ \frac{L(w+ce_2) - L(w-ce_2)}{2c} \\ \dots \\ \frac{L(w+ce_{p-1}) - L(w-ce_{p-1})}{2c} \\ \frac{L(w+ce_p) - L(w-ce_p)}{2c} \end{bmatrix}$$

... requires 2d function evaluations.

Simultaneous Perturbation Stochastic Approximation (SPSA)

A general method for performing gradient descent when the gradient is too slow (or is impossible) to compute: $\Delta \in \{\pm 1\}^d$, $P(\Delta_i = 1) = 0.5$

$$\begin{bmatrix} \frac{1}{\Delta_{1}} \\ \frac{1}{\Delta_{2}} \\ \vdots \\ \frac{1}{\Delta_{p-1}} \\ \frac{1}{\Delta_{p}} \end{bmatrix} \left(\frac{L(w + c\Delta) - L(w - c\Delta)}{2c} \right)$$

Why Does This Work?

Spall's Lemma 1 (paraphrased): if the cost function's third derivatives are bounded everywhere (independent of iteration number k), and if the Δ 's are iid component-wise and also satisfy some simple moment conditions (which *are* satisfied by the symmetric Bernoulli distribution), then:

$$E[\hat{g}_k - g_k | w_k] = O(c_k^2)$$

$$|\Delta_{ki}| \le \alpha_0 \qquad E[|\Delta_{ki}^{-1}|] \le \alpha_1 \qquad \left| \frac{\partial^3 L}{\partial w_i \partial w_j \partial w_k} \right| \le \alpha_2$$

$$E[\hat{g}_k - g_k | w_k] \le \frac{1}{6} \alpha_2 c_k^2 \{ (p^3 - (p-1)^3) \alpha_0^2 + (p-1)^3 \alpha_1 \alpha_0^3 \}$$

A Schematic View

From Spall 1998, with permission

SPSA Results: Cross Entropy, Web

SPSA versus FDSA

Web Learning Group

Smoothness Tests: 100 Queries, Toy

Web Learning Group

Smoothness: 1000 Queries

Web Learning Group

Smoothness: 10,000 Queries

Web Learning Group

Two Layers, Artificial

Web Learning Group

Two Layers, Web Data

Web Learning Group

Zoom In

Web Learning Group

Joint work with Ping Li and Qiang Wu, "Learning to Rank Using Classification and Gradient Boosting" In NIPS 2007 at

http://research.microsoft.com/~cburges/pubs.htm

Classification / Regression?

- Challenge our assumptions! Powerful, standard methods are available for classification and regression (in particular, boosted trees).
- So: let's treat this as a classification, ordinal classification or regression problem.
- Why classification? Perfect (and some imperfect) classifications imply max DCG.
Three Basic Models

- Multiclass Classification: $P(y_i = k | x_i)$
- Ordinal Classification: $P(y_i \le k | x_i)$ $P(y_i = k | x_i) = P(y_i \le k | x_i) - P(y_i \le k - 1 | x_i)$
- Regression: model targets 2^{y_i} 1 using least squares (cf. Cossock and Zhang, Colt '06)

Classification and the DCG

Lemma: Given *n* urls, originally ordered as $\{1, 2, ..., n\}$. Suppose a classifier assigns a relevance level $\hat{y}_i \in \{1, ..., k\}$ to the *i*th url, for all *n* urls. Let a permutation mapping π rank the urls according to \hat{y}_i . The corresponding DCG error is bounded by the square root of the classification error:

$$DCG_m - DCG_\pi \le (2^{k_m} - 2^1)\sqrt{2} \left(\sum_{i=1}^n c_i^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^n 1_{y_i \neq \hat{y}_i}\right)^{\frac{1}{2}}$$

From Classification to Ranking

We need a ranking score. Use the expected relevance:

$$score = \sum_{k=1}^{K} kP(y_i = k | x_i)$$

Could use any monotonic function of *k*: simplest (*k*) gave best results.

Use cross entropy loss:

$$\Psi \equiv loss = \sum_{i=1}^{N} \sum_{k=1}^{K} -\log P(y_i = k | x_i) \mathbf{1}_{k=k_i}$$

Gradient Boosting: MART

$$(\beta_m, a_m) = \underset{(\beta, a)}{\operatorname{argmin}} \sum_{i=1}^N \Psi(y_i, F_{m-1}(x_i) + \beta h(x_i, a))$$

Estimate gradient: $a_m = \underset{(\beta, a_m)}{argmin} \sum_{i=1}^{n} (-g_m(x_i) + \beta h(x_i, a_m))^2$

Perform line search:

$$\rho_m = \underset{(\rho, a)}{\operatorname{argmin}} \sum_{i=1}^{N} \Psi(y_i, F_{m-1}(x_i) + \rho h(x_i, a))$$

Update: $F_m(x) = F_{m-1}(x) + \rho_m h(x, a_m)$

J. Friedman, *Greedy Function Approximation: A Gradient Boosting Machine,* Inst. Math. Statistics, 2001

Web Learning Group

MART for Ranking: Notes

- *K* trees per boosting iteration
- Each tree fits gradient estimate using least squares
- Line search is performed for each leaf, using a Newton-Raphson step
- Tree outputs converted to probs using logistic function
- MART builds a multiclass classifier from regression trees (that fit residuals)

2 layer results: 16K train, 10K test

Results, cont.

MART: Conclusions

 MART gives great results, but it's not optimizing the cost directly (and it's a little slow).

Building on boosting sounds like a good direction: can we build weak learners that more directly solve the problem at hand?

Joint work with Robert Rounthwaite and Qiang Wu

XRank

- An attempt to directly optimize the (nondifferentiable) cost function we care about
- Build a planar, directed acyclic graph, with a single root node.
- Like a decision tree, but it's a DAG, and has a different interpretation.

Martingale Boosting for Classification

P. Long and R. Servedio, COLT 2005

XRank

- Instead of classifying by position, encode the rank of the sample by the *position* of the leaf node it winds up at
- Long and Servedio give exponential bound on the learning error rate for classification. We can extend this to a bound for the training error for pairwise ranking, for an arbitrary number of levels of relevance.

Martingale Bound for Ranking

Training samples $x_i \in \mathbb{R}^n$, $x_i \sim D$; set of training pairs $\{x_i, x_j\}$ such that $x_i \triangleright x_j$

Assume: given *D*, hypotheses $h_t: \mathbb{R}^n \to \{0,1\}$ such that $\forall t, k, l$

$$P(h_{tk}(x_i) = 1) - P(h_{tl}(x_j) = 1) \ge \gamma_t$$

Theorem: then, for T levels, the final output hypotheses satisfy:

$$P\left(rank(x_i) < rank(x_j)\right) \le \exp\left(-\frac{(\sum_{t=1}^T \gamma_t)^2}{4T}\right)$$

A Model: (Mini)Max NDCG

Start with some ordering in parent node.

Choose split to maximize the gain in NDCG, given that the ordering within each child node is unchanged.

Directly Optimizing NDCG

- Loop through thresholds; track which queries affected; compute their NDCG. (Relevance: Green/Orange/Red)
- *Monotonically increases NDCG!*
- ... but, does not learn to completion: the Martingale bound fails: *Query Fragmentation*
- Too local!

An Energy-Based Model

- All forces equal and opposite (they sum to zero)
- Force between two samples is proportional to NDCG gain for swapping those two samples
- The sum of absolute values of the forces is a useful objective function

XRank: Three Basic Operations

Learning with XRank

- Compute gain from a split
- Compare gain from merging, then splitting, to gain from just splitting (left or right)
- At each step, choose best split, or best merge
- After every change, reorder the 'frontier'

Why Use a Directed Acyclic Graph?

- Can grow linearly with depth instead of exponentially (less overfitting, less query fragmentation)
- Allows samples to migrate back to where they should be, if an error is made
- Can rebalance, and rearrange nodes after learning a level, to further reduce cost
- DAG advantages: they boost well, no learning rate, easy to interpret (e.g. to find most important features), fast in test phase

Physical Models Can be Tricky

Pitfall I: Oscillations

Physical Models Can be Tricky II

Pitfall 2: Consistency

Three samples $\{s_1, s_2, s_3\}$ with forces $\{f_1, f_2, f_3\}$ with $\sum_{i=1}^3 f_i = 0$

Can choose splits so that net gain does not vanish (e.g. $G = f_1 + f_3$)

Going to higher dimensions (e.g. n-dimensional simplex) does not help: we'd like 1-d forces!

Physical Models Can Be Tricky III

Pitfall 3: Bunching

Some Simple Theorems

Simplified XRank: only splits and swaps; also negative gain splits are allowed (i.e. if no positive gain splits exist, take the best nonpositive split for the heaviest node): then we have:

Theorem: The training procedure cannot result in oscillations.

Theorem: If every pair of samples differ in at least one (binned) feature, then given sufficient iterations, XRank will learn the training data perfectly (despite not necessarily being monotonic in NDCG).

Theorem: The computational complexity of computing the best split for a node is O(KFTN) (why not O(KFTN²)?)

Parting Notes

- Learning to Rank, with cost measures typically used in information retrieval, presents many opportunities for developing useful new machine learning solutions.
- For given features, eventually methods will likely converge to having similar performance.
- The 'speed in test phase' constraint is not typically the main focus of current research, but it also motivates interesting new research directions.

Thank You.