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Chapter 1

Planes, p-flats & Hyperplanes

1.1 Planes in R?

1.1.1 Vertical Line Representation

A hyperplane in RY can be translated to one which contains the origin, that is an N — 1-
dimensional linear subspace of RY. Since R¥~! can be represented in |-coords by N — 1
vertical lines and a polygonal line representing the origin of the ||-coordinate system, it is
reasonable to expect a similar representation for hyperplanes in R,

We start with an intuitive discusion for R3. Consider a plane 7 as shown in Fig. 1.1,

Figure 1.1: A plane 7 in R? represented by two vertical lines and a polygonal line.

This is a planar coordinate system with the polygonal line representing the origin.



Figure 1.2: A set of coplanar points in R?® with the two vertical lines pattern.

intersecting the x,z,-plane at the line y' and the zo23-plane at the line y? with A = y' Ny?.
The lines 3 ,7 = 1,2 being lines in R? are represented by two points, !, , 743 each as shown.
Next we construct a non-orthogonal coordinate system on 7 using the 3¢ as axes, consisting
of the lines parallel to ¢! and the lines parallel to y2. Any point P € 7 can be specified as the
intersection of two lines one parallel to y' and the other to 2. The family of lines parallel to
y' are represented by a vertical line Y containing the point %1,. Similarly the vertical line Y5
containing the point 2, represents the lines parallel to y2. Strictly speaking the vertical lines
Y; represent the projections on the z1zo and zoxs planes, respectively, of the two families
of parallel lines. Therefore, the vertical lines represent two such families of parallel lines on
any plane parallel to m. By choosing a point, say A, as the origin we obtain a coordinate
system specific to . So the plane can be represented by two vertical lines and a polygonal
line. Clearly the same argument applies in any dimension and, therefore, a hyperplane in RY
can be represented by a N-1 vertical lines and a polygonal line representing one of its points
[3]. Conversely, a set of coplanar points chosen on a grid such as the one formed by lines
parallel to a coordinate system, is represented by polygonal lines with a pattern specifying
two vertical lines as shown in Fig. 1.2.

About the time these patterns were being discovered, word got around and we were
requested to visually explore for relations that may exist in a set of industrial data consisting
of several thousand records with 8 variables. This dataset is plotted in parallel coordinates
and shown in Fig. 1.3. The pattern between the R111 and R112 axes, which for clarity is
magnified and shown in Fig. 1.4, resembles one of vertical lines formed in Fig. 1.2. Yet for
this pattern to represent a set of coplanar points at least two and not one vertical lines are
needed, for even the plane with minimal dimensionality is in R3. Still the variables R111
and R112 are linearly interelated, and there must be another variable say X also linearly
related to R111 and R112 as is clear from Fig. 1.4 (see also the first exercise below). All this
suggested that an important variable was not being measured. With these hints a search was
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Figure 1.3: Industrial data with a “vertical line” pattern between R111 and R112 axes.
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Figure 1.4: The portion between the R111 and R112 axes is magnified (left).

This suggest that there is linear relation between R111, R112 and an unknown parameter
as is also indicated on the Cartesian coords plot on the right.



mounted and the missing variable was found. This, of course, was a stroke of good fortune
and an instance of a favorite stochastic theorem i.e. “You can’t be unlucky all the time”.
Let us return from our digression. Before this is done, it is worth distinguishing the vertical
line pattern between the R8 and R9 axis with that between the R111 and R112. On the R8
axis and lower part of R9 axis the data is equally-spaced, while this is not the case with the
last two axes. We can also obtain this representation using the theory of envelopes, starting
with the description:

T C1X1 + CoZo + C3T3 = Cp (11)

Rather than proceeding completely formally, here we can find the envelope in a way which
provides more insight. To determine a point P € w two coordinates must be specified. If
one coordinate, say x3 = « which specifies a plane n’ parallel to the x;z5-plane, a particular
line, ¢'(a)) = mw N 7', on the plane 7 is fixed and is in fact one of the lines parallel to y* — see
Fig. 1.5. It has the representation:

E'(a):{li/%(o‘) B _Q(QL (1.2)

E/IQ(OZ) (61+62 ’ c1te )

since

'  ls(a) T3 =«

o) : { o) @ @ + caxe = o — 300 (1.3)
where as usual the distance between the parallel axes is one unit. Returning to Fig. 1.2, each
vertical line is formed by a set of points. On the Yj-axis these points are the #15(c). The
polygonal lines intersecting at such a point represent points on the corresponding line £7,(cv).
Together these intersections provide one of the two vertical lines in the representation of .
As we know from Chapter ??, for each o, #/15(c) is the envelope of a set of polygonal lines
representing points on a line. As a varies the #15() form the vertical line Y; since, as one

Y Y

X X5 X3 X X X3
Figure 1.5: The construction of Y; (left) the first and Y, (right) second vertical axes.

Start with a line on 7 parallel to the y! and 3? axes respectively.
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Figure 1.6: Constructing a point on a plane.

can see from eq. (1.2), their z-coordinate is a constant (independent of o). Strictly speaking,
the points #53(a) also vary with a and fall on the X3-axis. Since this would also occur for
any other plane and the Xs-axis already exists, it does not contribute any information on the
specific plane 7, so typically it is not considered as part of the representation of a particular
plane. This takes care of the lines on 7 parallel to the y!-axis. In exactly the same way it is
found that the vertical line Y5 represents the lines parallel to the y?-axis.

1.1.2 Planar Coordinates

What has effectively happened is that a coordinate system is constructed on the plane 7
consisting of two vertical lines and a polygonal line as an origin. The plane 7 is after all
a 2-flat — i.e. it can be determined by 3 points. In general an n-flat is a linear manifold
(translate of a linear space) that is determined by n+1 points. For an excellent short book
on N-dimensional Geometry see [5]. Now we would like to use this coordinate system to
specify points on the m. With reference to Fig. 1.7, consider a point P € w. From it’s
(71,9, 23) coordinates we want to find it’s y' and y? coordinates or equivalently to express
P = 0 N 2 where ¢', (% are lines on 7 and parallel to the y' and y? axes respectively. So
we look at Pjo, the projection of P on the zixo-plane and construct the line through Py
parallel to y'. This line is represented by the point ¢}, = Pj; N'Y] on the Y; axis. Similarly
we obtain @3 = P)3NY; on the Ys axis, where Py is the projection of P on the zoz3-plane.
Notice how careful tracking of the indices is already helpful in the construction. The pair
(0%, , 7%,) are the planar coordinates of P in terms of the Y; and Y, axes. An interesting
consequence is that a line £ C 7 can be represented by a single point 7 in terms of the Y;
.Y, coordinate system. Of course it is still represented by two points, the fs, in terms of the
original X; i = 1,2, 3 Fig. 1.7.

Theorem 1.1.1 For a line ¢ C 7 C R? the points /;5, />3 and 7 are collinear.



Proof: Step 1 With reference to the figure below, let P;, P, € £. The two lines AB and
A’B’ joining the planar coordinates of P, and P, intersect at § = AB N A'B’.

Step 2 The two As ABC and A’B'C’ formed between Y; and Y5 are in perspective with
respect to the ideal point in the vertical direction.

Step 3 The sides AB and CB are portions of P, and corresponding to A’B’ and C'B’
which are portions of P;.

Step 4 By Step 3, Zlg =ACNAC" and Z23 = BCNBC.

Step 5 By Step2 through Step 4 and Desargues Theorem /5, ¢35 and 7 are all on the
same line L. [ ]
Of course, by the & point collinearity property of Chapter ?? the point ¢35 is also on L.

Corollary 1.1.2 The rotation of a plane in R® about a line corresponds to a translation of
a point on a line.

Proof: With reference to the Fig. 1.8 let £ C 7 C R3. Rotate 7 about £ to a new position 7.
Let f15, (o5 represent £ in the X;, X5, X3 - coords and n, 7% in the Vi, Y5 and Yix, Yox
- coordinate systems respectively. By the theorem, (15, fo5 and 7 are on a line L. Also,
5_12, lo5 and 7% are on the line L. That is the rotation of m about ¢ corresponds in ||-coords
a translation of the point 77 on L. ]

This is the 3-D analogue of (rotation of a line around a point) — (translation of a point
along a line) in 2-D and corresponds to the point < plane duality in P3. Let us explore the

Figure 1.7: A line ¢ on a plane 7 is represented by one point 7.

This is in terms of the planar coordinates Y; and Y,. The point M2 collinear with the two
pOil’ltS 612 and 623.



Figure 1.8: Rotation of a plane about a line «» Translation of a point along a line.

computation involved where ¢ is given by:

(1.4)

612 I Lo = Moy + bg
l:
623 I X3 = M3To + b3

There exists a one parameter, say k, family' of planes containing ¢. In fact, the equation
of any one of the planes in the family is given by:

7 (x5 — mgxg — b3) + k(z2 — mozy —by) = 0. (1.5)

It can be verified that in Cartesian coordinates :

_ ( m§ — 2m3 — ]{32 b2k2 + m3b3
Thz = m3 —msz+k2(mg—1) 7 mi—mz+k2(my — 1)

) (1.6)

Every value of k corresponds to a position (of the rotated plane) 7 and, in turn, about a
position (of the translated point) 7 along the line formed by the points ¢12 and fa3.

The generalization for RY being straight-forward is not covered here (see [3]).

n the language of Projective Geometry this is called a pencil of planes on the line.
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Fun & Games with the ILM

Open the ILM2, the plane and line in Cartesian coords are on the right
and its representation by two vertical axes Y1,Ys on the left
The line is specified by Py, Py and represented by (12, lo5 in R* are on a line
L with the point representing o respect to Y1, Ys axes for the plane.

For some experimentation: slide the point 7195 along L
notice the translation of 712 and corresponding rotation of the plane
Change the line and /or plane and repeat.

Click other buttons and experiment.

Exercises

1. The pattern between the R111 & R112 axes in figures. 1.3 and 1.4 begs a question.
What if a different permutation of the axes was chosen? Whereas the coplanarity in-
formation would still be preserved the the “vertical line pattern” would not be seen.
Was it fortuitous that the “right” axes permutation was chosen to plot the data? It is
not difficult to show that for N variables, there are O(NN/2) “cleverly” chosen permuta-
tions that provide all possible adjacent pair of axes. For example, for N = 6 three such
permutations are (just showing the subscripts of the X; : 126354 , 231465 , 342516 [6]).
Returning to the example are 4 such permutations one of which has the coplanarity
pattern.

(a) Prove this permutation result — Hint construct an undirected graph whose vertices
are variables, and edges between a pair of vertices designate that the corresponding
vertices are adjacent in a particular permutation.

(b) Find an algorithm for computing these special O(NN/2) permutations
(c¢) Generalize this result for adjacent triples

(d) Generalize this result for adjacent p-tuples

2. Given 3 non-collinear points in R? find an algorithm for constructing in ||-coords a set
of planar coordinates for the plane determined by the 3 points.

3. Construct a set of planar coordinates for a plane 7 perpendicular to one of the principal
2-planes (i.e. m being parallel to one of the orthogonal axes).

4. Given a set of planar coordinates for a plane 7 find an algorithm for constructing a
plane 7’ perpendicular to it.

5. In ||-coords find an algorithm for determing the intersection of 2 planes.

8



Figure 1.9: Randomly selected coplanar points in R?.

It is represented by the polygonal lines on the first 3 axes.

6. Given a plane 7 and a line ¢, provide an algorithm which in ||-coords determines
whether or not ¢ C .

7. Given a plane m and a point P, provide an algorithm for determining whether P is
below, on or above the plane. For the notion of above/below consider 7 partitioning
R? in two half-spaces which need to be distinguished. All points in one half-space are
“above” etc.

8. Provide an algorithm in ||-coords for intersecting a line with a plane.
9. Verity,

(a) Eq. (1.5),
(b) Eq. (1.6).

1.2 Representation by Indexed Points

The representation of a plane in terms of vertical lines is basically the representation of a
specific coordinate system on the plane. With this representation the coplanarity of a set of
points could only be checked visually if the points were on a rectangular grid as in Fig. 1.2.
In Fig. 1.9 the polygonal lines on the X;.X,. X3 axes represent randomly sampled points
on a plane 7 in R? are shown. There is no discernible pattern. Is there a ||-coords’ “pattern”
associated with coplanarity of randomly selected points?



A new approach is called for [2]. Describing even a simple 3-dimensional object like a
room, it in terms of its points is just not intuitive. The description it in terms of cross-
sections including the boundary planes help us visualize the object. Pursuing the analogy,
it is proposed to describe p-dimensional objects in terms of their (p-1)-dimensional subsets
rather than their points. So the representation of a plane 7 is attempted in terms of the
lines it contains. Taking pairs of polygonal lines ¢ shown in Fig. 1.9 the representation of
the corresponding line ¢ C 7 is constructed. The result in Fig. 1.10 is stunning; the lines
joining the pairs of points £1s, f53 in turn determine a pencil of lines on a point and this is
characteristic of coplanarity. Let us explore it.

1.2.1 The family of “Super-Planes” &

Behind the striking pattern in Fig. 1.10 lurks a very special subspace of RY. Until now
the ||-coords axes were taken equidistant with the y and X, axes coincident. This was a
matter of convenience which has served us well until now. The time has come to look at
the general setting shown in Fig. 1.11 the position of the X; specified by the directed (i.e.
signed) distance d; with the stipulation that for some ¢ # j, d; # d;. We consider the set
of points P € RY whose representation in |-coords collapses to a straight line. That is,
P : y=mx + b and a specific choice of (m, b) the corresponding point is :

P:(md1+b, md2+b7...,mdN—|—b):m(d1,dg,...,dN)+b(1,...,1). (17)

For m, b € R this collection of points forms the subspace of R spanned by the two N-tuples
(dy, dg,...,dy), (1,...,1) on the vector u from the point (0,0, ..., 0) to (1,1,...,1) the full
line denoted by u. We acknowledge the splendid role they play in our development by naming
them super-planes. The family of super-planes generated by all the axes spacing is denoted

B
I \

Figure 1.10: Coplanarity!

A pencil of lines on a point is formed by joining the pairs of points representing lines on a
plane.
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by €. The situation is especially interesting in R?® where the super-planes are:
7w ={m(dy, da, d3) +b(1, 1, 1) | m, b € R},
and whose equation
7 ¢ (d3 — dy)xy + (dy — ds)za + (de — dy)zg = 0. (1.8)

can be obtained by using numerically convenient values (ie. m =b =0, m =0,b = 1,
m = 1,b = 0). It describes the pencil on the line u of planes each specified by the axes
spacing. As for eq. (1.5), it can be re-written as a one parameter family :

dy —ds

s (xg—x2)+k(x2—x1)20, k:dg—dl

(1.9)

with the ratio k determining the particular plane. With the y and X, axes coincident and
the standard axes spacing d; = 0, dy = 1, d3 = 2 the super-plane (sometimes referred as
the “first super-plane”) is:

T iy — 209+ 23 =0, (1.10)

the subscript 1 distinguishes it from the others formed with different axes spacing. The
important property from Chapter ?? can now be restated in terms of 3.

Theorem 1.2.1 (3 point-collinearity) For any line { C R_N the points U;j, Ur, Ly, where
the i, j, k are distinct integers € [1, 2,..., N|, are on a line L where L = (N 73.

This is the backbone of the recursive (in the dimension) construction algorithm which follows.

Y
A
(0 1, mdl ;
......... o (02, il b
llllllllllllllllllllllllllllllllll dZ’ de + b)
i 2
—di—t e, (. dA7mdN+b)
I B b,
d; P
bt —>
> X
dN—-
X X2 ) .

Figure 1.11: Points in RY represented by lines.

11



1.2.2 The Triply Indexed Points

Let us now review the construction leading to the single intersection in Fig. 1.10. For any
line £ C w the 3 pOiIltS 612, 623, 613 are :

e on a line L by the 3-point-collinearity property, and conversely since L lies on the 3
points the point L € /.

e Further, since L is a straight-line L must also be a point of the “super-plane” 7s.

Therefore
(nmi=1L. (1.11)

This is true for every line £ C 7. Specifically for a line
¢cr AL el > 0nr=L".
Now L and L’ specify a line £, C 7§ represented by a single point /. Altogether,

L,.'enwr = (,Cm

= form#7w . mNas=/¢
L, L'en = EWCW{’} f A 1 L

showing that the point where all the lines intersect in Fig. 1.10 is /,. For reasons which are
clarified shortly we refer to £, by 7ia3.

A plane 7 C R? is determined by two intersecting lines. It is advantageous to use two
lines belonging to “super-planes” for their representation requires only one point. One such
line is £, = m N 7. To determine the second line we revisit eq. (1.8) and chose another
convenient axes-spacing. As indicated in Fig. 1.9, the X axis is translated (recall that this
corresponds to a rotation) to X{, one unit to the right of X3, as shown in Fig. 1.12 with
dy =1, d3 = 2, d| = 3. The new super-plane is given by

T x s — 215 =0 (1.12)
y
d =3 -
-~ d3=2 =
T
< dy=1 —
X, X, X, X!

Figure 1.12: The axes spacing for the second super-plane 77,.
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Transferring the x; coordinate of each point P to the X!-axis as shown in Fig. 1.13 and
repeating the construction we obtain the second point, denoted by 7531, and shown in Fig.
1.15. The corresponding line is none other than the intersection ¢, = 7 N 7j,. What about
the line H joining the points 7193 and 7ag1/? Clearly H € {, since 7193 represents £, and
similarly H € ¢. Further, since H is a line in the X;, X5, X3 coordinate system and also
in the X5, X3, X/ system,

H=(Nnl =xrNz,Nmw (1.13)

as illustrated in Fig. 1.14. So the intersecting lines ¢, ¢. determine the plane 7 and therefore
the plane can be represented by the two points mio3 and 7o31.. But what is going on? In
Chapter ?? we saw that a line in R? is also represented by two points. To distinguish the
two points representing a plane, three indices are attached while only two indices are used for
the point representation of a line. The deeper reason is, of course, that the linear relations
specifying lines involve (or can be reduced to) two variables, whereas those involving planes
necessarily involve 3 variables. Specifically, for the plane

T 1 C1x1 + Cog + C313 = ¢y (1.14)
. __ __c1—c3 co
67"12 T + c2+2c3
s .
le=TNm - , (1.15)
. _ __2citceo co
gﬂ-% . XT3 = p— X9 + Ca—c1

Therefore, in homogeneous coordinates recalling that 1, the distance of X, from the y-axis,
must be added to the to the first coordinate of ¢,

77—123 = gﬂ'lg = Eﬂ'gg = (62 + 2637 Cp, C1 + Co + C3) . (116)

Y

Co

Figure 1.13: Transferring the values from the X; to the X/-axis.
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Continuing

! . _ _ 2ci+c3 2cq
/ Urp 0 T2 = 2ertes U1 T 2ptes ( )
. =mNmy : 1.17
™ 1 - 5 .
/ . _ _ C2—C1 )
¢ mo3 + 3 = 2c1+-c3 T2+ 2c1+c3”

and from the 2nd equation it is immediate that

6,71'23 = (361 + C2 + 2637 Cp, C1 + Co + 63)' (118)

Since ¢/ is a line in the super-plane 75, it must that ., = .. Yet a direct computation
from the first equation of 1.17 yields

Uy = (2ca 4¢3, co, 2(c1 + 2+ c3)) (1.19)

what is going on? Figure 1.16 explains the “riddle” reminding us that 7§, is a super-plane in
the X,, X3, X1/ coordinate system where its points such as P, are represented by straight
lines intersecting at E’,rl, , = ¢,y To obtain ¢, the z; values must be transferred to the
X, axis and then constructing the corresponding polygonal lines to obtain their intersection

€3

gl

7T\ !,r H

st x

T

Figure 1.14: The intersections of a plane 7 with the two super-planes 7°; and 77,.

These are the two lines ¢, , ¢/ which specify the plane and provide its representation.
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X1 X2

3 X1’
Figure 1.15: The plane 7 represented by two points

at V', # E/ﬂl/Q. Recall from Chapter ?? the line ¢ — ¢ point correspondence

ﬁ:xgzmx1+b—>l7:(1_dm,1_bm) m# 1 (1.20)

FU‘

q1 | !

\
P . D1
A

Qi

X

Figure 1.16: The location of the (15 and £y points.
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¢ 4/ AN

X1 X2 X3
-

X2’ i3

[=+]

Figure 1.17: The plane 7 intersected with four super-planes.

Each point represents one of the resulting lines.

where d is the directed inter-axis distance. The distances from X1 to X, and the y-axis are
2 and 3 units respectively. Then together with the first equation in (1.17)

— —2 co
Oy = (wEm *3 i ) (1.21)
which in homogeneous coordinates matches eq. (1.19) and analogous to eq. 1.16 we record?
the result as B -

ﬁggl/ = glﬂ-l,Q = glﬂ% = (301 —+ Cy —+ 203, Cp, C1 + Cy + Cg). (1.22)

To simplify the notation we also write 71/ = 793 = Ta31 and Ty = T23. The coordinates
of the two points 7y and 7y, contain 3 independent parameters and suffice to determine the
coefficients of m. Let S = ¢; + ¢ + ¢3 and denote by xq, x1 the x Cartesian coordinates of
7193 and 7yr93 respectively when S # 0. Then

Ty — Ty = 3% = 3c, (1.23)

where the ¢, = ¢;/S , i = 0,1,2,3 are the normalized coefficients. Exploring this further the
X,-axis is translated to the right by 3 units, the construction is repeated and a third point
is obtained :

T3y = Mgy = (361 + 4co + 2c¢3, co, €1 + o + Cg). (1.24)

which is also denoted by 7o and its & coordinate by zo/. Then

Ty — Ty = 3¢5 . (1.25)

2Another detailed example is computed later for the principal 2-planes.
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c 123 a3l 123 T3
c1+catc3

nf

<k-~3cl <3CQ 3"3

)(1 }?2 )(3 )zy Xal jiy

Figure 1.18: The distances between adjacent points are proportional to the coefficients.

For m : cix1 + coxg + c3x3 = ¢o with the normalization ¢ + ¢o + ¢3 = 1. The proportionality
constant is the dimensionality of the space. The plane’s equation can be read from the
picture!

Finally, translating the Xs-axis 3 units to the right and repeating the construction as shown
in Fig. 1.17 a fourth point is obtained

oy = Ty = (3¢1 + 4cy + Bes, co, €1 + €9 + ¢3) (1.26)

and for xy its x coordinate
Ty — Lot = 36;) . (127)

Clearly the third and fourth points are dependent on the first two and by an easy calculation
it is found that
Tor = 6 — (130/ + ZL’ll) y T3 = 3+ Lo - (128)

So with the normalization ¢| + ¢, + ¢4 = 1 the distance between adjacent (according to
the indexing) points of the plane’s representation is proportional to the corresponding co-
efficient. The proportionality constant equals the dimensionality of the space (see exercise
5). Their ordinate is the constant ¢, so the equation of the plane can effectively be read
from the picture as shown in Fig. 1.18. Occasionally, we say that the distance between
adjacent indexed points is the corresponding coefficient when the dimensionality and hence
the proportionality constant are clear. When the coefficients’ sum is zero the plane is an
sp represented by ideal points. All the super-planes are on the line v so what is the angle
between the four different super-planes we generated? To answer this it is convenient to
introduce and work with vector notation. Letting x = (x;, X2, X3), the coefficients of a plane

17



[k

i, ¢ = (¢, c, cl) so plane’s equation is 7/ : ¢ - x = ¢, where “” stands for the inner (or
dot) product. From analytic geometry the angle ¢ between two planes 7!, 72 is found by

cl.c?

(et -et)(e?- e}

cos g ==+ (1.29)

Fixing the angle by adopting the + sign above we find that 7}, is obtained from 7§ by a
clock-wise rotation of 120° about u. Checking for the third super-plane

gt =201 + 29 + 23 =0, (1.30)

resulting from the translation of the X, axis, the dihedral angle with w3, is also 120°. Not
surprisingly then the fourth super-plane 7,5, generated by the translation of the X3 axis,
coincides with 77.

To clarify, the rotations about u and the super-planes they generate do not effect the
plane 7 which remains stationary intersecting u at H given in eq. (1.13) and shown in Fig.
1.14. This is the reason that all points 7193, 7103, T1/2:3, T1ory have the same y-coordinate
co/(c1 + ¢z + ¢3) being on horizontal line H. This useful property is also true for the points
representing lines and is put to good use in the construction algorithms discussed next. For
consistency with this chapter’s format a line ¢ equations’ are re-written as

/- lio @ iz + 1222 = cio, (1.31)
ly3 t Coaxo + Co3T3 = Cy

emphasizing that each of the (15, 53 is a projecting plane in R* orthogonal to the x;z,
ZTox3 planes respectively with ¢35 = co; = 0. It is clear then that the points Ura, C1r9, 01 all
have the same y-coordinate and are on a horizontal line let’s call it 12. Similarly the triple
los, lors, U5 are on a horizontal line 23 and ¢35, (115, (15 are on another horizontal line 13.
All this is seen in Fig. 1.25 of the next section.

Exercises
1. Derive the equation equivalent to eq. (1.8) for RY and state it’s properties.
2. What planes are represented when the points 7193 and 7931 are ideal?
3. How are the planes in class £ represented?

4. Is the line intersection shown in Fig. 1.10 necessary and sufficient condition for copla-
narity? Prove or give a counter-example.

5. Show that in R the distance between adjacent indexed points is N times the corre-
sponding coefficient as in R? it is 3 — equations (1.23), (1.25) and 1.27).

6. (a) Find the equations of the three super-planes containing the x;,z, and zs-axis
respectively.

(b) What are the three dihedral angles between pairs of these super-planes.

18



7. Provide an affine transformation resulting in the four points 7193, To31/, T3179/, Trrory
being collinear and with distance ¢; in between pairs rather than 3c;.

8. The vertical line representation of planes actually requires 4 rather than the two vertical
lines shown. Explore the case where none of the 4 vertical lines coincides with the
coordinate axis Xj;.

9. Provide algorithms based on the indexed-points representation for finding the intersec-
tion between:

(a) a pair of 2-flats, and
(b) a line and a 2-flat.

Delimit carefully the special cases where the algorithms fail.
10. Given the representation of a plane in terms of vertical lines,

(a) how would one check if the vertical lines represent two orthogonal families of
parallel lines?

(b) How could the vertical axes be trasformed to vertical axes representing orthogonal
families of parallel lines?

11. Construgt a vertical line representation Y; for a plane 7 C R3 with 7193 € Y3, and
7_'('231/ - }/2

12. Given a point P € R® and a plane 7 C R3, provide an algorithm for determining
whether P € 7 or which of the half-spaces (“sides”) of 7 (partitions R?) P lies.

13. Generalize the 3-point-collinearity property for N = 4 and more.

1.3 Construction Algorithms
A dream mentioned at the outset is to do multidimensional synthetic constructions with this
new coordinate system as already done for lines and now with planes and flats starting in

R3. Also this is an additional opportunity to better understand the properties of the indexed
points by indulging in the easy constructions they enable.

1.3.1 Planes and Lines

subsec:planes-lines
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Half-Spaces

With reference to Fig. 1.14, a plane p parallel to 7 intersects each of the two super-planes
7wy, T at lines £,, £/ parallel to £, and £ respectively. Hence the points 7123, p123 are on a
vertical line and similarly the points pagy/, 31/ are also on a vertical line. Of course this is
entirely analogous to the conditions for parallel lines as it should be for after all the triply
indexed points represent lines (i.e. {r,/, and £, £/ ). From the representation of two parallel
planes 7, p we agree that the H (H € u) with the higher y-coordinate identifies the higher
(above) plane. This clarifies how to distinguish and recognize half-spaces as illustrated in Fig.
1.19 which is the cornestone for the study of convexity. The two vertical lines together with
H also provide a coordinate system of planar coordinates as described in section 1.1.1 based
on the intersecting lines ¢, and ¢,/. Usually there is no reason to distinguish between index
permutations like 231" and 1’23 which are henceforth considered the same unless indicated

otherwise.

Line contained in a Plane

Recognition that a line ¢ is contained in a plane 7 is immediate from the construction of
the points 7193. Specifically, a line £ C m < {19, la3, T193 are collinear. This propery is
the equivalent of the collinearity in Fig. 1.7 for the two-vertical-lines planar representation
As illustrated in Fig. 1.20, the line ¢ C 7 intersects the super-planes at the two points
P=/(N{,, P =(N/ with P, P’ on 793, T3 Tespectively since these triply indexed

y
] ]
I I
| | —
- ——— _;p__ R Tl _...Hp
: P123 :P‘31/
I I
| |
1 1 _
- ~+—Hr
7123 TTp31
b d
——— _.._.._.._4._.;)..._.._,HT
T123 ToB1
X XQ X3

Figure 1.19: The parallel planes p, 7 are above and below respectively the plane 7.

The upper half-space of 7 is marked by the two dashed half-lines.
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N

X, X X; X!

X

Figure 1.20: A line ¢ is contained in a plane 7 < the points 14, {13, (23, 123 are on a line P.

Alternatively if 119, (115, l93, Ta31, are on a line P’ then P = ¢, Nm and P' = (. N .

\7\?123 o3y
. _
) &
\
A X

X1 Xg Xg Xlr

Figure 1.21: Two intersecting planes
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points are actually (- and /. Hence fo3 = P N P’ as the line P’ represents P’ on the
Xa, X3, X axes. By tranfering the value of its first coordinate p} to the X axis we obtain
the P|, portion of the polygonalline P in the X, Xo, X3 axes with {15 = PN Pj,. Therefore

{Crm & 512,513,523,7?123 c P, P:&Tﬁﬂ'. (132)

The proof for the = direction is similar. Such a collinearity must also hold for the line P’ on
Z23,7_T1/23 for the XQ,Xg,X{ axes; thatis/{ C 7 & 51/2,51/3,523, T1793 are on a line P’ where
P" = /¢ Nm. This leads to a beautiful rotation « translation duality shown in Fig. 1.37 and
presented shortly analogous to that obtained with the vertical lines planar representation
seen in Fig. 1.8.

Intersecting Planes

To realize our goal of doing higher-dimensional constructions, that is for N > 3, we gradually
wean the reader from the need to use 3-D pictures. In the process we discover that many
constructions even for 3-D are simpler to do and certainly to draw in ||-coords. Such is
the construction shown in Fig. 1.21 for finding the intersection of two planes p N7 = /.
Let ¢,, {; be the line intersections of the two planes with the first super-plane 7§ and
,, £ the intersections with the second super-plane 7j,. Two convenient points on £ are
P=t.n{, P'=0,Nnl,since the line P is on the points with the 123 indices, and P’ on
the points with the 231’ indices. The points fa3, {10, specifying £ in the X;, X,, X3 axes,
(1.32) after transferring the p| coordinate of P’ to the Xj-axis and using property (1.32).
The planes’ intersection is the line on the two points P, P’ ... simplicity itself.

y
N
\( """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" 23
Loz
231/ _
fffff Q——e\--al——— B e T S e EEEEEEEEEN
12 *
Ky
VN
\
\
§ /
K hy2!
| {
\ ! ",
X N
\ D X
0
————————— ¥ > 12
S E =
lig 7 [4%)
/
j h
- ".
N,
S,
/ .,
N Y S X R A R R SR
; A~ B S e e SR EEEEEEae 13
/ 13 ly3
;
! r/ \‘\
% |
ot AES
P1 Pr|
P P’
X, X, X; X X, Xy

Figure 1.22: Representation of a plane 7 C R3 by two indexed points.

First step in the construction of the points T3911/, Mgy from 793, To31. A (any) line £ C 7
is constructed as in Fig. 1.20. The points {12, V13 are constructed and the horizontal lines
12,13,23 are drawn on the ¢ s with the corresponding indices.
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X X, X3 Xy Xy Xy

Figure 1.23: Construction of the third point 7y/o/3.

1.3.2 The four Indexed Points

T he laborious construction for the four points 7193, 31/, T31797, T1rv3r seen in Figures 1.17 can

be greatly simplified. A 2-flat is determined by any 3 points it contains and this is the basis

in ensuing construction algorithm. On each of the points 7193, 7317 any two lines P and P’

respectively are chosen as shown in Fig. 1.22. We know that P € 7§ N7, P’ € 7§, N and

93 = PN P’ where ¢ C 7 is the line on P and P’. The p) value is transferred from the X}/

to the X, axis and joined to the ph coordinate intersecting P at f15; the point (43 is similarly
y

s - g
2317 5 s 77
B & e S H

— v~ _ \ ’

T N T34 -

X1 X, X5 Xy Xy Xy

Figure 1.24: Construction of the fourth point /95

Note that P on f1 is parallel to P since P is the point P = 7 N ¢, in the Xy, Xor, X3
axes.
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obtained. Horizontal lines 12,13,23 are drawn through the 3 ¢ points as shown providing,
at their intersections with the line P’, the points ly9, (115 specifying ¢ on the X5, X3, Xv/
axes. Moving on to Fig. 1.23 the value p) is transferred to the Xy axis and joined to the
P} coordinate on X/ intersecting the 12 line at point {119 which together with (1,5 specifies
¢ on the X3, Xy, Xy axes. Therefore as for P and P’, the line P” on these two points
represents the point P” € 7§, N'm = (2 where 73, is the super-plane corresponding to this
axes spacing (i.e. dy = 3, dy = 4, d3 = 2 ). Hence 7yp3 = P" N H and ly3 = P" N 23.
Proceeding as in Fig. 1.24 we place a line P" parallel to P on the point /1. In fact P" is

the image of P in the Xy, Xy, X3 axes where, as we saw earlier, the super-plane 75y, is
image of m,;. The intersections of P” with H, 13,23 complete the construction. The four
points are referred to as the augmented representation of a plane. Use of the relations in eq.
1.28 between the z-coordinates of the four indexed points simplifies the construction. By
the way, Fig. 1.25 showing the ¢ points corresponding to a line ¢ in the translated ||-coords
systems is obtained with a similar construction. The intersections of £ with the super-planes
are the points P =/4Nn;, PP=(N7j, , P'=0N7y, P" =007, .

1.3.3 Special Planes

For future reference we record the indexed points of some planes which are encountered on
several occasions.

b
523 ) L2

Figure 1.25: The collinear triples of points /.

They represent a line ¢ in the four coordinate systems X, Xo, X3 through X1/, Xy, Xy .

24



Q193 = Qg1 = Qg ey Br23 Bozv = By = By

z3=10 x3 =0 T = T =

Figure 1.26: Indexed points corresponding to o : z3 = 0.

For the x;25 principal 2-plane on the left and for the xox3 principal 2-plane 5 : z; = 0 on
the right.

The principal 2-planes

Our first examples are for the zixo-plane o : x3 =0, zox3-plane [ : z; =0, and the x5
plane v : x5 = 0. To obtain further practice the indexed points of « are obtained from the
fundamentals rather than from the formulae eqs. 1.16 , 1.22 , 1.24, 1.26. It is preferable to
use the general eq. (??) in Chapter ?? rather than eq. (1.20).
Eam 1Ty = %$1 gam = (éaa 1)
ﬁa:aﬂﬂf: = :(2,0,1):6{123.
Cosy =03 =0 logs = (1+1,0,1)

Proceeding as for eq. (1.21) substituting the inter-axis distance d = —2 between X/ and X,
and a translation by 3 from the y-axis,
Dy = —X E’QI,Q = (% +3,0,1)

v 1+1
ﬁ’a:aﬂﬁf, : = :(270,1):04251/-

Vppy 103 =0 Vppy = (14+1,0,1)

Qqro

For the third point using the super-plane given in eq. (1.30),

Yy

Y123 =F Yosv Y3re = Yoy
Ty = 0 To = 0

X1 XQ X3 Xl/ Xz/ XS/
Figure 1.27: Indexed points corresponding to v : x5 = 0 the principal 2-plane z;z3.
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6”011/2/ . x2 = 2‘1:1 6_/,0(1/2/ - (]_T12 + 37 07 1)
6/02 =a 7Tf12/ : = ~ = (2, 0, 1) = Q3119 -
0 s =0 0 = (=2+44,0,1)

Qar3 Qar3

Hence the first 3 points are congruent as they should be due to the zero coefficients of z; and
Zo in o’s equation. As has already been pointed out the fourth super-plane 73,5 coincides
with the first 77 though for the computation of of the corresponding indexed point the values
based on the the X/, X}, X} coordinate system are used yielding

Quyrof 2

0 = QN Ty = =(5,0,1) = arzy
EHIOZQ/?’/ cx3 =0 gmagw = (1 +4,0, 1)

o LTy = lxl 67”041/2/ - (1_% + 37 07 1)
2

This point’s distance of 3 from the others is, of course, due to the only non-zero coefficient
in o’s equation. The representation is shown in Fig. 1.26 (left).

Alternatively, the location of the indexed points can be found graphically; by the inter-
section of two lines representing two points in the plane. The representations of 5 and ~ are
shown in Fig. 1.26 (right) and Fig. 1.27 respectively.

The constant planes
Next are the more general planes  : x; = kg ,7 = 1,2,3 with ky a constant. For
K:x1 = ko (1.33)
via egs. (1.16) , (1.22) , (1.24), (1.26) we obtain :
Ri23 = (0,ko, 1), Rosir = Ravy = Ryay = (3, ko, 1) (1.34)

providing the representation shown in Fig. 1.28 (left). For

R Xy = k’o (135)
y Yy
33'1:]{70 .’L’lzko Jizzk‘o IQZk‘o
Tt ARIE T LIy R b=+ I e (e i R
K123 Ro31 = R3py = Ky K123 T Ra31 K3y = Koy
3 3
x
X
Xl XQ XS Xl’ Xgr
X X X; Xy

Figure 1.28: Indexed points representing constant planes.
For k : 21 = ko (left) and & : x5 = ko (right).
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the indexed points are :
Rios = Rosr = (1, ko, 1),  Ravy = Rywy = (4, ko, 1) (1.36)
for the representation in Fig. 1.28 (right). Continuing
KXy = ko (1.37)
has the indexed points
123 = Rosir = Rave = (2,ko, 1), Ryaz = (5, ko, 1) (1.38)

with the representation in Fig. 1.29. Observe that the distance between adjacent points is
3 times the value of the corresponding coefficient.

Projecting Planes and Lines

An important class are the projecting planes which are perpendicular to one of the principal
2-planes. Our first encounter with them was in Chapter ?? where in RY a line is defined
as the intersection of N — 1 projecting planes. In general, the equation ¢;; for the pairwise
linear relation between x; and z; describes a projecting plane perpendicular to principal
2-plane z;z;. In Fig. 1.30 we see two projecting planes in R? intersecting at a line £. Where
it is important to avoid an inconsistency the projecting planes on «, 3 and ~ of a line ¢ are
denoted by fla, €3 instead of {15, fo3 respectively. Fig. 1.31 is in fact Fig. 1.25 reincarnated
in terms of the projecting planes of ¢ whose representation is directly discerned from the fs.
For example logyror = layray and also coincide with €179 since fa’s x5 coefficient is zero.

1.3.4 Intersecting a Plane with a Line

A line’s ¢ description in terms of projecting planes points to an easy and intuitive algorithm,
shown in Fig. 1.32, for finding the intersection with a plane w. The line r = fa N 7 is
found and then R = r N ¢ = 7N {. This is how it works. The algorithm’s input are the
initial data consisting of the point pairs 7ia3, Tas1r and €12, lo3 specifying the a plane 7 and
line ¢ respectively. The construction of the point £y, is easily constructed as in Fig. 1.22

y
T3 = k() T3 = k?o
T o=t e N P AP -p-
K123 = Rag1r = K312/ K1y
3
X
X X, X; Xy Xy Xy

Figure 1.29: Representation of the plane x : x3 = k.
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Figure 1.30: A line ¢ as the intersection of the projecting planes fa 1. o and ¢3 L 5.
y

F ‘77Ar ‘ZB// T/M/ f"
Prog N\ B || WOarr | ] Przs " og
1\ Y 7
W \ 4

113 B "/
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A} —\'\ ‘ /"'
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\ \'\ ‘.“ '«"
\ \ 3 ’
\‘ \‘\ '.‘- 4
\ kY '\_ “/
‘\ N 3 ."!
v IS A\ s
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\ N \ 4
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EOZIZB \ 604251/\ 3190’ v Ly
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(Rt \2 \
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Figure 1.31: The projecting planes fa, (3, (7.
This is the line £ whose ¢ points are shown in Fig. 1.25.

from the coordinates 1,3 of any point on ¢ and tranferring the z; value to the X! axis.
The formality of writing o193 = £12 and fasozyr = f19 clarifies use of the planes intersection
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Figure 1.32: Finding ¢ N 7 using the projecting plane fo.

y y
T. _®
lo3 o3
T3 |l S S . T3 ] < S .
R
Ly
b d b d
————— R e R I b AN
a3 = b1 Lansy =l Loyas = ly2
X X, X Xy X, X, X, Xy

Figure 1.33: Initial data

On the left are the initial data. They are points specifying the plane 7 and line ¢, for
intersection construction on the right. First r = 7 N fa is constructed (need only o3 since
T13 = {12). Then R = (r{,7r9,73) =r Nl =mNL.
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construction in section 1.2.2 to obtain r = wN/la, actually 73, as in Fig. 1.3.3 with 75 = (19
since r C fae. Then R ={¢Nr =/¢Nmx. In effect the system of linear equations

™ 11X + CTo + C3T3 = (g
61,2 I C11xy + Claxo = C10 . (139)
Uy @ Coa%o + Co3T3 = Co

is solved geometrically. The construction is simple, and is easier to draw than in cartesian
coordinates. Also it generalizes nicely to N-dimensions.

1.3.5 Separation in R? — Points and Planes

For many applications it is useful to introduce orientation and discuss oriented half-spaces
as shown in Fig. 1.34 (left) with respect to lines. A point P : (py,ps) is on, above or
below the line ¢ : xo = mxy + b if the expression (p; — pym) =, <,> b as shown on the
right-hand part of Fig. 1.34. Since we are working in the projective plane P? we consider
any regular (i.e. Euclidean) point as being below the ideal line ¢,,. This situation is more
“fun” in ||-coords for there the separation criterion “flips” at m = 1. Correspondingly, P
is the line y = (p2 — p1)x + p1 where to simplify matters we set d = 1. This is due to the
non-orientability of P? as already mentioned in the beginning (chapter on Geometry). For
horizontal lines “+” is the positive y direction and for vertical lines the positive x direction.

The various cases for ¢ # (, are summarized in :

Lemma 1.3.1 P is on, below, above a line £ whose slope m < 1(m > 1) <= P is on,
below(above), above(below) L.

In R? for a plane m and a point P, for any plane p not parallel to 7 with P € p the
intersection ¢ = 7 N p is found. Within the plane p Lemma 1.3.1 is applied to determine

Figure 1.34: Oriented half-spaces and orientation in ||-coords.

(left)Orienting half-spaces on each side of a line ¢ : az + by = ¢ for ¢ > 0. Points in
“—7 axr+by < care “below” £ and “above” with the reverse inequality.(right) In ||-coords
the above-below relation “flips” for lines with m = 1 due to the non-orientability of P2
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Figure 1.35: Point T' = (t1, t9, t3) is above the plane 7.

Line ¢ = 7 N s where k : x; = t; with P = (t,ty,p3) € £ N 7. With fy3 between the Xy, X1,
i.e. the slope of fo3 is negative, and below the portion Ths of the polygonal line T', T is above
¢ in the plane x and also 7. This is also clear from the picture since 7', P € x have the same
1, T9 coords and p3 < ts.

whether P is on, below or above 7 < it is on, below or above the line £. The construction
for this determination is shown in Fig. 1.35 where a point 7" = (¢, s, t3) and plane 7 are
shown. The constant plane  : x; = t; which contains 7" and ¢ = k N 7 is chosen as well as
the point P = (t1,t2,p3) € ¢ (and hence in 7). Viewing the picture in [|-coords ¢ is found
as the intersection of the two planes x, 7 (by the construction in Fig. 1.21). Actually only
055 is needed since f15 coincides with Rja3 so that & is s projecting plane. The Ty, and Pjs
portions of 7', P coincide, (o5 is below Ty3 and in between the X, and X3 axes so the slope
of l93 is negative so by Lemma 1.3.1 T" is above 7.

While we are at it we might as well find the plane p parallel to 7 and containing the point
T. Through T the line r parallel to ¢ is determined, see Fig. 1.36, by the point 793 at the
intersection of the vertical line on /o5 and Ths. The line R on 73 and 715 = ¢15 represents the
point R = r Ny by theorem 1.2.1 and is on the sought after plane p since r C p. The point
pio3 must be on R at the intersection of the vertical line through 745 for p is to be parallel
to 7. All the rest is now determined, H, is the horizontal line through pis3; it intersects the
vertical line through o317 at pazy.

With [|-coords then we have the means to do easy synthetic constructions, like those we
enjoyed doing in elementary geometry, the lower dimensional ones honing our intuition for
their multidimensional counterparts which we shortly meet.
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Figure 1.36: Point T = (t1, ts,t3) is above the plane .

Line ¢ = w N k where k : 21 = t; with P = (t1,t3,p3) € LN .

1.3.6 Rotation of a Plane about a Line and the Dual Translation

The analogue to the translation < rotation duality in Fig. 1.8, based on the index-point
representation, brings into play many of the constructions we just learned. Starting with

\

”””””””” ."""’l:'.{:""""""""””””””””””””
_ N N

TN T2

AY ‘4‘,

\

Figure 1.37: Rotation of a 2-flat (plane) about a 1-flat(line) in R3.

It corresponds to a translation of the points with 3 indices on the horizontal line H along
the lines L, L', L”, L" joining the points with 2 indices.
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augmented representation of a 2-flat with 4 rather than 2 points, as derived in Fig. 1.22,
1.23 and 1.24, the intent is to show the rotation of a plane 72 : cjz1 + cywa + c373 = ¢
about a line w'. With only one line and plane appearing the superscripts denoting the
flats’ dimensionality are not needed for the flat’s dimensionality can be determined from
the number of subscripts. In reference to Fig. 1.37 a position of 72 is shown by the points
T123 , Tas1/, , W31rer , Ty representing 72 on the horizontal line H, while the line’s 7! 3 points
T2 , T3 , Tz on the line L which, as in Fig 1.25, also appears in terms of the other triples
of axes with L = 7' N7} and similarly L', L”, L" being the line’s intersections with the 2nd,

3rd and 4th super-planes. To clarify

Tyrg Ty Ty oN line r , T T3 Torgr on line L , Mo 1z Torgr on line ",

With 7t C 7% the picture is that shown in Fig. 1.20 where the point 7jp3 is on the
intersection of H with the line L and similarly

Togr = HNL [ Tspe =HNL"  Tyey =HNL". (1.40)

The distance between adjacent points being proportional to the coefficient of the plane’s
equation, see Fig 1.18, the intersections of the L-lines mark the positions where coefficients
are zero. There, the plane 72 is perpendicular to the corresponding principal 2-plane. Specif-
ically at

HNLNL, ¢ =0 & 721 xyxs — plane ,
HNnLNL", ¢=0 & 7% L 2125 — plane , (1.41)
HNL'NL", ec3=0 & 7% L 125 — plane .

Now translate H vertically with the 4 triply indexed # points moving along the four lines
L,..,L". The conditions (1.40) hold so that at any such translated position of H the
containment property of Fig. 1.20 holds. Hence, the corresponding transformation must
be the rotation of 72 about 7' passing along the way through the positions specified by
(1.41) with all points on 7! being invariant under the transformation. The variation of the
coefficients can be followed thoughout the transit.

Let us look at all this in “reverse” for the axis of rotation given by

1
1| Tyt xe = moxy + by,
™ { Ty @ T3 = M3Ty + b3 . (1.42)
properly read then Fig. 1.37 exhibits the full pencil of planes
7 (23 — m3xe — bs) + k(zo — maxy — by) = 0 (1.43)

on the line 7!, the parameter’s k value being determined by the corresponding y-coordinate
of H. With some reflection aided by Fig. 1.7 it is becomes clear that rotation of the line
L about the point 793, inducing rotations of L/, L”, L' about the points 7o, T1r93, Trrarg
respectively, corresponds to a translation of the line 7! on 72 (Exercise 5).
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An important phenomenon occurs when the horizontal line H crosses the intersection
points of the L’ lines with ¢ = 0, 1,2 denoting the number of primes. The coefficients ¢; # 0,
and in this case are all positive, for H in the position shown in 1.38. When H is on the
point L' N L" the 31/, T3 coincide. Hence ¢, = 0 (see Fig. 1.18) and the plane 7 being

Fun & Games with the ILM

Open ILM2 and click the 5th button with the ||-coords icon
The plane and line in Cartesian coords are on the right
A picture similar to Fig. 1.37 appears on the left

For some experimentation:
translate vertically the horizontal line A on the 4 7 points and observe
that the 7 slide along the L ... L" lines.
Note the distance between the adjacent 7
and the coefficients of the plane’s equation at the bottom.

In preparation for the next discussion
place the line H on each of the line intersections i.e. L N L' etc.

Note that then the plane is perpendicular to a principal 2-plane

Change the line and/or plane and repeat.

" o \‘— 5 -l - XE
Ao Bz Ty 7
* * e
‘El: 3 o
A &
Thon Ty Dby e
Hos MRS i) g
-
XI XE XE Xl XI! XE -

Figure 1.38: Rotation of a plane about a line in Cartesian and ||-coords.

In this instance all the coefficients of the plane’s equation ¢; # 0.
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oY Tz T4
* *
ar e
LA ®
23 ﬁﬂw 5%2_'3
Py NPV Lo LR e P
I : K
e - e “‘ =t =t _“#':)
X A X3x‘ X{ X, 3%y,

Figure 1.39: Here ¢y =~ 0 and positive.

The line H being just above the point L' N L” indicates the plane is nearly perpendicular to
the 2-plane x1x3.

perpendicular to the 2125 plane. Pursuing this closely, in Fig. 1.39 H is just above this point
and Fig. 1.40 just below the point significantly showing that that 7 has flipped. Consider
the oriented plane together with its normal vector N, whose components are the coefficients

Mo Hrz Toay .
* * il
Ity I
Ll »
23 \“’;‘T’iﬁu’r' 5%2_'3
= 4 of o o
Xy Xy AR A A A

|7
T
Tl i
""ﬂ-\.\_\"".\,‘__‘
e
x:*.f:'x_
g
Xl

Figure 1.40: Here ¢y &~ 0 and negative the.

The line H being just below the point L' N L”. The plane is nearly perpendicular to the

principal plane zyx3 but has “flipped” compared to the previous figure.
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¢;, we show next that H that just traversing all 3 the points L' N L+ corresponds to the
plane making a 180" rotation about its axis resulting in the normal N — —N.
Let

L' y=mc+b,i=0,1,2,3, (1.44)
T T (b2 —b1)  (maby —maby)
xr,y :L'HL”:<— , 1.45
( I I) (m2 — ml) (m2 — ml) ( )
For a value € > 0 with the superscripts + , — denoting values above or below y; respectively,
yt=yrte=ma +bi,yT =yr+e=ma; +b,
v =xr+e/m;, ;7 =xr —€¢/m; .
Then
cy = k(zg —af) = e(my — my)/mims , c5 = k(zy —27) = —e(my — my) /mims ,
= /ey =—1, (1.46)

where k is a proportionality constant. It is clear from Fig. 1.38 or from an easy calculation
that ¢ /c; ~ 1~ cd /c; for € small. Therefore, as

e—0 = /e >1,c¢f/c; -1 and cf/c; — —1. (1.47)

As H traverses the point L' N L”, the plane 7 remains perpendicular to the z;23-plane with
the xo component of the normal N flipping its orientation by 180°. With ¢; and c¢3 unchanged
this amounts to the plane © “Hipping” with respect to the principal plane x1x3. That is what
is seen in Fig. 1.39, 1.40. Of course, a similar flip occurs when H traverses either L N L' or
L" N L" as stated below, the superscripts +, — referring to above/below position of H with
respect to the intersection point.

Corollary 1.3.2 (Flip) For an oriented plane w, having normal vector N = (c1,¢9,C3),
rotating about a line {, the traversal of the point L' N L' | i =0,1,2 by H corresponds to
ci/e = =L, cffe; =1, j#i

This observation is useful in the study of non-orientability as for the Mébius strip in Chapter
?7? on surfaces.

Specializations and Generalizations

We have seen that the rotation of a plane about an axis is completely determined by the
translation of H with the 7a3, 7231 along the two lines L, L’. Pictorializing the rotation
facilitates its customization to specific cases. For example, what rotation leaves the coefficient
c1 of the plane’s equation invariant? The geometric requirement is for L and L’ to be parallel,
that is their point of intersection 73 is ideal, which occurs when the slope m3 = 1 in eq.
1.42. The rotation then leaves the first coefficient ¢; invariant, the direction of L and hence
of o3 is determined by bs. All that is seen in Fig. 1.41 with the corresponding translation
of H the 793, Tag17, T3179r, Ty rolling along L, L/, L”, L™ respectively show the variation of
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the plane’s equation other coefficients. The construction starts by chosing L and L’ in the
direction given by b3 while the horizontal distance is 3¢;. As in Fig. 1.22 the coordinates of
L' determine the points 72, T3 and the lines 12, 13. Or conversely these are obtained from
the line’s equation either way proceeding as outlined in section 1.3.2 where only L” is not
parallel to L. The pencil of planes obtained by the vertical translation of H is now

71'2 . (3?3 — T9 — bg) + k‘(.ﬁEg — Mo — bg) =0. (148)

Here it is assumed that the axis of rotation 7' lies on the plane 72

for 72 : c1wy + coxo + c373 = ¢

(see exercise 7) . Then

7T%32333:$2+bg

2 . __a co—cabs
T2 -T2 = 35T + catez T

(1.49)

The translation of H is not the essential “ingredient” for there is no vertical movement
when the axis of a plane’s rotation is on the point H. For our purposes this means that the
lines L, L/ are on H and the points 7a3, T2y move only horizontally, and there are some
interesting sub-cases. For example rotation of a plane m about its £, results in 7123 being
stationary (since it is £;) while 7931/ is tranlated along H together, of course, with the other
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Figure 1.41: Rotation of a plane 7% about a line 7! with ¢; constant.
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two points. Similarly rotation about ¢/ leaves 731/ stationary. Rotation about a general
axis 7' C 72 on H results in all triply indexed points moving simultaneously along H.

The rotation of a plane m viewed in ||-coords as the movement of points opens up new
vistas for generalizations. For parallel translations of 7 the corresponding movement in |-
coords is vertical with the “pencil” of planes so generated being the family represented in
Fig. 1.19. It is didactic to design the transformation of planes defining the corresponding
pair of loci of the points 7193, Ta31- on the plane. For example, in chapter 77 it is shown that
any developable surface o is represented by a pair of curves with the same minimum and
maximum y-coordinate, o being the envelope of a one parameter family of tangent planes
(exercise 8). So in RY a developable hypersurface is represented by N — 1 such curves.

With some care the composition of transformations can be specified and visualized as the
union of the corresponding loci. Consider for example the representation of “wobbling”, as in
the motion of a spinning-top, as the composition of a rotation about an axis rotating about
its tip while moving along a path on a plane (exercise 9). The interesting generalizations to
RY are an excellent research topic, see for example ([1] pp. 403-409) and sections ??, 77 in
Chapter 77.

FErercises

1. Given three non-collinear points P € nf, P’ € w},, P" € =}, provide an algorithm
which finds the representation of the 2-flat 72 which contains the three points. Even
though a plane is uniquely specified by 3 non-collinear points, in this case the algorithm
should take advantage of the fact that 3 given points belong to the 3 principal sp.

2. For the construction of the four indexed points in section 1.3.2 prove that any choice
of the three lines L, L', L” gives the same result.

3. Draw the figures corresponding to Fig. 1.41 but for rotations leaving the second and
separately the third coefficients of the plane’s equation invariant.

4. Find k in eq. 1.48 as a function of the corresponding y-coordinate of H and then
specialize it to the subcases given.

5. Draw the figure corresponding to Fig. 1.37 for an axis of rotation through the point
H of the plane. In this case L and H coincide.

6. Find the angle of rotation of a 2-flat m about a 1-flat 7! as a function of the motion of
the triply indexed 7 points. Specialize for the case when 7! is on the point H.

1

7. Draw the figure showing the rotation of a plane 72 about a line 7! not on 7% and

include the 72 N 7t.

8. Describe the transformation of a plane where the points 7193 and 7193 each trace two
different ellipses having the same minimum and maximum y-coordinate.

9. Provide the geometric locus for the representation of a plane’s wobbling (last sentence
of this section).
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10. Construct the constant planes representation in higher dimensions.
11. Prove the correctness of the algorithm for

(a) The intersection of 2 planes.

(b) The intersection of a line with a plane.

This means to show that for any input the algorithm terminates with the correct
output.

1.4 Hyperplanes and p-flats in R

1.4.1 The Higher Dimensional Super-Planes

Just as for R? we expect the super-planes in RY consisting of points of the form eq. (1.7)
to play a fundamental role. They are denoted by 7%° to mark their dimensionality and
abbreviated to sp. We use the general the axes spacing d = (dy, ds, ..., d;, ..., dy) this notation
designating that the axis X; is at ; = d; and recall that the sp are on the line

U:To=1T1, T3 =T, ..., Li =Tj_1, ..., TN =TN_1 . (1.50)

Being 2-flats the sp are described by N — 2 linearly independent equations which after some
matrix manipulations can be given with 2 variables each as :

(%5 : (w2 —21) + k(23 —22) =0,
Wé\:fai : (3 — x2) + ko(zg —23) =0,
NS DR
: s 1.51
" Ty (Tivi — i) + ki(Tip2 — 2i01) =0, (1.51)
\ ”gvas—m(N_nN : (n—i —an—i—1) + ky_1(zn —2n—1) =0 .

The form of the equations stems from the fact that in the 3-dimensional subspace z;_sx;_17; ,
ngm(i_l)i is the pencil of 2-flats on the 1-flat (line) x;_ 1 = x; 5, x; = x;_;. Pointing out
that each such 2-flat contains the points (1,1,1), (d;_2,d;_1,d;) enables the elimination of
the parameter k; in the equations 7V* which are rewritten in terms of the axes spacing as :

7V (dy, dy,d3) 0 (dy—dy)ay + (dy — d3)wg + (do — dy)w3 =0,
7TN8 (dg, dg, d4) : (d4 — dg)xg + (dg — d4)$3 + (dg — dg)x4 =0 s
. (1.52)
e (diy dig1, diga) o (dig2 — dig1)xi + (di — dig2) g1 + (digs — di)Tip = 0,
e (dn—2,dn_1,dN) : (dy —dy-1)rN—2+ (dn—2 —dy)zN-1+ (dn-1 —dy_2)zn = 0.
For example in R* the sp are given by
71'45 . { 7Til§3 . (d3 — dg)ZL’l + (dl - d3)l’2 + (d2 — dl)l’g =0 (1 53)
’ 71'354 : (d4 — dg)éEz + (dg — d4)$3 + (dg — dg)x4 =0 ’
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This is a good time to make a recursive notational convention?® for the axes spacing obtained
by the successive translations of the X; to the new positions X. For the initial N axes
system X1, Xy, ..., Xy we write

7
A\

d% =10,1,2,...,i—1,...,N—1).

This states that the first axis 5{1 is placed at = 0, X, is placed at z =2 ... and x = N —1
for X. After translating the X; axis one unit to the right of Xy, renaming it X/, the axes
spacing N-tuple is

7
A\

di =d% +(N,0,...,0)=(N,1,2,...,i—1,..., N—1) .

And after ¢ such successive unit translations with the X; axis in position X; the axes spacing
fori=0,...,N, k = 1, ..., N is given by

7 7
A

Ve

. ——— ~
dy=dy +(N,...,N,0,...,0)= (NN +1,....i =14+ N,i,... N —1) = (dy) . (1.54)

To clarify the indices, ¢ refers to the number of the axes translations and k is the position
(component) within the vector di;. Using the step function

1 1>k
siue):{o S (1.55)

the axes-spacing after the ith translation can be conveniently written as
di = (dir) = (k — 14+ NSi(k)) . (1.56)

When the dimensionality is clear from the context the subscript N can be omitted. For a
flat 77 expressed in terms of the diy spacing, the points 7}, ..,y of its representation
are denoted compactly by 7, and it is consistent to write 7? = 7}, that is 7” described in
terms of the axis spacing d¥;.

Returning now to the higher dimensional sp, in R* for the standard spacing d°

ds { Tiog 21 — 2T3 + 23 =0 (1.57)

Tor -
0 s . 2

The axes are translated, as in R3, to generate different sp corresponding to rotations about
u which are summarized in Fig 1.42. First, the axis X, is translated to position Xy, one unit
to the right of X, with the resulting axes spacing d* = (4,1, 2, 3) yielding

4s . | Ties X1+ 2x9 — 323 =0

7 1.
! {7?5’34 txy — 223+ 24 =0 (1.58)

The angle of rotation between 755 and 75, computed via eq. (1.29) is cos™! (—+/3/7) =
180°— ¢, ¢ =cos (4/3/7) =~ 49.1° . Note that since 735, remains unchanged this is not

3] am indebted to Liat Cohen for proposing this notation.
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a complete rotation of M52y about the line u. Proceeding, with the translation of X, to
position X} one unit to the right of Xy, provides the axes spacing d? = (4,5,2,3) and the sp

s { Ty 3T — 29 — 23 =0

T Toay T2+ 223 — 324 =0 (1.59)

The angle between 7§53 and 73,55 is cos™ (=1/7) = 2¢ while the angle between 735, and
gy 18 180° — ¢. With the translation of X3 to position X3 one unit to the right of X},
d3 = (4,5,6,3) and
4s | ) Tyoy X1 —2x2+ a3 =0
[ { Tgy  ©3%To — 2x3 — x4 =0 (1.60)

returning w45 to its original position 7j,; while bringing 75,5, to an angle 2¢ from 73,,,.
Again this is not a complete rotation of the whole sp about the line u. The final translation
of X, to Xy one unit to the right of X3 provides d* = (4,5,6,7) and

71'45 . Wf/ng/ X1 — 21'2 +x3 = 0
4 - . —
Torgryr T — 223+ x4 =0

(1.61)

which is identical to my,,. Unlike R® the rotations angles are not all equal though the sum
is a full circle. The “anomaly” suggest that ¢(V) is a function of the dimensionality N with
#(3) = 60° and ¢(4) ~ 49.1° and it is interesting to investigate. For RY we look at iy}
with d° = (0,1,2,..., N — 2, N — 1) and after the translation of X; to position X, with the
axes spacing is d! = (N,1,2,..., N — 2, N — 1) yielding respectively the two corresponding
wNs(dy, dy, d3) in eq. (1.52) :

s tx — 21+ w3 =0, (1.62)
sy tx+ (N =2+ (1 — N)zg =0. '
The angle function is
_ -1 V3(N-2)
¢(N) = cos ( S NN ) : (1.63)

some of whose values are ¢(5) ~ 47.88°, ¢(6) = 45° and the limyn_.o ¢(IN) = 30°.

Next let us compute the 1-flat (line) intersection ¢, = 7% N7 where the plane 7 C R* to
find the index points representationt for 7 first for a general axes spacing d = (dy, da, d3, d4)
described by :

s D C1T1 + Cog + C3X3 + C4Ty4 = Cp
misy 1 (dy — do)xy + (di — dg)xs + (do — dy)z3 =0 (1.64)
moss o (dy — ds)xa + (do — dy)xs + (dz — da)zy = 0.

With the notation

{ a = Cl(dg — dl) + Cg(dg — dg) + C4(d2 — d4) , (1 65)
b:CQ(dg—d1)+03(d3—d1)+04(d4—d1) s '
the line intersection is given by

by 29 = —%xl + L;dl)co ) (1.66)



Since £, C 534 f_mj = Emw for distinct indices 4, 7, k,r € (1,2,3,4) so that in homogeneous
coordinates

4 4

£7r12 - ( (d2 - dl)b + dl Z?:l Ci s (d2 - dl)co ’ijzl Ci) ) = (Z Cidi » €0 ,ZCZ-) ' (167)

i=1 i=1

Substituting the axes spacing di; in the above the indexed points for the representation of
7 are obtained below where S = Zle it

Ty = T1234 = (co + 2¢3+ 3¢y ,¢0,9)

Ty =Trose = (der+co+2c5+3¢4 , ¢ ,.5)

Ty = Tryss = (4e1 +5e2 + 23+ 3c4 ,¢0,5) (1.68)
= (4¢q + 5eg + 6¢3 + 3¢y ,¢0,5)

= (401+502+603+7C4 , Co ,S) .

Ty = T34
7_'('4/ = 7_'{'1/2/3/4/

We wrote this out in full detail to show that again the distance between adjacently indexed
points, appearing on the left above in simplified notation, is as for R?® proportional (equal to
the dimension) to the corresponding coefficient. Specifically,

Ty — Ty = (401 70 70) )
Ty — Ty = (402 70 70) )
Ty — Ty = (4C3 ,0 ,0) 5 (169)
Ty — Ty :(464,0,0).

4s __ ,_4s
Ti23 = Myoy
4s __ ,_4s
T34 = Torzry

Figure 1.42: The rotations of 7%s about the line w.

This is a projection on a plane perpendicular to u and so that projections of the 3-flats

4s 4s :
Ti5g , M3, are lines.
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From which the relations analogous to eq. (1.28) are immediately found i.e.
.T(ﬁ'g/) =12 — [m(ﬁ0/)+x(ﬁ1/)+x(ﬁ2/)] , .T(ﬁ';y) :4+x(7?0/) . (170)

To reduce the cumbersome notation the sp eqs. (1.57) , (1.58) , (1.59) , (1.60) , (1.61) are

referred to by 7o, 7iF, mof, mat, miF respectively. Next we show that the indexed points can

be easily obtained in general and the property in eq. ( 1.69) holds for all N.

FErercises

1. State explicitly the equations for the first sp in R®.

2. Perform the standard translations of the 5 coordinate axes in R® to obtain explicitly
the corresponding rotated 5 sp.

3. Obtain the coordinates of the 6 points arising in the representation of a 4-flat in RS,
This is the generalization of eq. 1.68.

1.4.2 Indexed Points in RY

Remarkably, the collinearity property (as in theorem 1.2.1) generalizes to higher dimensions
enabling the recursive (on the dimensionality) construction of the representation of p-flats
for 2 < p < N — 1. To achieve this some intermediate steps are needed. The indexed
point corresponding to the axes spacing di; (i.e. obtained from the translation of the axes
X1,..., X; to the positions Xy, ..., Xy see eq. (1.54) is denoted by 7.

Theorem 1.4.1 (B.Dimsdale) The I-flat 7 N7 , wherei=0,1,...,N and

N
T chxk =, (1.71)
k=1

is a hyperplane in RY an (N — 1)-flat, is represented by the point :

N

N
7_7'2'/ = (Z dika , Co, ch) (172)
k=1

k=1

where the dg, are the inter-azes distances for the spacing di; as given in eq. (1.54). Explicitly

using eq. 1.50
N

7= _(k=1+NSi(k))er, co, Y i) (1.73)

k=1 k=1

Proof: To determine the 1-flat and obtain its representation it suffices to find two points
in the intersection m N 7.
Step 1 Points P; = (p1;, p2j, - - -, pnj) € )% are such that :

Elmj , bj eER> Prj = mjdk + bj . (1.74)
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Step 2 So for P; € mw N w)’*, in addition to eq. (1.74), the coordinates of P; must also
satisfy eq. (1.71) i.e.
N
Z cr(mjd, +bj) = co .
k=1
Step 3 By Step 1 P; is the straight line y = m;z + b; in the xy-plane and together with
Step 2 we have ,

or

N N N
—my ) e+ () ey =—m; (O drer) +co (1.75)
k=1 k=1 k=1
this is an alternate form of the equation for the line P;.

Step 4 Since xy is the projective plane P2, for any two distinct points P, P, the corre-
sponding lines P, and P, intersect at :

(—m1 + mg) ( Ck) xTr = (—m1 + mg) (Z dkck) =

k=1

1=

O )= dicy)

Substitution in eq. (1.75) provides the remaining coordinate :

(ch)y:co.

_ The point (z, y) is independent of the particular lines P, and P, used, so all the lines
P; for the P; in Step 2 must all intersect at the same (z, y). Converting to homogeneous
coordinates yields eq. (1.72). u

Corollary 1.4.2 (Hyperplane Representation — J. Eickemeyer) The hyperplane
given by eq. (1.71) is represented by the N — 1 points T, with N indices given by eq. (1.73),
fori=0,1,2,..., (N —2).

Specifically

(

7_7-0/:7_'(-12“‘]\[:(CQ+203+...+(I€_1)Ck+...+(N_1)CN, Co , S),
7_'('1/:(Ncl+02+...—|—(1€—1)0k+...(N—].)CN, Co , S),
7y =N+ (N+Dea+...+(k—1cpg+...+(N—1en, o0, 5),

ﬁZ/:(Ncl—‘—+(N+Z—1)CZ+ZCH_1++(N—1)CN,CQ,S), Zzl (176)
/:(NCl+...+(2N—3)CN_2+(N—2)CN_1+(N—1)0]\/, Co , S)

(N-2)
T(N-1)y = (NCl + ...+ (2N - 3)CN_2 + (2N - 2)0]\/_1 + (N - 1)CN , Co S)
L TN = (Ncl—|—...—|—(2N—3)CN_2+(QN—Q)CN_1+(2N—1)CN, Co , S) .
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where S = Z,ijl cx. The first N — 1 points suffice for the representation. As for R® and
R* it is useful to generate two additional points 7 _,, 7 here based on the axes-spacing
dy*, dY providing also the of egs. analogous to (1.70)

o =NV =1) =Y a0, ayp =N +3 (L.77)

with the compact notation x; = z (7).

A p-flat in R¥ is specified by N — p linearly independent linear equations which, without
loss of generality, can be of the form:

( p . J—
Tg(p1) - (1171 .ot Cp-1)1Tp T Cp1Tp1 = C10
p . _
Tos.(pr2) © C22T2 T CpTpt1 T Cpt1)2Tp42 = C20
D .
Tl
P . o
Tetptg) + Cid%i Tt 1) Tpri—1 T Clp)iTps = Cjo
p . _
T(N—p)-N * CN-p)(N-p)TN-p T .-t CN-1)(N-p)TN-1 T CN(N-p)TN = C(N—p)0

and is rewritten compactly as

ptj
o {m Zc]kxk—cjo L j=1,2...,(N—=p)}. (1.78)

A p-flat 77 C R¥ is the intersection of N — p hyperplanes and eq. 1.78 is the analogue of
the “adjacent-variable” description for lines in Chapter 7?7 with analogous indexing. Unless
otherwise specified, a p-flat is described by eq. (1.78) with the standard spacing d%.

Theorem 1.4.3 (J. Eickemeyer) A p-flat in RY given by eq. (1.78) is represented by the
(N — p)p points with p 4+ 1 indices :

p+1 p+1
T eto ) Z dirCik; cjo, Z Cik), (1.79)
k=1

where j =1,2,....,N—p, 1=1,2,...,p and the d; are the distances specified by the azes
spacing di

Proof: Each 7r (pij) D eq. (1.78) can be considered as a hyperplane in R®+1)
Tj. o Tjrpti, Whose representation, according to corollary 1.4.2 consists of the repre-
sented by p points Wf ( t = 1,...p. They are prescribed by the axes spacing

p+i)}i?
d = (dit,...,dipt1)s- .-, N) as per Theorem 1.4.1. There are (N — p) hyperplanes de-
scribed by eq. (1.78), therefore there are (N — p)p such points altogether. [ |

To clarify, a hyperplane 7 in R* 7 (i.e. 3-flat) can be represented by the three points
T1234, T1/234, U234 , (1.80)
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while for a 2-flat 72, p =2, N =4, p(N — p) = 4 and is represented by the four points :
2 . =2 -2 2 -2 -2
123 = 123, T1r23 5 T34 - To34) Tor34- (1.81)

Similarly in R®, a hyperplane 7 is represented by the four, a 3-flat 73 and a 2-flat 72 by six

points each i.e.
(

T 1 T12345 5 T1/2345 5 T1/2/345 , T1/2/3/45
3 . =3 —3 —3
3 Tio34 + T1234 5 T1r934 5 T1r9r34
* 7T3 . 77.3 77.3 77.3
2345 - T2345 5 Toraqs » Morgigs (1.82)
2 . =2 —92
Tio3 - Moz s Tyrog
2 2 . =2 —9
™ T34 - To34 5 Tor34
2 . =2 —95
. T345 - 345 5 M3145 -

In many instances it is possible to use simplified notation by just retaining the subscripts so
that the three points in eq. (1.80) are referred by 1234, 1'234,1'2'34. The dimensionality is
one less than the number of indices. Continuing, the points representing pi® in eq. (1.82)
denoted simply by 1234, 1'234,1'2'34; 2345, 2'345, 2'3'45; since there 2 sets of 3 points with
5 different indices altogether we can conclude that this is a 2-flat in R®. The simplified and
the more formal notation are used interchangeably as in section 1.5. This theorem unifies
all previous results for p-flats 77 where 0 < p < N.

1.4.3 Collinearity Property

T he underpining of the construction algorithm for the point representation of a 2-flat 72 C
R3, as we saw, is the collinearity property. Namely for any 7' C 7* the points 71y, 715, Tag
are collinear with 7193. For the generalization to p-flats let
Px _ =Pk —Dk

L3" = Tiprd) ® TG40 ti) (1.83)
denote the line E?k on the indicated two points. The gist of this section is the proof that
W(p_l)l, 7-((1’—1)2 C 7rp C RN
_ 711 ~ F(p—1)2
=L NL; . (1.84)

ey
Tj(pi+1)

As an example for j = 1,p = 2, N = 3 recasts our old friend from section 1.2.2 as :

L' =wlyerls, k=12 &4 =L NI .

The pair (1.83) and (1.84) state the basic recursive construction implied in the Repre-
sentation Mapping stated formally below. The recursion is on the dimensionality, increased
by one at each stage, of the flat whose representative points are constructed. Though the
notation may seem intimidating the idea is straight forward and to clarify it we illustrate it
for a hyperplane 73 C R* in Figs. 1.43 and 1.45 starting from the 4 points 7%, 7%, 7% 704
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with — pointing to the construction result. Diagramatically the sequence of steps is :

0 0 1
T2 =t o (7?2 721 )
71.02, 7T03 N 71'12 1235 11723

00 0, — 7 (Tiyss s Thrasa s Thraaa) (1.85)

7r03:7r04 — 7r13} =72 (T3, Toaa)
For the construction of a regular (i.e. not ideal) flat, the flats 77 C 73 with dimensionality
3>p>1in the construction must have a non-empty intersection. From the the polygonal
lines representing 701 702, 7r the two one 1-flats 7!t, 12 are constructed with rltNri2 = 702
yielding the points 713 , a4 , 734 as shown in Fig. 1.43 (left). The portion of the construction
involving x1, x9, 3 is shown in cartesian coordinates in Fig. 1.44. The 3 representing points
for each 1-flat are joined by two lines to form polygonal lines having 3 vertices (the points).
From the intersection of these new polygonal lines the points 72k, , as,, Tepresenting a 2-
flat contained on 73, are constructed as shown on the right of Fig. 1.43. Similarly 7?2 is
constructed from the 3 points 72, 7% 7% in the same way.

At any stage a point representing 7", where the superscript is the flat’s dimension, is
obtained by the intersection of any pair of lines joining points representing flats of dimension
r — 1 contained in 7".

The axes X1, X, are each translated 4 units to the right and construction proceeds until
all 3 representing points 72y, Toigsy, Tirggs are obtained. The first translation is shown in Fig.
1.45 on the right. As a reminder this points represent the lines which are the intersections of
73 with the first super-plane, due to the standard spacing with d; = 0,dy = 1,d5 = 2,dy = 3,
followed by by the second sp with dj = 4 and then third sp with dj =5 in R*.

Theorem 1.4.4 (Collinearity Construction Algorithm) : For any

7P=2) - pl-1) -~ RY | the points 7T](Lp (p) 1 ﬁép (z) W > 7T§ (11)) 1y @€ collinear.

Proof: Step 1 Let the (p — 1) and (p — 2)-flats be given by:

(p-1) . (1) p+z 1 - L _
{ ™’ - T (pti-1) DDl CwTp=cCoy, 1=1,...,N—p+1 (1.86)

TRy Zpﬂ fagar=ag; . j=1. N —p+2

Step 2 Let Consider two distinct points A" = (0/1", cooahy), T =1,2,€ 7?2 and substitute

their first p-components in the equation for 7r12 p) in eq. (1.86) to obtain

cnay + .o+ Cpo1n ) + Cpray, = Ccon - (1.87)

Whereas substitution in the first two equations for 7(P=2) | i.e. ng?(;—?)’ wéz_j_ __(120)_2) (r1) » Yields

(r—2)

2 , . .
Ty gy © G11OF - Q210 )+ AGo1n0f,_y) = G
Tyelp-2)p—1) © 42202+ o F Q1200 1) + Ap20, = oz,

whose sum is

allo/{ + (0,21 + &22)0(2 + ...+ (a(p—l)]_ + CL(p_l)Q)Oé(p_l) + &pga; = Qo1 + Qo2 - (188)
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Figure 1.43: Recursive Construction in R%.

A pair of points 7%, 7% determines a line (1-flat) 7!* represented by the 3 constructed points
ﬁiliu , 1 =2,3,4 (left). Another 1-flat 7'2 is determined by one of these points 7% and
an additional point 7% as represented by the 3 black points. Since 7!* N 72 = 702 the 2
1-flats determine 2-flat 7% and two of its representing points 725, , T34, are seen on the right.
They are the intersections of the two polygonal lines joining the previously points obtained

representing the 2 1-flats.

Z3

X1

Figure 1.44: The construction of the z;zyx3 part of the 3-flat 73 from 4 points (0-flats).
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Figure 1.45: Recursive Construction in R* continued.

Two 2-flats 72!, previously constructed, and another 722 represented by the 2 black points
(left), determine a 3-flat 73. Pairs of points representing the same 2-flat are joined and their
intersection is the point 75y,,. This is one of the 3 points representing the 3-flat. The “debris”
from the previous constructions, points with fewer than 4 indices, can now be discarded. A
new axis (right) Xy is placed one unit to the right of X3 and the z; values are transfered to
it from the X; axis. Points are now represented by new polygonal lines between the X, and
X7/ axes and one of the points 7r41/, representing the 1-flat 7!t on the new triple of ||-coords
axes, is constructed as in the 1st step.

Step 3. Equations (1.87) and (1.88) are the same for subtracting one from the other yields
aj(cn — an) + ag{car — (aa1 +ag)} + ...+ ap(cp — ap2) = cor — (ao1 + agz). (1.89)

Letting r = 1,2 successively in (1.89) provides two equations whose difference is
[aj — ailby + [ — adlby ... + [y — )b, =0, (1.90)

the b; being the coefficients of eq. (1.89). This is effectively an identity for every pair of
distinct points in 7?~2). Hence the coefficients and the right-hand-side of eq. (1.89) must
vanish

cor = (@o1 + ao2), €11 = a11, Cp1 = Apa, Cp1 = (ap1 + ax2), k=2,...,p— 1. (1.91)

Step 4. The homogeneous coordinates of the 3 points in question as obtained from Theorem

1.4.3 are:
ﬂp (i 1) Z dirag, aot, Z a),

_(p—2)
Ty (p p E dor o, o2, E Cl2k
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and

P p
_(p—1
ng,,,(;_l)p = (Z d1kCak;, Cot, Zcm) .
k=1 k=1
Note that for this portion of the construction the axes spacing is dyy = dog, £k =1,2,...,p.

Forming the determinant from these homogeneous coordinates

p—1 p—1
Yoy dik@ik o Y p—y ik
P P
D b dokor Qo2 Dy _o Gk
y P
Zk:1 dikCor  Cot Zkzl Cof

From Step 3 and the observation on the axes spacing the last row is the sum of the first and
second rows, the value of the determinant is zero showing that the 3 points are collinear. m

Corollary 1.4.5 For any n®? C nP=1) C RY, the points

—(p—2) —(p—2) —(p—1) .
TG oti—2Yy  TLGA) o ptd— DYy T{G(prg -1y}, 7€ collinear.

The proof is the same taking proper care to keep track of the indices and the corresponding
axes spacing. The recursive construction is illustrated for a 5-flat in RS from Fig. 1.46
through 1.48.

Exercises

1. What points represent the sp in RV?

2. State the coordinates of the five points representing a 5-flat = C RS.

AW/
|

bt
=

X2 X3

Figure 1.46: Randomly selected points on a hyperplane in RS,

Polygonal lines (left) on the X ... X4 axes representing randomly selected points on a 5-flat
7 C RS, ted points on a 5-flat 7 C RS . The 73 , Ty portions of the 1-flats C 7 constructed
(right) from the polygonal lines lines. No pattern is evident.
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Figure 1.47: The 71h, , Tasy (left) points for the 2-flats C 7°.

They are constructed from the polygonal lines joining 75, 7p% , Tz. The Tias , Toyy (right)
portions of the 2-flats C 7® constructed from the polygonal lines joining 71} , Tah , sy

3. State the points representing a 4-flat 7, 3-flat 7% and 2-flat 72 in R® as in eq. (1.82).

Mosrrarsr Myzsese
MWizzase . Mozsser “161 2y gﬁ

356172 “)4561 ‘2’3’

Wi

X1 X2 X3 X4 X5 X6 X1 X2 X3 X4 X5 X% X’ X2’ X3¥ X4’ X5 X&'

Figure 1.48: This is it!
On the left are the Tihsus , Tosuss Of the 4-flats C 7 constructed from the polygonal lines
joining s, , Taiys , Taiss. This shows that the original points whose representation is in Fig.
1.46(left) are on a 5-flat in R®. The remaining points of the representation are obtained
in the same way and all 7 points of the representation of 7° are seen on the right. The
coefficients of its equation are equal to 6 times the distance between sequentially indexed
points for in Fig. ?? for R3.
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4. Prove eq. (1.77) for RV,

1.5 Construction Algorithms in R*

T he generalization of the 3-D construction algorithms to 4-D is direct and is an opportune
time to introduce simplified notation which is used when the context is clear.

1.5.1 The Five Indexed Points

The first example is the equivalent of the four-indexed-point algorithm in section 1.3.2 for
4-D. That is, given three points o34, T1/934, T1/2r34 specifying a 3-flat 73 : c121 + cox + c3x5 +
cay = o in P* to construct the other two 754 and Tyags. We start by revisiting the
last step in the recursive construction Fig. 1.45 and show it again in Fig. 1.49 (left). This
is the stage where two lines P, P, each on the 123 and 234 points of a 2-flat determine the
first point 71234 representing a 3-flat 72; a situation completely analogous to that in Fig.
1.10 where here the dimensionality of the objects involved is raised by one. Of course, the
lines represent points P; € s; N 72 and P, € w*s; N 7?2 for two 2-flats 72!, %2 contained
in 2. As a reminder containment is seen by the on relation. For example, line P on point
7293 < P € 72 and here in particular the point P is on the line 3, = 72 N7 . As for
the 3-D case the point 7934 represents a line on an sp. Specifically 71934 = 7{* N 3. From
a line P, on the points 734, (Which we assume has been previously constructed) and 7193,
the second point 71934 is determined as shown on the right of Fig. 1.49.

y y
_9,
123 > }231 _ ceeem 123
P =2
\@i [ cmmemm 234
x X

— P
P
Xl Xz Xg X4 1 2 3 4 v

Figure 1.49: Continuing the construction of indexed points for a 3-flat 73 in 4D.

On the left is the point 71934 previously constructed in Fig. 1.45. Using simplified notation
the construction is continued on the right to obtain the point 71,934 — marked by 1'234. The
1231, 1'23,,234; are points of the representation of a 2-flat 72 contained in 73. The lines
Py, P{ on 1234 and 1234 share the indices 234 and necessarily intersect at the 234, point.
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Figure 1.50: On the left are the initial data for a 3-flat 73 in R*.

Three points (right) P € 73 N7, P' € 73 N7, P” € w3 N7 are chosen. In the zow314
subspace of R* they determine a 2-flat 72,,.

The algorithm’s input consists of three points T3ys,, Togss, Toorg, Shown in simplified no-
tation 1234,1'234,1'2'34 on the left of Fig. 1.50. Four points determine a hyper-plane
7% C R*. On the right, 3 lines P, P’, P" are chosen on the points 1234, 1’234, 1'2'34 respec-
tively. Clearly P € m® N x{s, P’ € #® N, P” € 3 N i and these 3 points determine a
2-flat w2 C 73 which can be described by:

) { Ty 1 Q171 + Aoy + a3T3 = ag (1.92)

™ 7T§34 . ngg + b3$3 + b4ZE4 = bo

As for a 1-flat in a 2-flat, see Fig. 1.20, also for a 2-flat in a 3-flat P N P’ is 72, one of
the points representing 72. It is denoted by 234 and is on the the horizontal line 234 so
that 2/34 is 234 N P”. These two points represent 72, given by eq. 1.92); a 2-flat in the
Tox3x4 subspace of R*. The points a4,, Tagy, denoted by 2'3'4,2'3'4’ are needed next
and are determined from 234,234 via the construction algorithm in section 1.3.2. For the
representation of the a 2-flat 7%,; as in eq. 1.92 any point 7%, can be chosen on P such as
the one denoted by 123 in Fig. 1.51. The intersections of the horizontal line 123 on 123 and
P', P" determine the points 1’23, 12'3. Four points determine a hyper-plane 7 C R* and so
far we have used three. Proceeding, as shown in Fig. 1.51, the line P is drawn on the point
2'3'4 and parallel to P, the point P" is the point P in the X1/, Xor, X3, Xy axes. Just as for
the 3-D case but here P”" € m® N w{iyq, With 5, coinciding with 7i5,,. The intersections
of P" with the lines 123,1234 determine the points 1’2’3’ and 1'2’3’4. The construction is
completed by drawing the line P™ on the points 2'3'4’, 12’3’ whose intersection with the 1234
provides the the fifth point of 72 representation. The four independent points P, P/, P", P
determine 73. The algorithm’s output is invariant of the the choice of points as well as the
selection of the 72 (see exercise 3). Other equivalent determinations for the 3-flat are one
point P and a 2-flat 72 or 3 lines, the 3-flat’s intersection with the sp, which provide the 3
indexed points representation.

By the way, it is immediately clear that a 2-flat 72 C 7% <> 72193, 2934, T31234 are collinear
and equivalently for the remaining points representing 73. This is the generalization of the
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¢ C 72 condition shown in Fig. 1.20 and of course a particular instance of the recursive on
the dimensionality collinearity construction.

1 2 3 4 1 2/ 3/ 4/

Figure 1.51: Completing the construction of the 5 points representing a hyperplane in R*.

Ll 1ordl 1934 : 1934, | 1234012/34,
1234, | 1234, | 1234, 251, 3 P23 1984,

1234, 17234, | 172734, ‘ 12341234, | 1234, | 1234, ‘ !

[ - 1234 R R 1234,

4 /9 L -~olal 4 lh~
,,,,,,,, » 2‘}’11,, _ 2,3,%,,(:472,331,,,,,,,2,/131\{/.,/\,, 234
D! 1"
1 9 3 4 T A 1 2 R O A 2"

Figure 1.52: On the left are the initial data specifying two 3-flats 731, 732 in R*.

On the right the lines P, P, P" are drawn on the pair of points 1234, 1’234, 1’2’34 respectively
providing the 234 and 234 points for the 2-flat 72 = 73t N 732. Then the points 2'3'4, 2'3'4’
for m2,, and 1’2’3’4, shown within the dotted circles, are constructed.
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Figure 1.53: Intersection of two 3-flats in 4-D.

The result is the 2-flat 72 given by the points 123,1'2'3" etc. representing 7%, and 234, 2'34
etc for m3,,.

1.5.2 Intersecting Hyperplanes in R*

Next we provide an algorithm which constructs the intersection of two 3-flats 731, 732 the
result being a 2-flat 72 as the one given in eq. (1.92). The algorithm’s input is shown on
the left of Fig. 1.52 consisting of 3 points in ||-coords each representing the 2 3-flats. On the
right the lines P, P’, P” joining the pairs 1234, 1’234, 12’34 represent 3 points which specify
the 2-flat 72 = 7% N 732 whose representation is constructed in the next steps. As seen
the point 72,, = P N P’, 234 also establishes the 234 horizontal line with 732,,, = P” N 234
marked by 2'34. The points 2'3'4, 2’3’4’ and, using the previous algorithm, also 12’3’4 are
constructed and for easy reference are marked by the dotted circles.
The remaining steps are illustrated in Fig. 1.53.

1. Draw the line P™ on the point 2'3’4’ parallel to P, as in the 3-D construction, since
the point P™ is the pont P but in the rotated coordinates designated by 1’,2’, 3,4’ in
the simplifed notation. Necessarely P% is on the 1’2’3’4’ on the two horizontal lines
1234;,7 = 1,2. The point 2’3’4’ is constructed previously for this purpose. Alternatively
any of the two 1’2’3’4’ points can be used but its construction is more laborious.
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2. The line P" on the points 23’4, 12’34, is constructed providing 1'2'3'4, = P"N1234,
and 1’2’3’ = P” N P™ which establishes the 123 horizontal line.

3. The points 123 = PN 123,1'23 = P’ N 123,1'2'3 = P” N 123 are now available. The
coincidence of the points 123 and 1’23 here is due to the second coefficient a; = 0 of
T3 — see eq. (1.92)) — and is not true in general.

Note that 7y, is a 3-flat in R* parallel to the x4 axis and hence its equation has zero
coefficient for x4. The location of the points 123,1'23,1'2'3,1'2'3" which are now available
together with the first eq. of 1.68 and equation 1.69 enable us to obtain the values of 73y,
coefficients. Similarly, the coefficients of 73, a 3-flat parallel to the z; axis (hence zero
coefficient of x; is zero), equation are found. The two equations describe explicitly the
algorithm’s output 72 .

Further higher-dimensional constructions are not presented. They offer wonderful oppor-
tunities for exercises (below), projects and research topics.

FErercises

1. Simplify the above constructions using the relations in eq. (1.70).

2. Given four points each in a successive sp provide an algorithm to construct the 3-flat
containing them.

3. For the algorithm in section 1.5.1 show that the result is invariant for any choice of
points P € m* Nmi*, P’ € ¥ Naff, P’ € T Nl P € m N wriiyg, and miys.

4. Genelarize the algorithm in section 1.3.5 for a point P and 3-flat 73 in R*.

5. For a given 3-flat 7 and a 1-flat (line) ¢ provide conditions for containment ¢ C 73
and (N 7® = (. What is £ N 73?7

6. Generalize the algorithm of section 1.5.1 to R® construct the siz points arising in the
representation of a 4-flat given the first 4 points.

7. Generalize the algorithm of section 1.5.2 to construct the intersection of two 4-flats in
R5.

8. Generalize the rotation of a 2-flat in R? to display in || the rotation of 3-flat in R* about
an axis (i.e. a 1-flat). If it is not possible to perform this rotation show graphically
the constraints involved - hard.

1.5.3 Detecting Near Coplanarity

The coplanarity of a set of points S C 7 can be visually verified. What if the points are
perturbed staying close to by no longer being on the plane m, can “near-coplanarity” still
detected? Let us formulate this question more specifically by perturbing the the coefficients
¢; of a plane’s equation by a small amount ¢;. This generates a family of “proximate” planes
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forming a surface resembling a “multiply twisted slab”. Now the experiment is performed
by selecting a random set of points from such a twisted slab, and repeating the construction
for the representation of planes. As shown in Fig. 1.54, 1.55 the there is a remarkable
resemblance to the coplanarity pattern. The construction also works for any N. It is also
possible to obtain error-bounds measuring the “near coplanarity” [4]. This topic is covered
in Chapter 77

Experiments on points selected from several twisted slabs simultaneously and performing
similar construction showed that it is possible to determine the actual slabs from which the
points were obtained or conversely can be fitted to. All this has important and interesting
applications (USA patent # 5,631,982). Given a set of points composed of point clusters
each from a different plane(or hyperplane) the determination of these planes can be made
with very high accuracy and low computational complexity as shown in the second section
of the last chapter on Recent Results.

1.5.4 Representation Mapping - Version II

Let us revisit and update the representation mapping
J :2P" 9P otz N (1.93)

in view of this chapter’s results. The recursive construction starts with the non-recursive
step for the representation of a point P € R¥, a 0-flat 7°, in terms of N points each with one
index — the values of the coordinates p;, i € [1,..., N] of P on the X; axes. For consistency,
a point is also specified by the N equations

The construction of a p-flat from its points (0-flats) to lines(1-flats) and so on proceeds
according to Theorem 1.4.4 the dimensionality being raised by 1 until it reaches p providing
the indexed points needed for the representation.

X1 X:Z XS X1’ X2’ X3’
Figure 1.54: Polygonal lines representing a randomly selected set of “nearly” coplanar points.
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X1 X2 X3 X1’ X1 X2 X3 X1’

Figure 1.55: The “near-coplanarity” pattern.

On the left is very similar to that obtained for coplanarity with the points of intersection
forming two clusters (right).

Let NN, be the number of points and n, the number of indices appearing in the represen-
tation of a flat in RY then for p-flat, N, = (N —p)p, n, = p+ 1 and

N,+n=(N-pp+p+1)=—p"+p(N+1)+1. (1.95)
In RY some examples are
1.p=0—points 7 : N, +n, =N +1,
2.p=1-—1linesw': N, +n,=(N—-1)+2=N+1,
3. p=2— 2-flats (2-planes) 7% : N, +n, = (N —2)2+3=2N — 1,
4. p=N —1— hyperplanes N, =N —-1,n.,=N: N, +n.=N—-14+N=2N—-1.

Note that eq. (1.95) does not include the case for p = 0 (points). In summary, the represen-
tation by points reveals that the object being represented is a p- flat whose dimensionality
is one less than the number of indices used. The dimensionality of the space where the p-flat
resides is, of course, equal to the number of parallel axes or it can also be found from the
number of points (N — p)p knowing the value of p.

We have seen that the image Z(U) = U of a U C PV consists of several points each indezed
by a subset of [1,2,..., N]; the indexing being an essential part of the representation. The
mapping Z provides a unique representation since it is one-to-one with U; = U, < Uy = Us.
By representation is meant a minimal subset of points which uniquely identify the object in
question for, as we have seen, there are lots of redundant points. The final version of the J
is given in the conclusion after the representation of surfaces.
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