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Outline of the talk

1. Recent randomized work used in ours

2. Low-rank matrix approximation via SVDs and IDs

3. Steps in our algorithm

4. Empirical results of the algorithm

5. Proof of accuracy bounds

6. Applications and conclusions
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Recent randomized work used in ours

• T. Sarlós (2006, 2007)

• N. Ailon and B. Chazelle (2006)

• A. Deshpande, P. Drineas, A. Frieze, R. Kannan, M. W.

Mahoney, S. Muthukrishnan, and S. Vempala (2004, 2005,

2006)
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Cost of the randomized algorithm

The algorithm typically needs O(mn ln(k) + (m + n) l2)

floating-point operations in order to construct a nearly

optimal rank-k approximation to the m × n matrix A.

The classical pivoted “Q R” decomposition algorithms

such as Gram-Schmidt need at least kmn flops in order

to construct a similarly accurate rank-k approximation.

The constant hidden by the O-notation appears to be small

enough so that the randomized algorithm is at least as fast

as classical algorithms even when k is rather small or large.
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SVD of a matrix, 1

Given an m × n matrix A, there exist

orthonormal m × 1 vectors u1, u2, . . . , uk−1, uk,

orthonormal n × 1 vectors v1, v2, . . . , vk−1, vk, and

nonnegative numbers σ1 ≥ σ2 ≥ . . . ≥ σk−1 ≥ σk, such that

A =
k

∑

j=1

uj σj (vj)∗, (1)

where k is the rank of A.
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SVD of a matrix, 2

In matrix notation,

A = U ΣV ∗, (2)

U =
(

u1 u2 . . . uk−1 uk
)

, (3)

V =
(

v1 v2 . . . vk−1 vk
)

, (4)

Σi,j =

{

σj, i = j
0, i 6= j.

(5)

The columns of U are orthonormal;

the columns of V are orthonormal.
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Low-rank matrix approximation

Pick a positive integer k less than the rank of A. Then,

min
rank(B)=k

‖A − B‖ = σk+1(A), (6)

where ‖A − B‖ denotes the spectral norm of A − B.

The minimum is attained by the following matrix:

B =
k

∑

j=1

uj σj(A) (vj)∗. (7)
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Why low rank?

• Compression of subblocks of matrices arising from

the discretization of smoothing integral operators

and their inverses.

• Classic statistical method (principal component analysis):

• Noise removal.

• Data mining.
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ID of a matrix, 1

An interpolative decomposition of an m × n matrix A

consists of an m × k matrix E, and a k × n matrix B,

such that

1. some subset of the rows of E makes up the k × k identity,

2. every entry of E has an absolute value of at most 2,

3. the rows of B constitute a subset of the rows of A, and

4. Am×n = Em×k · Bk×n.
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ID of a matrix, 2

1. Gu and Eisenstat (1996) provided fail-safe and quite efficient

algorithms for accurately approximating a numerically low-
rank matrix with an interpolative decomposition.

2. Their fail-safe algorithms are based on the Cramer rule; al-

gorithms based on pivoted, reorthogonalized Gram-Schmidt

work well in most circumstances, and are a tad more efficient.

3. The ID approximation is accurate to about the square root
of the matrix size times the best possible accuracy (that

provided by the SVD).
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Step 1 of the algorithm

In order to identify the range of A, we test A

on the l columns of a special random matrix R

(to be specified later in the talk), i.e., we form

Ym×l = Am×n · Rn×l. (8)
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Step 2 of the algorithm

Via a pivoted Q R algorithm (e.g., Gu and Eisenstat, 1996),

we choose k rows of Y which span the row space of Y to a

precision ≈ σk+1(Y ). The rows of A in the same positions

span the row space of A to a precision of around σk+1(A).

We assemble a k × l matrix Z from the k chosen rows of Y .

We assemble a k × n matrix B from the k chosen rows of A.
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Step 3 of the algorithm

Via the Q R decomposition of Y in Step 2,

we construct an m × k matrix E such that

Em×k and Zk×l together form an ID, and

‖Em×k · Zk×l − Ym×l‖ ≈ σk+1(Ym×l). (9)

Then, Em×k & Bk×n constitute an ID, and

‖Em×k · Bk×n − Am×n‖ ≈ σk+1(Am×n) (10)

with high probability.
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A randomly subsampled randomized DFT

We define R to be the n × l random matrix given by

Rn×l =
1√
l
· Dn×n · Fn×n · Sn×l, (11)

where S is an n × l random matrix whose entries are 0’s,

aside from a single 1 placed uniformly at random in each

column, F is the n × n discrete Fourier transform matrix,

&D is a diagonal n × n matrix with i.i.d. diagonal entries,

each of which is distributed uniformly over the unit circle.
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Recap of the randomized algorithm

1. Form Ym×l = Am×n · Rn×l (Rn×l is a randomly subsampled

randomized DFT).

2. Find k rows of Ym×l spanning most of the row space of Ym×l.

Collect together these k rows of Ym×l into the matrix Zk×l.

Collect together the corresponding rows of Am×n into Bk×n.

3. Compute Em×k such that Em×k and Zk×l constitute an ID,

and ‖Em×k · Zk×l − Ym×l‖ ≈ σk+1(Ym×l).

Then, Em×k and Bk×n constitute an ID, and with high prob.

‖Em×k · Bk×n − Am×n‖ ≈ σk+1(Am×n). (12)
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Conversion from ID form to SVD form

1. Find Qm×k with orthonormal columns and a triangular Rk×k,

such that Em×k = Qm×k · Rk×k.

2. Find Pn×k with orthonormal columns and a triangular ∆k×k,

such that Bk×n = ∆k×k · (Pn×k)
∗.

3. Form Ck×k = Rk×k · ∆k×k.

4. Find a diagonal Σk×k whose entries are all ≥ 0, a unitary T ,

and a unitary Wk×k, such that Ck×k = Tk×k · Σk×k · (Wk×k)
∗.

5. Form Um×k = Qm×k · Tk×k (so U has orthonormal columns).

6. Form Vn×k = Pn×k · Wk×k (so V has orthonormal columns).

Combining the above formulae yields that

Em×k · Bk×n = Um×k · Σk×k · (Vn×k)
∗. (13)
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Verification scheme, 1

We apply the difference ∆ between the m × n matrix A to be

approximated and its approximation to 6 random vectors x(j)

whose entries are distributed as i.i.d. centered Gaussian r.v.’s.

Whenever ‖∆‖ ≥ 8
√

n ε, then at least one of the six numbers

‖∆x(j)‖
‖x(j)‖

, j = 1,2,3,4,5,6 (14)

ends up greater than ε, aside from a one in a million chance.

If ‖∆‖ is even greater, the chance to exceed ε is even better.

When ‖∆‖ ≤ ε, all of the numbers (14) are always at most ε.

Therefore, we can with high probability filter out discrepancies

with spectral norms meaningfully greater than ε, while always

passing all discrepancies whose spectral norms are at most ε.
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Verification scheme, 2

The power (or Lanczos) method has better guaranteed bounds

than the tool on the previous slide when their operation counts

are the same (Kuczyński & Woźniakowski, 1992; Dixon, 1983).

However, the power and Lanczos methods require successive

applications of the matrix being approximated (as well as its

transpose) to a series of vectors being generated on–the–fly,

whereas the method of the preceding slide requires only the

application of the matrix being approximated to a collection

of independently generated vectors.

The scheme of the preceding slide therefore parallelizes easily.
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Cost of the randomized algorithm

The algorithm typically needs O(mn ln(k) + (m + n) l2)

floating-point operations in order to construct a nearly

optimal rank-k approximation to the m × n matrix A.

The classical pivoted “Q R” decomposition algorithms

such as Gram-Schmidt need at least kmn flops in order

to construct a similarly accurate rank-k approximation.

The constant hidden by the O-notation appears to be small

enough so that the randomized algorithm is at least as fast

as classical algorithms even when k is rather small or large.
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Speed gain on square matrices of various sizes
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The time taken to verify the approximation is included in the fast,
but not in the classical timings.

20



Empirical accuracy on 2,048-long convolution
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The estimates of the accuracy of the approximation are accurate
to at least two digits of relative precision.
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Stratagem for proof of accuracy bounds

1. Apply the triangle inequality, breaking the accuracy bound

into the sum of two contributions, one which involves opti-

mization over a space of dimension k, and the other requiring

the existence of a good bound in a high-dimensional space.

2. Observe that Steps 2 & 3 of the algorithm optimize over the

space of dimension k directly via brute-force computations.

3. To prove the existence of a bound in the high-dimensional

space, either appeal to Ailon-Chazelle (‘06) & Sarlós (‘06/7),

or use their methods as motivation for a direct proof.
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Proof of accuracy bounds, 1

Suppose A is an m × n matrix, R is an n × l matrix,

P is some l × n matrix, E is some m × k matrix, &

B is a k × n matrix whose rows are also rows of A.

Then, the triangle inequality yields that

‖A − E B‖ (15)

≤ ‖A − A R P‖ + ‖A R P − E B R P‖ + ‖E B R P − E B‖(16)
≤ (1 + ‖E‖) ‖A − A R P‖ + ‖A R − E B R‖ ‖P‖. (17)

By choosing E, B, & P appropriately, we would like

‖A − E B‖ . σk+1(A). (18)
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Proof of accuracy bounds, 2

Again,

‖A − E B‖ ≤ (1 + ‖E‖) ‖A − A R P‖ + ‖A R − E B R‖ ‖P‖. (19)

Step 2 chooses the rows of Z = B R to be a subset of the

rows of Y = A R, and Step 3 builds a matrix E, such that

E and Z = B R together constitute an ID of Y = A R, and

‖A R − E B R‖ ≤
√

4mk σk+1(A R) ≤
√

4mk ‖R‖σk+1(A). (20)

Combining (19), (20), and the fact that E is part of an ID

(so that ‖E‖ ≤
√

4mk) yields that

‖A − E B‖ ≤ (1 +
√

4mk) ‖A − A R P‖ +
√

4mk ‖P‖ ‖R‖σk+1(A).

(21)
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Proof of accuracy bounds, 3

Again, formula (21) is

‖A − E B‖ ≤ (1 +
√

4mk) ‖A − A R P‖ +
√

4mk ‖P‖ ‖R‖σk+1(A).
(22)

But,

‖R‖ = ‖D F S‖/
√

l ≤ ‖D‖ ‖F‖ ‖S‖/
√

l ≤
√

n. (23)

Hence, it suffices to show that in principle

there exists some l × n matrix P such that

‖A − A R P‖ is of the order of σk+1(A), &

‖P‖ is not too large, with high probability.
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Proof of accuracy bounds, 4

The key to showing that such a matrix P exists is the following

Lemma. Suppose that δ, ε ∈ R, and k, l, n ∈ Z, such that δ, ε < 1,

δ, ε, k, l, n > 0, and n > l > (1 + 1/ε)2 k2/δ. Suppose also that U

is a k × n matrix whose rows are orthonormal.

Then,

σ1(U R) ≤
√

1 + ε (24)

1/σk(U R) ≤
√

1 + ε (25)

with probability at least 1 − δ.

Hence, when acting from the right on the row space of Uk×n,

Rn×l preserves norms up to a distortion factor of
√

1 + ε.
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Proof of accuracy bounds, 5

The lemma follows from the straightforward computation that

(U R) (U R)∗ = 1 + E, (26)

where the expectation of the sum of the squares of the entries

of the k × k matrix E is at most k2/l < δ ε2/(1 + ε)2; therefore,

‖E‖ < ε/(1 + ε) (27)

with probability at least 1 − δ. Combining (26) and (27) yields

‖U R‖2 = ‖1 + E‖ ≤ 1 + ‖E‖ ≤ 1 + ε (28)

∥

∥

∥

∥

(

(U R) (U R)∗
)−1

∥

∥

∥

∥

=
∥

∥

∥(1 + E)−1
∥

∥

∥ ≤
∞
∑

j=0

‖E‖j ≤ 1 + ε (29)

with probability at least 1 − δ.
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Proof of accuracy bounds, 6

Simple (but tedious) linear-algebraic manipulations

complete the proof of our current accuracy bounds.

The basic idea is to choose an orthonormal basis for

the row space of A as the rows of U in the lemma on

the preceding two slides. Technically, the bound on

the greatest singular value of U R is not necessary.

However, please beware:

Our theoretical bounds require l > k2, whereas our

experimental tests always succeeded with l > k + 5.

Of course, we can always run our verification check

(for negligible cost) after each run of the algorithm

in order to ascertain that the algorithm succeeded.
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A peculiarity

We are able to recover A from A R to precision ≈ σk+1(A) by

multiplying the product A R from the right by a matrix, say P ,

which depends on R, but is independent of σ1(A), . . . , σk(A).

In principle, we could recover A better by taking into account

σ1(A), . . . , σk(A), but doing so makes the analysis unwieldy.

It seems to be sufficient to recover A solely by knowing which

subspace constitutes A’s range, without knowing the structure

of A within that subspace.
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Applications

• Compression of subblocks of matrices arising from

the discretization of smoothing integral operators

and their inverses.

• Classic statistical method (principal component analysis):

• Noise removal.

• Data mining.
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Conclusion

There exists an algorithm for rank-k matrix approximation (or for

computing the top k singular values and vectors) with advantages

over the classical pivoted Q R algorithms such as Gram-Schmidt:

1. Substantially faster (for most ranks k of the approximation),

costing O(n2 ln(k) + nl2) — not O(n2k) — for an n × n matrix.

2. Uses less storage when the input matrix is to be preserved,

especially for matrices evaluated on-the-fly.

3. Reliably operates accurately on any matrix.

4. Parallelizes naturally.

mark.tygert@yale.edu http://www.cs.yale.edu/∼tygert
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