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Outline of the talk

• Related work

• Theoretical properties of a randomized algorithm

• Steps in the algorithm

• Empirical results of the algorithm

• Proof of accuracy bounds

• Applications, generalizations, and conclusions
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Related deterministic algorithms

• T. Chan and P. C. Hansen (1992)

• M. Gu and S. C. Eisenstat (1996)

• E. Tyrtyshnikov, S. A. Goreinov, and N. L. Zamarashkin

(1997a, 1997b, 1999, 2000)

• G. W. Stewart, M. W. Berry, and S. A. Pulatova (1999,

2005)
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Analogous randomized algorithms

• C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vem-

pala (2000)

• A. Frieze, R. Kannan, and S. Vempala (1999, 2004)

• D. Achlioptas and F. McSherry (2001)

• P. Drineas, R. Kannan, M. W. Mahoney, and S. Muthukrish-

nan (2006a, 2006b, 2006c, 2006d)

• S. Har-Peled (2006)

• A. Deshpande and S. Vempala (2006)

• S. Friedland, M. Kaveh, A. Niknejad, and H. Zare (2006)

• T. Sarlós (2006a, 2006b, 2006c)
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SVD of a matrix, 1

Given an m × n matrix A, there exist

orthonormal m × 1 vectors u1, u2, . . . , uk−1, uk,

orthonormal n × 1 vectors v1, v2, . . . , vk−1, vk, and

nonnegative numbers σ1 ≥ σ2 ≥ . . . ≥ σk−1 ≥ σk, such that

A =
k

∑

j=1

uj σj (vj)T, (1)

where k is the rank of A.
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SVD of a matrix, 2

In matrix notation,

A = U ΣV T, (2)

U =
(

u1 u2 . . . uk−1 uk
)

, (3)

V =
(

v1 v2 . . . vk−1 vk
)

, (4)

Σi,j =

{

σj, i = j
0, i 6= j.

(5)

The columns of U are orthonormal;

the columns of V are orthonormal.
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Low-rank matrix approximation

Pick a positive integer k less than the rank of A. Then,

min
rank(B)=k

‖A − B‖ = σk+1(A), (6)

where ‖A − B‖ denotes the spectral norm of A − B.

The minimum is attained by the following matrix:

B =
k

∑

j=1

uj σj(A) (vj)T. (7)
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Why low rank?

• Compression of subblocks of matrices arising from

the discretization of smoothing integral operators

and their inverses.

• Classic statistical method (principal component analysis):

• Noise removal.

• Tractable representation of term-document matrices

in latent semantic analysis/indexing (search engines).
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Accuracy of a randomized algorithm

Suppose A is an m × n matrix.

Then, the algorithm computes a rank-k matrix B such that

‖A − B‖ ≤ 10
√

(k + 20)n σk+1(A) (8)

with probability at least 1 − 10−17.

Furthermore, if σj(A) ≤ σk+1(A)/
√

n, then

‖A − B‖ ≤ 20
√

(k + 20) j σk+1(A) (9)

with probability at least 1 − 10−17.
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Cost of the randomized algorithm

The algorithm requires applying A to k + 20 vectors,

and AT to k vectors, in addition to O(k2 (m + n))

floating-point operations and words of memory.

Moreover, the constant hidden by the O-notation

is quite small — “O(k2 (m + n))” is the cost of

computing SVDs using the standard algorithms

for an m × (k + 20) matrix and a k × n matrix,

as well as for multiplying an m × k matrix and

a k × k matrix.
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Examples of rapidly applicable matrices

• Sparse

• Discrete Fourier transform

• Toeplitz

• Fast multipole method

• Blockwise combinations and compositions

of subblocks of the above
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Step 1 of the algorithm

We test A on k + 20 vectors whose entries are i.i.d. N(0,1)

random variables, in order to identify the range of A. That is,

we multiply the m × n matrix A and an n × (k + 20) matrix R

whose entries are i.i.d. N(0,1) random variables:

Pm×(k+20) = Am×n · Rn×(k+20). (10)
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Step 2 of the algorithm

Via an SVD, we find the left singular vectors corresponding

to the k greatest singular values of the m × (k + 20) matrix P ,

and form an m × k matrix Q with the left singular vectors of P

as its columns. We will prove that the set of columns of Q is

close to an orthonormal basis for the range of A. (How close

is determined both by σk+1(A) and by the condition number

of the random matrix R with which we multiplied A.)
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Step 3 of the algorithm

Now that we have an orthonormal basis for the range of A,

the rest is fairly straightforward. We apply AT to the vectors

which constitute the orthonormal basis. That is, we multiply

the n × m matrix AT and the m × k matrix Q:

Sn×k = (AT)n×m · Qm×k. (11)
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Step 4 of the algorithm

We compute an SVD of the k × n matrix ST:

(ST)k×n = Tk×k · Σk×k · (V T)k×n, (12)

where the entries of the k × k matrix Σ are all nonnegative

and are zero off of the diagonal, and where the columns

of the k × k matrix T are orthonormal, as are the columns

of the n × k matrix V .

15



Step 5 of the algorithm

We multiply the m × k matrix Q and the k × k matrix T :

Um×k = Qm×k · Tk×k. (13)

The product U ΣV T is the desired approximation to A.
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Recap of the algorithm

1. Form Pm×(k+20) = Am×n · Rn×(k+20); R is random.

2. Form Qm×k, the matrix whose columns consist

of the left singular vectors corresponding

to the k greatest singular values of Pm×(k+20).

3. Form Sn×k = (AT)n×m · Qm×k.

4. Compute the SVD Tk×k · Σk×k · (V T)k×n of (ST)k×n.

5. Form Um×k = Qm×k · Tk×k.
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Output of the algorithm

Combining the equations on the previous transparency yields

Am×n ≈ Qm×k · (QT)k×m · Am×n = Um×k · Σk×k · (V T)k×n. (14)

Recall that the entries of Σ are all nonnegative and are zero

off of the diagonal, and the columns of U are orthonormal,

as are the columns of V .
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Empirical accuracy of the algorithm

As n ranges from 100 to 1,000,000, with k = 10

the rank-k approximation B to the n × n matrix A

is such that ‖A − B‖ ranges from 10−7 to 2 · 10−7,

while σk+1(A) = 10−8 and σ1(A) = 1 for all n.

We applied A to k random vectors, instead of k + 20.
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Singular values of the matrices
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Costs are proportional to n with k = 10
for an n × n matrix of rank 20
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Stratagem for proof of the accuracy bounds

1. Apply the triangle inequality multiple times, breaking
the estimate into two contributions, one which involves
optimization over a space of dim. k, and the other requiring
the existence of a good bound in a high-dimensional space.

2. Optimize over the space of dim. k directly via brute force
computation as a step in the algorithm (compute an SVD).

3. To prove the existence of a bound in the high-dimensional
space, work all estimates on paper within the basis of
the right singular vectors of the matrix A to be recovered.
Observe that the condition number of the matrix R whose
entries are i.i.d. N(0,1) is not too large, with high prob.
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Proof of the accuracy bounds, 1

Suppose that A is an m × n matrix, Q is an m × k matrix

whose columns are orthonormal, R is an n × (k + 20) matrix,

W is a (k + 20) × n matrix, and Z is a k × (k + 20) matrix.

Then, multiple applications of the triangle inequality yield that

‖A − Q QT A‖ ≤ 2 ‖A − A R W‖ + 2 ‖A R − Q Z‖ ‖W‖. (15)

By choosing W and Z appropriately, we would like to show that

‖A − Q QT A‖ . σk+1(A). (16)
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Proof of the accuracy bounds, 2

The algorithm chooses the columns of Q to consist

of the left singular vectors of A R which correspond

to the k greatest singular values of A R. Therefore,

with an appropriate choice for Z, we obtain that

‖A R − Q Z‖ ≤ σk+1(A R) ≤ ‖R‖σk+1(A). (17)

Combining formulae (15) and (17) yields that

‖A − Q QT A‖ ≤ 2 ‖A − A R W‖ + 2 ‖R‖ ‖W‖σk+1(A). (18)
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Proof of the accuracy bounds, 3

Again,

‖A − Q QT A‖ ≤ 2 ‖A − A R W‖ + 2 ‖R‖ ‖W‖σk+1(A). (19)

Since the norm ‖R‖ of the random matrix R is not too large

with very high probability, it suffices to show that in principle

there exists a (k + 20) × n matrix W such that

‖A − A R W‖ is of the order of σk+1(A), and

‖W‖ is not too large, with very high probability.
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Key idea in the existence proof

The entries have the same joint probability distribution with

respect to any orthonormal basis for a vector whose entries

in one orthonormal basis are i.i.d. N(0,1) random variables.

So, within the proof that there exists a linear operator which

recovers a specified matrix A from the vectors resulting from

applying A to k + 20 such random vectors, we may conduct

all calculations in the basis of the right singular vectors of A.

26



Estimates from random matrix theory

The existence proof is almost trivial using the “key idea”

from the previous transparency, since the condition number

of a matrix whose entries are i.i.d. N(0,1) random variables

seldom gets too large. Goldstine and Von Neumann (1951)

and Chen & Dongarra (2005) give particularly useful bounds

on the condition numbers of such matrices. Their bounds are

remarkably simple, and reasonably tight.
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A peculiarity

As the condition number of R is not too large with high prob.,

we are able to recover A from A R to within about σk+1(A) by

multiplying the product A R from the right by a matrix, say W ,

which depends on R, but is independent of σ1(A), . . . , σk(A).

In principle, we could recover A better by taking into account

σ1(A), . . . , σk(A), but doing so makes the analysis unwieldy.

It seems to be sufficient to recover A solely by knowing which

subspace constitutes A’s range, without knowing the structure

of A within that subspace.
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Recap of the proof of the accuracy bounds

1. Apply the triangle inequality multiple times, breaking
the estimate into two contributions, one which involves
optimization over a space of dim. k, and the other requiring
the existence of a good bound in a high-dimensional space.

2. Optimize over the space of dim. k directly via brute force
computation as a step in the algorithm (compute an SVD).

3. To prove the existence of a bound in the high-dimensional
space, work all estimates on paper within the basis of
the right singular vectors of the matrix A to be recovered.
Observe that the condition number of the matrix R whose
entries are i.i.d. N(0,1) is not too large, with high prob.
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Applications of the algorithm

• Optimal compression into standard forms (SVDs,

for example) of suboptimally compressed matrices.

• Compression of subblocks of matrices arising from

the discretization of smoothing integral operators

and their inverses.

• Noise removal.

• Tractable representation of term-document matrices

in latent semantic analysis/indexing (search engines).
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What about the Lanczos method
(for low-rank matrix approximation)?

• The Lanczos method with complete reorthogonalization

works about as well in finite-precision arithmetic as in exact.

• Its costs are similar to the randomized algorithm’s costs.

However, the Lanczos method is iterative; unlike the direct

randomized algorithm, it can require many iterations.

• Even in exact arithmetic, the Lanczos method has trouble

when singular values are degenerate. Applications arising

in engineering frequently involve symmetries, and hence

often involve substantially degenerate singular values.
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Interpolative decomposition algorithm

An algorithm similar to that described in the present talk

can efficiently compute an approximation to the so-called

interpolative decomposition of a matrix A for which both

A and AT can be applied efficiently to arbitrary vectors.

The similar algorithm is generally somewhat faster than

the SVD-based one, and simplifies the implementation

of direct/locally-adaptive solvers for integral equations.
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Definition of interpolative decompositions

An interpolative decomposition of an m × n matrix A consists

of an m × k matrix C whose columns consist of a subset

of the columns of A, as well as a k × n matrix P , such that

1. some subset of the columns of P makes up the k×k identity,

2. every entry of P has an absolute value of at most 2, and

3. A = C P .
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Conclusion

There exists a robust, efficient randomized algorithm for

computing an approximation to an SVD of a matrix A for

which A & AT may be applied rapidly to arbitrary vectors.

Given any positive integer k, the algorithm constructs a

rank-k approximation whose accuracy is of the same order

as the accuracy of the best possible rank-k approximation.

The algorithm has a rather negligible probability of failure

(10−17 is not atypical), and operates reliably independently

of the structure of A (unlike the classical Lanczos method

for computing an approximation to an SVD of a matrix A).

mark.tygert@yale.edu http://www.cs.yale.edu/∼tygert
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