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A mysterious figure...
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How to Solve Problems

The Feynman Problem-Solving Algorithm:

1. write down the problem;
2. think very hard;
3. write down the answer.

attributed to Murray Gell-Mann
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Goes by various names:

I data mining
I knowledge discovery
I machine learning
I pattern recognition
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Can be defined as:
the process of extracting previously unknown and
potentially useful patterns inherent in data

What is a pattern?

an expression of some subset of the data or a model
of the subset, or a high-level description of some
subset of the data
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What is Data?
Object xi has q measurements:

xi = (xi1, xi2, . . . , xiq)T ∈ Rq

I All n objects in the dataset can be expressed as an n × q
data matrix.

I known as vector-space model

Examples:

1. Text Mining: n documents, q weights or scores for
particular words or phrases

2. Image Analysis: n images, q pixel color or intensity values
3. Computer Network Traffic: n application or protocol flows,

q network traffic counts or scores
4. DNA Expression Microarrays: n genes (nucleotide

sequences), q cell samples
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Many (Statistical) Approaches

class-conditional densities:
I known

I Bayes Decision Theory
I unknown

I supervised
I parametric
I nonparametric

I unsupervised
I parametric
I nonparametric
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supervised learning
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Enron Figure: The New York Times; Carey Priebe and Youngser Park, Johns Hopkins University

unsupervised learning
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Method Components

1. model representation
2. model evaluation
3. parameter/model search



Implementation Issues

I large databases
I distance
I high dimensionality
I overfitting
I missing/noisy data
I local patterns (as opposed to global patterns)
I user involvement in the search
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Process

Figure: Fayyad, et al.
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Iterative Denoising Methodology

In a nutshell:
Process a set of high-dimensional data; perform a
local structure-preserving projection into a
low-dimensional space; provide a visualization and
interaction interface; partition and iteratively denoise.

Motivated by:

I Priebe, Marchette, Healy, 2004, "Integrated Sensing and
Processing Decision Trees," IEEE PAMI.

I Priebe, et al., 2004, "Iterative Denoising for Cross-Corpus
Discovery," COMPSTAT.



An Iterative Denoising Tree



Iterative Denoising Framework



Denoising Detail



Laplacian Eigenmaps

I nonlinear dimensionality reduction technique that distorts
geometry in such a way that enhances some types of
clustering

I L = D - A is large, sparse
I L is symmetric, positive semi-definite
I 0 < λ1 ≤ λ2 ≤ · · · ≤ λd

I corresponding d eigenvectors –> Fiedler Space
I eigenvectors corresponding to two smallest non-zero

eigenvalues –> visualization
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A Science News Corpus



A Clustering Hierarchy 1
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Interesting Grouping

1. Anthropology: yellow 5. Life Sciences: orange
2. Astronomy: black 6. Math & CS: red
3. Behavioral Sciences: magenta 7. Medicine: green
4. Earth Sciences: lightGray 8. Physics: blue



Thank you.

Basics of Knowledge Discovery Engines

Kendall Giles

kgiles@cs.jhu.edu

www.kendallgiles.com
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