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let’s talk biology

• Biologists are working to
understand the functions and
roles of genes and proteins in
biological processes

• Proteins perform most life
functions and make up the
majority of cellular structures

• The proteome is extremely
dynamic, depending on
associations between proteins
and reactions among them

Image from http://www.ornl.gov/sci/techresources/Human_Genome/project/info.shtml



SNPs and chips

(-or- what data biologists are gathering)

• Genome sequences
– the entire DNA sequence of an organism

– The Human Genome project characterized approximately 30,000 genes

• Protein structures
– 3D models, protein folding

– a protein’s shape is key to understanding its function and roles

• Single Nucleotide Polymorphism (SNP)
– a small genetic variation within a DNA sequence

– a single nucleotide replaces another nucleotide

• Genetic expression profiles (microarray chips)
– measure the expression levels of genes in cells through measurement of

production of mRNA

– generally used with control and variant DNA to compare expression



From http://www.scq.ubc.ca/?p=272 From http://science.nasa.gov/headlines/y2004/10sep_radmicrobe.htm

microarrays



Wall et al, PDB entry 1CM1

Image created with RIBBONS software

Slide courtesy of Michael Wall @ LANL

Complex of Calmodulin

with CaMK-II peptide

M.E. Wall, J.B. Clarage and G.N. Phillips, Jr. 1997.
Motions of calmodulin characterized using both Bragg

and diffuse X-ray scattering. Structure 5:1599-1612.



biological data mining:

questions biologists ask

• What is known about this gene/protein/sequence?

– Literature search

– Database search

• What does this gene/protein do?

– What sequences are like the sequence I’m studying? (homology search)

– Hypothesize gene function (annotation, structure, …) of new gene

through similarity to known gene

– Tools: BLAST, FASTA, PSI-BLAST

sequence alignment through edit distance

• Which genes are involved in this biological process?

– Find genes with similar expression profiles (expression activity over time)

– Tools: Microchips, Clustering analysis



characterization of bioentities

• Sequence data

• Expression experiments

• Protein structures (3-d)

• Formal representation of results of experimentation and analysis:
– biological processes

– molecular function

– disease implication

– molecular pathways

• Common vocabularies for description facilitate statistical and systems
biological analysis
– Tie sample-specific data to broader protein/gene knowledge

– Link genomic and therapeutic data

• Ontologies define domain-specific concepts, together with how they
are related semantically



Gene Ontology (GO)

• Taxonomic controlled
vocabulary

• ~ 20K nodes PGO

populated by genes,
proteins

• Two orders on PGO:

isa, has

Gene Ontology Consortium (2000): “Gene Ontology: Tool For the
Unification of Biology”, Nature Genetics, 25:25-29



Mouse Genome database

DNA location

Sequence

Links to other databases



lots of structured biological data

Structured vocabulary terms

Free text

Expression data



Structured vocabulary



Free text (phenotypes)



122 references...



New entries in Medline with publication date in Jan-Aug 2005:
431,478 (avg. 1775/ day) (Hunter and Cohen 2006)

Why we care to produce automated methods for

semantic characterization of bioentities



“Manual curation is not sufficient for

annotation of genomic databases”

• Baumgartner et al, ISMB 2007

Graphs courtesy of William Baumgartner, U. Colorado



producing automated methods for semantic

characterization of bioentities

• Modern bioinformatics techniques
– statistical analysis

– bootstrap from existing data based on similarity (“IEA”)



“The special sauce”:

Add Formal Semantics

• exploit textual data sources

• take advantage of the structure and meaning of the data, whether

human-specified or inferred

• use the semantics to organize, integrate and explore the data

• define similarity of entities in terms of semantic structure

Luckily for us, the biology domain is rich in semantic resources.



LANL Ontological methods for

bioinformatic analysis

• Automated Protein Function Annotation using GO-space

• Formal concept analysis for semantic integration of

cancer genome data
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Automated Protein Function Annotation

• Mappings
– From regions of sequence,

structure, keyword spaces

– Into regions of biological

function space:

– taxonomic bio-ontologies of

molecular function

• Characterize formal structure

of bio-ontologies:

– Order theoretical

approaches

– Combinatorial algorithms



POSOLE: POSet Ontology Laboratory

Environment

• POSOLE: a general environment for ontology experimentation

– Graph representation of an ontology as a POSet

– POSet statistics analysis (e.g. depth, width, average rank)

– Algorithms for node categorization utilizing the structure of the

ontology

• Deployment: Ontology categorization for automated protein

function annotation

– Function: Gene Ontology node

– Protein: target sequence or Swiss-Prot identifier

– Map proteins to sets of potential Gene Ontology nodes

– Ontology categorization: “clustering” nodes in ontology space to

identify the most likely node assignment

• Dual Queries: Text and sequence neighborhoods

developed with Judith Cohn, Sue Mniszewski, Cliff Joslyn @ LANL



Hierarchies as Partially Ordered Sets



Basic POSET concepts



Chain decomposition



Pseudo-distances



Order Theoretical Categorization Method

• Represent GO as labeled, finite
ordered set

• Given labels (genes) c, e, i . . .

• What node(s) A,B, C, . . . ,K are best
to attend to?

– C

– {H, J}

– {A, H, J}
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Scoring function

SY (p)= ( r (p' , p)+1) 1
p' F(x ): p' px Y

s ..., 1,0,1,2,3,...{ }

r = 2s



POSOLE strategy

• Function Prediction as Categorization of Nearest

Neighbors

• Application of POSOC categorization methodology utilizing the

Gene Ontology structure to find the best covering nodes given a

set of node “hits”

• “Hits” are based on (application-dependent) mappings from

neighbors of an input protein to Gene Ontology nodes

• Covering nodes are function annotation predictions



Partially Ordered Set Ontology Categorizer:

“Cluster” Genes in Ontology Space

• Given the Gene Ontology (GO) . . . And mappings to GO nodes . . .

• “Splatter” them over the GO . . . Where do they end up?
– Concentrated? -- Dispersed?
– Clustered? -- High or low?
– Overlapping or distinct?

• Pseudo-distances between comparable nodes to measure vertical
separation

• POSOC traverses the structure of the GO, percolating hits upwards, and
calculating scores for GO nodes.

• Scores to rank-order nodes with respect to gene locations, balancing:

– Coverage: Covering as many genes as possible

– Specificity: But at the “lowest level” possible

• “Cluster” based on non-comparable high score nodes

http://www.c3.lanl.gov/posoc/

Joslyn, Cliff; Mniszewski, Susan; Fulmer, Andy; and Heaton, Gary: (2004) “The Gene
Ontology Categorizer”, Bioinformatics, v. 20:s1, pp. 169-177



POSOLE applications



Application: BioCreAtIvE 2004
Task 2

Critical Assessment of Information Extraction in Biology

• Automatic assignment of Gene Ontology annotations to human proteins
based on a journal publication
– Given a Swiss-Prot/TrEMBL protein ID and a document, predict a GO node to

which the protein should be annotated

– Also return the evidence text from the document supporting the annotation

• Strategy: Annotation as Categorization of Document Neighborhood

• Application of POSOC categorization utilizing the Gene Ontology structure to find
the best covering nodes given a set of node “hits”

• “Hits” in this case are based on overlaps between input terms and GO node terms
(in labels, definitions)



POSOC as applied to context terms

• Collect all terms in a context window of n sentences around any

reference to the protein of interest

• Transform an input query into a set of node hits:

– Morphologically normalize GO node labels

– Look for any overlaps between input terms and terms in the normalized

node labels

– An overlap = a node hit, with strength based on the input weight of the

term (from TFIDF)

– Multiple overlaps on a given node count as multiple hits

• POSOC returns a set of GO nodes representing cluster heads for

weighted term input set, and data on which input terms contributed to

the selection of each cluster head: Annotation predictions



BioLASER:

Los Alamos Semantic Event Recognizer for Biology

• Text analysis

environment:

– Relation extraction

– Term vector

analysis

• Domain-specific and

application-specific

components

• Markup workflow

implementation

– Using UIMA

platform

– GATE modules



Application: CASP-6 Function Prediction

Critical Assessment of Structure Prediction evaluation

Function Prediction subtask

•  Automatic assignment of Gene Ontology
annotations to target protein sequences

•  Strategy: Annotation as Categorization of
Sequence Neighborhood

•  Application of POSOC categorization utilizing
the Gene Ontology structure to find the best
covering nodes given a set of node “hits”

•  “Hits” in this case are based on known
mappings from proteins in the sequence
neighborhood (BLAST neighborhood) of the
target to Gene Ontology nodes

Verspoor, KM; Cohn, JD; Mniszewski, SM; and Joslyn, CA
(2006). “Categorization Approach to Automated Ontological

Function Annotation”, Protein Science, v. 15, pp. 1544-1549



POSOLE applications



CASP architecture



CASP Evaluation

• Test set
– proteins with known Gene Ontology mappings

– 4530 SwissProt protein sequences

– Protein to GO Mappings derived from UniProt database

• Eliminate PSI-BLAST identity matches from mappings

used in prediction

• Goal: compare function predictions made by the system

with known functions assigned to each input protein



CASP Evaluation runs

• Baseline Best Blast: Predictions are the GO nodes associated with non-identical protein scoring

highest in the PSI-BLAST analysis.  All predicted GO nodes are considered to be at rank 1.

• Baseline Full Neighborhood: Predictions are the GO nodes associated with all proteins matched

in the PSI-BLAST analysis (with evalue < 10).  The predictions are ranked according to the evalue
of the corresponding PSI-BLAST match.

• POSOC Best Blast: Inputs to POSOC are the GO nodes associated with non-identical protein

scoring highest in the PSI-BLAST analysis, weighted by evalue of the match. POSOC categorizes

and ranks these inputs to produce the predictions.

• POSOC Full Neighborhood: Inputs to are the GO nodes associated with all proteins matched in

the PSI-BLAST analysis, weighted by evalue of the match.  POSOC categorizes and ranks these

inputs to produce the predictions.

Baseline:

Best Blast

Baseline:

Full Neighborhood

POSOC:

Best Blast

POSOC:

Full Neighborhood



Evaluation analysis

• Precision/Recall
– Precision = % of predictions that are correct

– Recall = % of known predictions that are recovered

• Extension to ranked list of predictions
– Consider precision/recall at different ranks

P =
F(x) G(x)

G(x)

R =
F(x) G(x)

F(x)



Evaluation of Ontological predictions

• Extension to ontological predictions:
when does a GO node p in F(x) count

as a “match” against a q in G(x)?
– What about siblings? Ancestors?

– Partial credit?

– Based on proximity

– Based on specificity

• Adapt hierarchical precision/recall
measure from Kiritchenko et al 2005

P = max
p F (x )

p q

qq G(x )

R = max
q G(x )

p q

pp F(x )

Kiritchenko, S; Matwin, S; Famili, AF (2005). “Functional

Annotation of Genes Using Hierarchical Text Categorization”,
Proc. BioLINK SIG on Text Data Mining.



CASP results

0.330.280.39MF

0.290.250.36CC

0.160.140.20BP

FRP

Non-hierarchical BaseBB



LANL ontological methods for

bioinformatic analysis

• Automated Protein Function Annotation using GO-space

• Formal concept analysis for semantic integration of

cancer genome data (with Damien Gessler at NCGR)



Towards a cure for cancer

• Sjoblom et al 2006:
– genomic and informatic filtering of 816,986 putative nucleotide

changes across 13,023 genes in breast and colorectal tumors

– analysis yielded 189 variants directly implicated in breast and
colorectal cancer

• How can we understand the roles of implicated genes?
– complement quantitative validation methods with semantic info

– develop formal methods to integrate curated semantic information
into discovery and validation processes

• Strategy: Formal Concept Analysis of semantic data
objects

Sjoblom, Tobias; Jones, Sian; Wood, Laura D; Parsons, DW; et al (2006).
“Consensus Coding Sequences of Human Breast and Colorectal Cancers”,

Science, v. 314:5797, pp. 268-284.



Formal Concept Analysis

• Semantic
hierarchy

derived from

relational data

• Visualization of
relationships

• Hypothesis and

rule generation

and evaluation

Ganter, Bernhard and Wille, Rudolf (1999).
Formal Concept Analysis, Springer-Verlag.



FCA example
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Cancer Genomics

• Variational mutation information from breast/colorectal tumors

• 75 genes in top three chromosome locations

• CaMP score:  1 not implicated (Low) , > 1 implicated (High)

• Formal context:



Concept Lattice

tumor type / chromosome location / CaMP score



Attribute Metrics

• Lattice metrics between all pairwise attributes

• CaMP <(H)igh,(L)ow> maximally far apart: mutually exclusive

• <(C)olon,(B)reast> genes largely distinct

• Chromosomes far apart

• Pairs <H,17P>, <H,19P> very close: those chromosome locations may have
many cancer-implicated genes



Adding National Cancer Institute

Thesaurus (NCIT) terms



Cancer genes: next steps

• Integrate more semantic information

– Gene Ontology annotations

– MeSH keyterms / extracted keyterms from associated literature

• Will lead to ontology integration and induction

– {g1, g2, g3}: annotated into ontology O

– {g2, g3, g4}: annotated to keywords K = {k1, k2, k3}

– Induce order on K while incorporating order on O

CA Joslyn, DDG Gessler, KM Verspoor (2007). “Knowledge Integration in Open Worlds: Utilizing the
Mathematics of Hierarchical Structure”. In IEEE, Int. Conf. on Semantic Computing.
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Formal concepts and text: new work

• Ontology induction from text
– (Verb) Predicates as attributes

– (Noun) Predicate arguments as objects

• Apply FCA to induce a dual order over nouns

and verbs

• Read

hierarchy

off lattice
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Thanks for listening!


