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Modeling Science
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6• Our data are Science from 1880-2002, courtesy of JSTOR.

• JSTOR is an on-line archive that scans the original volumes and
performs optical character recognition on the scans.

• This process results in 130K documents, 76M words.
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6• Discover the hidden thematic structure with hierarchical probabilistic
models called topic models.

• Use this structure for browsing, search, and similarity assessment.
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Discover topics from a corpus

“Genetics” “Evolution” “Disease” “Computers”

human evolution disease computer
genome evolutionary host models

dna species bacteria information
genetic organisms diseases data
genes life resistance computers

sequence origin bacterial system
gene biology new network

molecular groups strains systems
sequencing phylogenetic control model

map living infectious parallel
information diversity malaria methods

genetics group parasite networks
mapping new parasites software
project two united new

sequences common tuberculosis simulations
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Annotate unlabeled images
Automatic image annotation

birds nest leaves branch tree
predicted caption: predicted caption:

people market pattern textile displaysky water tree mountain people
predicted caption:

fish water ocean tree coral sky water buildings people mountain
predicted caption: predicted caption: predicted caption:

scotland water flowers hills tree

Probabilistic modelsof text and images – p.5/53

SKY WATER TREE

MOUNTAIN PEOPLE

Automatic image annotation

birds nest leaves branch tree
predicted caption: predicted caption:

people market pattern textile displaysky water tree mountain people
predicted caption:

fish water ocean tree coral sky water buildings people mountain
predicted caption: predicted caption: predicted caption:

scotland water flowers hills tree

Probabilistic modelsof text and images – p.5/53

SCOTLAND WATER
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Automatic image annotation

birds nest leaves branch tree
predicted caption: predicted caption:

people market pattern textile displaysky water tree mountain people
predicted caption:

fish water ocean tree coral sky water buildings people mountain
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scotland water flowers hills tree

Probabilistic modelsof text and images – p.5/53
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Automatic image annotation
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Automatic image annotation

birds nest leaves branch tree
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people market pattern textile displaysky water tree mountain people
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Probabilistic modelsof text and images – p.5/53
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Automatic image annotation

birds nest leaves branch tree
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people market pattern textile displaysky water tree mountain people
predicted caption:
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scotland water flowers hills tree

Probabilistic modelsof text and images – p.5/53

BIRDS NEST TREE
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Model the evolution of topics over time
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Model connections between topics
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Outline

1 Introduction

2 Latent Dirichlet allocation

3 Dynamic topic models

4 Correlated topic models
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Probabilistic modeling

• Treat data as observations that arise from a generative probabilistic
process that includes hidden variables

• For documents, the hidden variables reflect the thematic
structure of the collection.

• Infer the hidden structure using posterior inference

• What are the topics that describe this collection?

• Situate new data into the estimated model.

• How does this query or new document fit into the estimated
topic structure?
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Intuition behind LDA

Simple intuition: Documents exhibit multiple topics.
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Generative process

• Cast these intuitions into a generative probabilistic process

• Each document is a random mixture of corpus-wide topics

• Each word is drawn from one of those topics
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Generative process

• In reality, we only observe the documents

• Our goal is to infer the underlying topic structure

• What are the topics?
• How are the documents divided according to those topics?
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Graphical models (Aside)

· · ·

Y

X1 X2 XN

Xn

Y

N

≡

• Nodes are random variables

• Edges denote possible dependence

• Observed variables are shaded

• Plates denote replicated structure
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Graphical models (Aside)

· · ·

Y

X1 X2 XN

Xn

Y

N

≡

• Structure of the graph defines the pattern of conditional dependence
between the ensemble of random variables

• E.g., this graph corresponds to

p(y , x1, . . . , xN) = p(y)
N∏

n=1

p(xn | y)
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Latent Dirichlet allocation

θd Zd,n Wd,n
N

D K
βk

α η

Dirichlet
parameter

Per-document
topic proportions

Per-word
topic assignment

Observed
word Topics

Topic
hyperparameter
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Latent Dirichlet allocation

θd Zd,n Wd,n
N

D K
βk

α η

1 Draw each topic βi ∼ Dir(η), for i ∈ {1, . . . ,K}.
2 For each document:

1 Draw topic proportions θd ∼ Dir(α).
2 For each word:

1 Draw Zd ,n ∼ Mult(θd).
2 Draw Wd ,n ∼ Mult(βzd,n

).
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Latent Dirichlet allocation

θd Zd,n Wd,n
N

D K
βk

α η

• From a collection of documents, infer

• Per-word topic assignment zd ,n

• Per-document topic proportions θd

• Per-corpus topic distributions βk

• Use posterior expectations to perform the task at hand, e.g.,
information retrieval, document similarity, etc.
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Latent Dirichlet allocation

θd Zd,n Wd,n
N

D K
βk

α η

• Computing the posterior is intractable:

p(θ |α)
∏N

n=1 p(zn | θ)p(wn | zn, β1:K )∫
θ p(θ |α)

∏N
n=1

∑K
z=1 p(zn | θ)p(wn | zn, β1:K )

• Several approximation techniques have been developed.
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Latent Dirichlet allocation

θd Zd,n Wd,n
N

D K
βk

α η

• Mean field variational methods (Blei et al., 2001, 2003)

• Expectation propagation (Minka and Lafferty, 2002)

• Collapsed Gibbs sampling (Griffiths and Steyvers, 2002)

• Collapsed variational inference (Teh et al., 2006)
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Example inference

• Data: The OCR’ed collection of Science from 1990–2000

• 17K documents
• 11M words
• 20K unique terms (stop words and rare words removed)

• Model: 100-topic LDA model using variational inference.
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Example inference
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Example topics

“Genetics” “Evolution” “Disease” “Computers”

human evolution disease computer
genome evolutionary host models

dna species bacteria information
genetic organisms diseases data
genes life resistance computers

sequence origin bacterial system
gene biology new network

molecular groups strains systems
sequencing phylogenetic control model

map living infectious parallel
information diversity malaria methods

genetics group parasite networks
mapping new parasites software
project two united new

sequences common tuberculosis simulations
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LDA discussion

• LDA is a powerful model for

• Visualizing the hidden thematic structure in large corpora
• Generalizing new data to fit into that structure

• LDA is a mixed membership model (Erosheva, 2004) that builds on
the work of Deerwester et al. (1990) and Hofmann (1999).

• For document collections and other grouped data, this might
be more appropriate than a simple finite mixture

• See Blei et al., 2003 for a quantitative comparison.

• Modular : It can be embedded in more complicated models.

• General : The data generating distribution can be changed.

• Variational inference is fast; allows us to analyze large data sets.

• Code to play with LDA is freely available on my web-site,
http://www.cs.princeton.edu/∼blei.
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Outline

1 Introduction

2 Latent Dirichlet allocation

3 Dynamic topic models

4 Correlated topic models

D. Blei Modeling Science 19 / 49



LDA and exchangeability

θd Zd,n Wd,n
N

D K
βk

α η

• LDA assumes that documents are exchangeable.

• I.e., their joint probability is invariant to permutation.

• This is too restrictive.
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Documents are not exchangeable

"Infrared Reflectance in Leaf-Sitting 
Neotropical Frogs" (1977)"Instantaneous Photography" (1890)

• Documents about the same topic are not exchangeable.

• Topics evolve over time.
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Dynamic topic model

• Divide corpus into sequential slices (e.g., by year).

• Assume each slice’s documents exchangeable.

• Drawn from an LDA model.

• Allow topic distributions evolve from slice to slice.
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Dynamic topic models

D
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Modeling evolving topics

βk,1 βk,2 βk,T

. . .

• Use a logistic normal distribution to model topics evolving over time
(Aitchison, 1980)

• A state-space model on the natural parameter of the topic
multinomial (West and Harrison, 1997)

βt,k |βt−1,k ∼ N (βt−1,k , Iσ2)

p(w |βt,k) = exp
{

βt,k − (1 +
∑V−1

v=1 exp{βt,k,v})
}
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Posterior inference

• Our goal is to compute the posterior distribution,

p(β1:T ,1:K , θ1:T ,1:D , z1:T ,1:D |w1:T ,1:D).

• Exact inference is impossible

• Per-document mixed-membership model
• Non-conjugacy between p(w |βt,k) and p(βt,k)

• MCMC is not practical for the amount of data.

• Solution: Variational inference
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Variational inference

• Define a family of distributions q on the latent variables indexed by
free variational parameters.

• Find the member closest in KL(q||p) to the true posterior.

• Equivalently, maximize the Jensen’s bound on the marginal
likelihood of the data, within the variational family.

• See Jordan et al. (1999) and Wainwright and Jordan (2003).

• (More details at the end of the talk, if you are interested.)
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Science data

TECHVIEW: DNA S E Q U E  N C I NG

   Sequencing the Genome, Fast

James C. Mullikin and Amanda A. McMurray

Genome sequencing projects reveal
      the genetic makeup of an organism
      by reading off the sequence of the
DNA bases, which encodes all of the infor-
mation necessary for the life of the organ-
ism. The base sequence contains four nu-
cleotides-adenine, thymidine, guanosine,
and cytosine-which are linked together
into long double-helical chains. Over the
last two decades, automated DNA se-
quencers have made the process of obtain-
ing the base-by-base sequence of DNA...

• Analyze JSTOR’s entire collection from Science (1880-2002)

• No reliable punctuation, meta-data, or references

• Restrict to 30K terms that occur more than ten times

• The data are 76M words in 130K documents
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Analyzing a document

Original article Topic proportions
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Analyzing a document
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Original article Most likely words from top topics
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Analyzing a topic
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Visualizing trends within a topic
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Time-corrected document similarity

• Consider the expected Hellinger distance between the topic
proportions of two documents,

dij = E

[
K∑

k=1

(
√

θi ,k −
√

θj ,k)2 |wi ,wj

]

• Uses the latent structure to define similarity

• Time has been factored out because the topics associated to the
components are different from year to year.

• Similarity based only on topic proportions
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Time-corrected document similarity

The Brain of the Orang (1880)
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Time-corrected document similarity

Representation of the Visual Field on the Medial Wall of
Occipital-Parietal Cortex in the Owl Monkey (1976)

D. Blei Modeling Science 33 / 49



Browser of Science
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Quantitative comparison

• Compute the probability of each year’s documents conditional on all
the previous year’s documents,

p(wt |w1, . . . ,wt−1)

• Compare exchangeable and dynamic topic models
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Quantitative comparison
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Dynamic topic models discussion

• The DTM is a hierarchical model of sequential document collections;

• Exchangeability assumptions should be taken seriously.

• Variational methods allow large scale posterior inference.

• Examining the latent structure yields useful browsing tools

• Some open issues

• Model selection: choosing the number of topics
• Variational inference: what are the hidden assumptions?
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Outline

1 Introduction

2 Latent Dirichlet allocation

3 Dynamic topic models

4 Correlated topic models
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The hidden assumptions of the Dirichlet distribution

• The Dirichlet is an exponential family distribution on the simplex,
positive vectors that sum to one.

• However, the near independence of components makes it a poor
choice for modeling topic proportions.

• An article about fossil fuels is more likely to also be about geology
than about genetics.
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The logistic normal distribution

• The logistic normal is a distribution on the simplex that can model
dependence between components.

• The natural parameters of the multinomial are drawn from a
multivariate Gaussian distribution.

X ∼ NK−1(µ,Σ)

θi = exp{xi − log(1 +
∑K−1

j=1 exp{xj})}
D. Blei Modeling Science 40 / 49



Correlated topic model (CTM)

Zd,n Wd,n
N

D

K

Σ

µ

ηd

βk

• Draw topic proportions from a logistic normal, where topic
occurrences can exhibit correlation.

• Use for:

• Providing a “map” of topics and how they are related
• Better prediction via correlated topics
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Summary

• Topic models provide useful descriptive statistics for analyzing and
understanding the latent structure of large text collections.

• More generally, probabilistic graphical models are a useful way to
express assumptions about the hidden structure of complicated data.

• Variational methods allow us to perform posterior inference to
automatically infer that structure from large data sets.

• Current research

• Choosing the number of topics
• Continuous time dynamic topic models
• Topic models for prediction
• Inferring the impact of a document
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“We should seek out unfamiliar summaries of observational material, and
establish their useful properties... And still more novelty can come from
finding, and evading, still deeper lying constraints.” (Tukey, 1962)
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Diversion: Variational inference

• Let x1:N be observations and z1:M be latent variables

• Our goal is to compute the posterior distribution

p(z1:M | x1:N) =
p(z1:M , x1:N)∫

p(z1:M , x1:N)dz1:M

• For many interesting distributions, the marginal likelihood of the
observations is difficult to efficiently compute
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Variational inference

• Use Jensen’s inequality to bound the log prob of the observations:

log p(x1:N) ≥ Eqν [log p(z1:M , x1:N)]− Eqν [log qν(z1:M)].

• We have introduced a distribution of the latent variables with free
variational parameters ν.

• We optimize those parameters to tighten this bound.

• This is the same as finding the member of the family qν that is
closest in KL divergence to p(z1:M | x1:N).
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Mean-field variational inference

• Complexity of optimization is determined by the factorization of qν

• In mean field variational inference we choose qν to be fully factored

qν(z1:M) =
M∏

m=1

qνm(zm).

• The latent variables are independent.

• Each is governed by its own variational parameter νm.

• In the true posterior they can exhibit dependence
(often, this is what makes exact inference difficult).
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MFVI and conditional exponential families

• Suppose the distribution of each latent variable conditional on the
observations and other latent variables is in the exponential family:

p(zm | z−m, x) = hm(zm) exp{gm(z−m, x)T zm − am(gi (z−m, x))}

• Assume qν is fully factorized, and each factor is in the same
exponential family:

qνm(zm) = hm(zm) exp{νT
mzm − am(νm)}
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MFVI and conditional exponential families

• Variational inference is the following coordinate ascent algorithm

νm = Eqν [gm(Z−m, x)]

• Notice the relationship to Gibbs sampling
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Variational family for the DTM

βk,1 βk,2 βk,T

. . .

β̂k,1 β̂k,2 β̂k,T

• Distribution of θ and z is fully-factorized (Blei et al., 2003)

• Distribution of {β1,k , . . . , βT ,k} is a variational Kalman filter

• Gaussian state-space model with free observations β̂k,t .

• Fit observations such that the corresponding posterior over the
chain is close to the true posterior.
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Variational family for the DTM

βk,1 βk,2 βk,T

. . .

β̂k,1 β̂k,2 β̂k,T

• Given a document collection, use coordinate ascent on all the
variational parameters until the KL converges.

• Yields a distribution close to the true posterior of interest

• Take expectations w/r/t the simpler variational distribution
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