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We elaborate on the idea that “The Network” 
encapsulates knowledge. 

.• Mathematical analysis of recent algorithmic insights in 
Data organization and Search engines enable the 
formalization of the concept that knowledge can be 
encapsulated by the geometry of the “web/network” of 
connections and affinity relations between complex data 
strings. 

• The “social networks” of inferences between digital 
documents, text, proteins ,sensor, characterize their  
function .

• A diagnostic estimate could be viewed as a function on the 
“geometric network” of such configurations, and could be 
expanded in basis functions on the network



This simple point is illustrated below

Each puzzle piece is linked to its neighbors ( in feature 
space )  the network of links forms a sphere. A 
parameterization of the sphere can be obtained from  the 
eigenvectors of the inference matrix relating affinity links 
between pieces (diffusion operator).



Cryo-microscopy is an example of the spherical puzzle, the orientation of a molecular 
image is unknown, and is being determined through the graph of similarities



A simple empirical diffusion/inference matrix A  can be constructed as follows

Let         represent normalized data ,we “soft truncate” the covariance matrix  as 
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A is  a renormalized Markov version of this matrix
The eigenvectors of this matrix  provide a local non linear principal
component analysis of the data . Whose entries are the diffusion coordinates
These are also the eigenfunctions of the discrete Graph Laplace Operator.
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This map is a diffusion embedding into Euclidean space (at time t) .
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Diffusions between A and B have to go through the bottleneck ,while C is 
easily reachable from B. The Markov matrix defining a diffusion could be 
given by a kernel , or by inference between neighboring nodes. 

The diffusion distance accounts for preponderance of inference links . The 
shortest path between A and C is roughly the same as between B and C . The 
diffusion distance however is larger since diffusion occurs through a 
bottleneck.

Diffusion Geometry



The First two eigenfunctions organize the small images which were 
provided in random order, in fact assembling the 3D puzzle.



The long term diffusion of heterogeneous material is remapped below . The left side has a higher 
proportion of heat conducting material ,thereby reducing the diffusion distance among points , the bottle 
neck increases that distance



Local information such as the distance between nearby cities can be encapsulated in 
the local center  of mass matrix , whose eigenvectors include the x and y coordinate 
functions  ( see  A. Singer)



Paradigm blend
Classical Harmonic Analysis through Calderon Zygmund theory has 
been concerned with organization and approximation of functions and 
operators through a blend of  Combinatorics, Geometry and Fourier 
modes ( which are eigenfunctions of Laplaceans ).

It turns out that in the data context a similar methodology blending 
geometry and harmonics is as useful.

Consider the “Globe puzzle” the eigenfunctions of the appropriate 
affinity are the solution to the puzzle . On the other hand we would solve 
the puzzle by first piecing together nearest pieces (in features) , and 
proceed by linking such patches by their own affinity etc at several 
scales. 

This method turns out to be mathematically equivalent to the 
Eigenfunction paradigm , in the same way that wavelets relate to 
Fourier series.  



Here organization is achieved through ,eigenfunctions and wavelet constructions







Multiscale organization of Graphs.

We now describe a simple booking strategy to organize 
folders on a data graph. We follow the “puzzle strategy”

We organize a graph into a hierarchy of graphs 
consisting of disjoint subsets at different time scales of 
diffusion. 
Let
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A very simple way to build a hierarchical multiscale 
structure is as follows. 

Start with a disjoint partition of the graph into clusters of diameter  
between 1 and 2 relative in the diffuion distance with t=2.
Consider the new graph formed by letting the elements of the 
partition be the vertices .
Using the distance between sets  and affinity between sets 
described above we repeat with t=4, until we end with one folder, 
and a tree of graphs ,each a coarse version of the preceding with its 
own temporally rescaled geometry  (folder structure)

In the next image we see this organization as it applies to a 
random collection of 4 Gaussian clouds .



4 Gaussian Clouds



A simple example: black disk on white background:

Above are represented the first 4 prolates in the image 
space (image domain vs. prolate value).

1. Prolates 1 and 2 capture the ratio of black pixels over 
white pixels.

2. Prolates 3 and 4 capture the angle θ

3. Locally, 2 prolates are sufficient to describe the data

θ



We now organize the set of subimages of 8x8 squares extracted 
from the preceding image and organized  naturally by their 
average and orientation of the edge (the first two eigenfunction 
coordinates) .



The first 3 eigenfunctions provide a  structural embedding 



The clusters of nearby points in the multiscale hierarchy ,corresponds ot features in the 
original image.



The demographic geometry of responders to the MMPI questionnaire . (500 
questions 300 responders)

Each point represents a responder ,nearby people had similar response profile. 
The color represents a depression score , red is high.



The organization of the questions into a graph leads to topical 
folders.  







Unraveling a simple response matrix (bottom left ) which has been permuted.

This is achieved by building row and column geometries of folders and 
reorganizing to minimize the complexity.









Organizing audio segments 
extracted from a large data 
base of tracks



The topical 
clusters are 
typically 
“linear”
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