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Modeling Science

Poisoning by ice-cream. RNA Editing and the
Evolution of Parasites Chaotic Beetles

Larry Simpson and Drmitr A, Maslov Gharles Godiray and Michasl Hassell

e Our data are Science from 1880-2002, courtesy of JSTOR.

e JSTOR is an on-line archive that scans the original volumes and
performs optical character recognition on the scans.

e This process results in 130K documents, 76M words.
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Modeling Science

Poisoning by ice-cream. RNA Editing and the
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e Discover the hidden thematic structure with hierarchical probabilistic
models called topic models.

e Use this structure for browsing, search, and similarity assessment.
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Discover topics from a corpus

human
genome
dna
genetic
genes
sequence
gene
molecular
sequencing
map
information
genetics
mapping
project
sequences

evolution
evolutionary
species
organisms
life
origin
biology
groups
phylogenetic
living
diversity
group
new
two
common

D. Blei

disease
host
bacteria
diseases
resistance
bacterial
new
strains
control
infectious
malaria
parasite
parasites
united
tuberculosis

Modeling Science

computer
models
information
data
computers
system
network
systems
model
parallel
methods
networks
software
new
simulations

3/49



Annotate unlabeled images

SKY WATER TREE SCOTLAND WATER SKY WATER BUILDING
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TREE CORAL TEXTILE DISPLAY BRANCH LEAVES
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Model the evolution of topics

"Theoretical Physics™

over time

"Neuroscience™
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Model connections between topics
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Outline
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© Dynamic topic models

@ Correlated topic models
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Probabilistic modeling

e Treat data as observations that arise from a generative probabilistic
process that includes hidden variables

e For documents, the hidden variables reflect the thematic
structure of the collection.

e Infer the hidden structure using posterior inference
e What are the topics that describe this collection?
e Situate new data into the estimated model.

e How does this query or new document fit into the estimated
topic structure?
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Intuition behind LDA

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—
How many genes does an[Organism need to
survive! Last week at the genome meeting
here,* two genome researchers with radically
different approaches presented complemen-
tary views of the basic genes needed for life:
One research team, using computer analy

ses to compare known genomes, concluded
that today’s[Organisms can be sustained with
just 250 genes, and that the earliest life forms
required a mere 128 venes. The J—

o
other researcher mapped genes \
in a simple parasite and esti-

mated that for this organism,
800 genes are plenty to do the ‘
job—but that anything short
of 100 wouldn’t be enough.
Although the numbers don’t
match precisely, those predictions

* Genome Mapping and Sequenc-
ing, Cold Spring Harbor, New York,

SCIE! * VOL

* 24 MAY 1996

Simple intuition: Documents exhibit multiple topics.

D. Blei

“are not all that far apart,” especially in
comparison to the 75,000 genes in the hu-
man genome, notes Siv Andersson of Uppsala
University in Sweden, who arrived at the
80C number. But coming up with a consen-
sus answer may be more than just a genetic
numbers game, particularly as more and
more genomes are completely mapped and
sequenced. “It may be a way of organizing
any newly sequenced genom

Arcady Mushegian, a computational mo-
lecular biologist at the National Center
for Biotechnology Information (NCBI)
ryland. Comparing an

" explains

Stripping down. Computer analysis yields an esti-
May 8 to 12. mate of the minimum modern and ancient genomes.
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Generative process

Seeking Life’s Bare (Genetic) Necessities
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e Cast these intuitions into a generative probabilistic process
e Each document is a random mixture of corpus-wide topics

e Each word is drawn from one of those topics
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Generative process
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In reality, we only observe the documents
e Our goal is to infer the underlying topic structure

e What are the topics?
e How are the documents divided according to those topics?
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Graphical models (Aside)

X1 X Xn N

e Nodes are random variables

Edges denote possible dependence

Observed variables are shaded

Plates denote replicated structure
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Graphical models (Aside)

X1 X Xn N

e Structure of the graph defines the pattern of conditional dependence
between the ensemble of random variables

e E.g., this graph corresponds to
ply,x1, ... xn) = p(y) [ ] plxa ly)
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Latent Dirichlet allocation

. Per-word
Dirichlet . X
topic assignment
parameter
Per-document Observed Topic
topic proportions word Topics hyperparameter
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Latent Dirichlet allocation

ot-oflo-e—fo-to
a 0q Zin Wan N O Ui
D K

® Draw each topic 8; ~ Dir(n), for i € {1,...,K}.
® For each document:
@ Draw topic proportions 04 ~ Dir(a).
® For each word:
® Draw Zy , ~ Mult(0y4).
® Draw Wy, ~ Mult(ﬁzd’n).
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Latent Dirichlet allocation

OHOFO-@

a 0q Zin Wan N O Ui

O
O

e From a collection of documents, infer

e Per-word topic assignment z, ,
e Per-document topic proportions 64
e Per-corpus topic distributions 3

e Use posterior expectations to perform the task at hand, e.g.,
information retrieval, document similarity, etc.
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Latent Dirichlet allocation

OHOFO-@

a 0q Zin Wan N O Ui

O
O

e Computing the posterior is intractable:

p(0| ) HnN=1 P(zn | 0)p(wn | zn, B1:k)
f@ 9‘0& n= 125:1 P(Zn‘e)P(Wn‘Zn,ﬂl;K)

e Several approximation techniques have been developed.
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Latent Dirichlet allocation
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Mean field variational methods (Blei et al., 2001, 2003)
Expectation propagation (Minka and Lafferty, 2002)
Collapsed Gibbs sampling (Griffiths and Steyvers, 2002)

Collapsed variational inference (Teh et al., 2006)
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Example inference

Seeking Life’s Bare (Genetlc) Necessmes

COLD SPRING HARBOR, NEW YORK—

e Data: The OCR’ed collection of Science from 1990-2000

e 17K documents
e 11M words
e 20K unique terms (stop words and rare words removed)

e Model: 100-topic LDA model using variational inference.
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Example inference

Seeking Life’s Bare (Genetic) Necessities
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Example topics
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LDA discussion

LDA is a powerful model for

e Visualizing the hidden thematic structure in large corpora

e Generalizing new data to fit into that structure
LDA is a mixed membership model (Erosheva, 2004) that builds on
the work of Deerwester et al. (1990) and Hofmann (1999).

e For document collections and other grouped data, this might

be more appropriate than a simple finite mixture
e See Blei et al., 2003 for a quantitative comparison.

Modular: It can be embedded in more complicated models.

General: The data generating distribution can be changed.

Variational inference is fast; allows us to analyze large data sets.

Code to play with LDA is freely available on my web-site,
http://www.cs.princeton.edu/~blei.
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LDA and exchangeability

O+OFO-@—H0—+0

a 04 Zin Wan N Ok Ui
D K

e LDA assumes that documents are exchangeable.
e |.e., their joint probability is invariant to permutation.

e This is too restrictive.
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Documents are not exchangeable

"Infrared Reflectance in Leaf-Sitting
Neotropical Frogs" (1977)

"Instantaneous Photography" (1890)

e Documents about the same topic are not exchangeable.

e Topics evolve over time.
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Dynamic topic model

e Divide corpus into sequential slices (e.g., by year).
e Assume each slice's documents exchangeable.
e Drawn from an LDA model.

e Allow topic distributions evolve from slice to slice.
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Dynamic topic models
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Modeling evolving topics

B B2 Br.r
O OO

e Use a logistic normal distribution to model topics evolving over time
(Aitchison, 1980)

e A state-space model on the natural parameter of the topic
multinomial (West and Harrison, 1997)

ﬁt,k ‘ Btfl,k ~ N(ﬁtfljk, /0’2)
p(w|fBek) = exp {ﬁt,k -+ exp{ﬁtjk,v})}
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Posterior inference

Our goal is to compute the posterior distribution,

p(B1:71:k,01:7,1:0,21:7,1:0 | W1. T 1:D).

Exact inference is impossible
e Per-document mixed-membership model
 Non-conjugacy between p(w | 53¢ ) and p(B¢ k)
MCMC is not practical for the amount of data.

Solution: Variational inference

D. Blei Modeling Science
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Variational inference

Define a family of distributions g on the latent variables indexed by
free variational parameters.

Find the member closest in KL(qg||p) to the true posterior.

Equivalently, maximize the Jensen's bound on the marginal
likelihood of the data, within the variational family.

See Jordan et al. (1999) and Wainwright and Jordan (2003).
(More details at the end of the talk, if you are interested.)

D. Blei Modeling Science 26 / 49



Science data

the Genome, Fast

5

TECHVIEW: DNA S EQUE NC I NG

Sequencing the Genome, Fast

James C. Mullikin and Amanda A. McMurray

Genome sequencing projects reveal

the genetic makeup of an organism

by reading off the sequence of the
DNA bases, which encodes all of the infor-
mation necessary for the life of the organ-
ism. The base sequence contains four nu-
cleotides-adenine, thymidine, guanosine,
and cytosine-which are linked together
into long double-helical chains. Over the
last two decades, automated DNA se-
quencers have made the process of obtain-
ing the base-by-base sequence of DNA...

Analyze JSTOR's entire collection from Science (1880-2002)
No reliable punctuation, meta-data, or references

Restrict to 30K terms that occur more than ten times

The data are 76M words in 130K documents

Modeling Science
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Analyzing a document

Original article Topic proportions

Sequencing the Genome, Fast

LU
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Analyzing a document

Original article

Sequencing the Genome, Fast

D. Blei
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Analyzing a topic

1880 1890 1900 1910 1920 1930 1940
electric electric apparatus air apparatus tube air
machine power steam water tube apparatus tube
power company power engineering air glass apparatus
engine steam engine apparatus pressure air glass
steam | electrical — engineering — room —»| water —®| mercury — laboratory
two machine water laboratory glass laboratory rubber
machines two construction engineer gas pressure pressure
iron system engineer made made made small
battery motor room gas laboratory gas mercury
wire engine feet tube mercury small gas
|
1950 1960 1970 1980 1990 2000
tube tube air high materials devices
apparatus system heat power high device
glass temperature power design power materials
air air system heat current current
chamber | heat | temperature | system || applications || gate
instrument chamber chamber systems technology high
small power high devices devices light
laboratory high flow instruments design silicon
pressure instrument tube control device material
rubber control design large heat technology
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Visualizing trends within a topic

"Theoretical Physics™

"Neuroscience™
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OXYGEN
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Time-corrected document similarity

Consider the expected Hellinger distance between the topic
proportions of two documents,

U*E Z \/ _\/ |W'7WJ
k=1

Uses the latent structure to define similarity

Time has been factored out because the topics associated to the
components are different from year to year.

Similarity based only on topic proportions
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Time-corrected document similarity

The Brain of the Orang (1880)
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Time-corrected document similarity

Representation of the Visual Field on the Medial Wall of
Occipital-Parietal Cortex in the Owl Monkey (1976)
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Browser of Science

Automatic Analysis, Theme
Generation, and Summarization
of Machine-Readable Texts

Global Text Matching for Information Retrieval

al

Many kinds of texts are currently available  model of retrieval
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mining toxt themes, raversing texts selectively, and extracting 1 Automatlc Analysis, Theme Generation, and
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Quantitative comparison

e Compute the probability of each year's documents conditional on all
the previous year's documents,

p(we[wy, ... we1)

e Compare exchangeable and dynamic topic models
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Quantitative

Per-word negative log likelihood

comparison
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Dynamic topic models discussion

The DTM is a hierarchical model of sequential document collections;

Exchangeability assumptions should be taken seriously.

Variational methods allow large scale posterior inference.

Examining the latent structure yields useful browsing tools
e Some open issues

e Model selection: choosing the number of topics
e Variational inference: what are the hidden assumptions?
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The hidden assumptions of the Dirichlet distribution

e The Dirichlet is an exponential family distribution on the simplex,
positive vectors that sum to one.

e However, the near independence of components makes it a poor
choice for modeling topic proportions.

e An article about fossil fuels is more likely to also be about geology
than about genetics.
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The logistic normal distribution

e The logistic normal is a distribution on the simplex that can model
dependence between components.

e The natural parameters of the multinomial are drawn from a
multivariate Gaussian distribution.

X ~ -N‘K—l(:uv Z)
9; = exp{x; — log(1+ Zj:ll exp{x;})}
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Correlated topic model (CTM)

OO-@—1O0n

D
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U

e Draw topic proportions from a logistic normal, where topic
occurrences can exhibit correlation.

e Use for:

e Providing a “map” of topics and how they are related
e Better prediction via correlated topics

D. Blei Modeling Science
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Summary

e Topic models provide useful descriptive statistics for analyzing and
understanding the latent structure of large text collections.
e More generally, probabilistic graphical models are a useful way to
express assumptions about the hidden structure of complicated data.
e Variational methods allow us to perform posterior inference to
automatically infer that structure from large data sets.
e Current research
e Choosing the number of topics
e Continuous time dynamic topic models
e Topic models for prediction
e Inferring the impact of a document

D. Blei Modeling Science 43 / 49



“We should seek out unfamiliar summaries of observational material, and
establish their useful properties... And still more novelty can come from
finding, and evading, still deeper lying constraints.” (Tukey, 1962)
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Diversion: Variational inference

e |et xq.n be observations and z;.ps be latent variables

e Our goal is to compute the posterior distribution

p(z . |X . ) — p(zl:M,Xl;N)
ML fp(zl:Maxl:N)dzl:M

e For many interesting distributions, the marginal likelihood of the
observations is difficult to efficiently compute
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Variational inference

Use Jensen's inequality to bound the log prob of the observations:

log p(x1:n) > Eq, [log p(z1:m, x1:n)] — Eq, [log qu(z1:m)]-

We have introduced a distribution of the latent variables with free
variational parameters v.

We optimize those parameters to tighten this bound.

This is the same as finding the member of the family g, that is
closest in KL divergence to p(zi.m | x1:n)-
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Mean-field variational inference

Complexity of optimization is determined by the factorization of g,

In mean field variational inference we choose g, to be fully factored

Zl M H qu Zm

e The latent variables are independent.
e Each is governed by its own variational parameter vp,.

In the true posterior they can exhibit dependence
(often, this is what makes exact inference difficult).
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MFVI and conditional exponential families

e Suppose the distribution of each latent variable conditional on the
observations and other latent variables is in the exponential family:

P(Zm ’ Z_m, X) = hm(zm) exp{gm(z_m, X)sz - am(gi(z—m> X))}

e Assume q, is fully factorized, and each factor is in the same
exponential family:

Qv (Zm) = hm(zm) exp{ylzm — am(vm)}
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MFVI and conditional exponential families

e Variational inference is the following coordinate ascent algorithm

Um = Egq, [gm(Z—m, x)]

e Notice the relationship to Gibbs sampling
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Variational family for the DTM

Br Br.r
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v
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Distribution of # and z is fully-factorized (Blei et al., 2003)
Distribution of {81k, ..., 87k} is a variational Kalman filter

Gaussian state-space model with free observations [y ;.

Fit observations such that the corresponding posterior over the
chain is close to the true posterior.
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Variational family for the DTM

<—OF
=<

Br B2

e Given a document collection, use coordinate ascent on all the
variational parameters until the KL converges.

e Yields a distribution close to the true posterior of interest

o Take expectations w/r/t the simpler variational distribution
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