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How I was brought into this...

Want to discuss the geometry of sets of points in Rd or
Hilbert space.

Results about sets lying in Rd usually have constants
that depend exponentially on d.

This is called ‘the curse of dimensionality’

We will discuss a theorem where this ‘curse’
disappears...

And then move on to metric spaces...
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Basic Questions:

When is a set K ⊂ Rd contained inside a single
connected set of finite length?

Can we estimate the length of the shortest connected
set containing K?

What do these estimates depend on?
Number of points??
Ambient dimension (=d for Rd) ??

(we will see how does this connects to metric
embeddings)
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Quantitative Rectifiability

Peter Jones and Kate Okikiolu

Intuitive Picture:
A connected set (in Rd) of finite length is ‘flat’ on
most scales and in most locations.
This can be used to characterize subsets of finite
length connected sets.
One can give a quantitative version of this using
multiresolutional analysis.
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Quantitative Rectifiability

Definition: (Jones β number)

βK(Q) =
2

diam(Q)
inf
L line

sup
x∈K∩Q

dist(x, L)

=
width of the thinest tube containing K ∩ Q

diam(Q)
.

(draw)
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Quantitative Rectifiability

Theorem 1:[P. Jones]

[K. Okikiolu]

For any connected Γ ⊂ C

or Γ ⊂ Rd

∑

Q∈dyadic grid

β2
Γ(3Q)diam(Q) . `(Γ)

Theorem 2:[P. Jones] For any set K ⊂ Rd, there exists Γ0 ⊃ K ,
Γ0 connected, such that

`(Γ0) .
∑

Q∈dyadic grid

β2
K(3Q)diam(Q) + diam(K)

(and in particular K ⊂ C).
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Quantitative Rectifiability

Theorem 1:[P. Jones] [K. Okikiolu]
For any connected Γ ⊂ C or Γ ⊂ Rd

∑

Q∈dyadic grid

β2
Γ(3Q)diam(Q) . `(Γ)

Theorem 2:[P. Jones] For any set K ⊂ Rd, there exists Γ0 ⊃ K ,
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(and in particular K ⊂ C).
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Corollary:
For any connected set Γ ⊂ Rd

diam(Γ) +
∑

Q∈dyadic grid

β2
Γ(3Q)diam(Q) ∼ `(Γ)
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More generally:
For any set K ⊂ Rd

diam(K) +
∑

Q∈dyadic grid

β2
K(3Q)diam(Q) ∼ `(ΓMST )

where ΓMST is the shortest curve containing K .
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Proof of corollary:

`(ΓMST ) ≤ `(Γ0)

. diam(K) +
∑

Q∈dyadic grid

β2
K(3Q)diam(Q)

≤ diam(K) +
∑

Q∈dyadic grid

β2
ΓMST

(3Q)diam(Q)

. `(ΓMST )
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Dictionary discovered by Peter Jones.

wavelets Jones’ β numbers

{aj,k} for function f {β(Q)} for set K

analysis and synthesis analysis and synthesis
of the function f of curve Γ ⊇ K

‖f‖2 =
∑

|aj,k|
2 l(Γ) ∼

∑

β(Q)2 · diam(Q) + diam(Γ)

Wavelet square function Jones’ function
Wψ(x)2 J (x)

Slide by Gilad Lerman.
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Issue to fix

Thm 1: ∀ connected Γ ⊂ R
d Thm 2: ∀K ⊂ R

d, ∃ connected Γ0 ⊃ K, s.t.
P

Q

β2
Γ(3Q)diam(Q) . `(Γ) `(Γ0) . diam(K) +

P

Q

β2
K(3Q)diam(Q)

Constants that make inequalities true are exponential in d.

Example: three points!
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Result

Thm 1: ∀ connected Γ ⊂ R
d Thm 2: ∀K ⊂ R

d, ∃ connected Γ0 ⊃ K, s.t.
P

Q

β2
Γ(3Q)diam(Q) . `(Γ) `(Γ0) . diam(K) +

P

Q

β2
K(3Q)diam(Q)

“Theorem” :

One can reformulate theorems 1 and 2 in a way which will
give constants independent of dimension

(Actually, reformulated theorems are true for Γ or K in

Hilbert space).
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Definitions

let K ⊂ Rd be a subset with diam(K) = 1.

Xn ⊂ K is 2−n net for K means

x, y ∈ Xn then dist(x, y) ≥ 2−n

For any y ∈ K exits an x ∈ Xn with dist(x, y) < 2−n

Take Xn ⊂ K a 2−n net for K, with Xn ⊃ Xn−1

Define the multiresolution

GK = {B(x,A2−n) : x ∈ Xn;n ≥ 0}

GK replaces the dyadic grid
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Result

Constants that make inequalities true are independent of
dimension d (Theorems hold in Hilbert Spaces.)
Theorem 1’:(R.S.) For any connected Γ ⊂ H,Γ ⊃ K

∑

Q∈GK

β2
Γ(Q)diam(Q) . `(Γ)

Theorem 2’:(R.S.) For any set K ⊂ H , there exists Γ0 ⊃ K ,
Γ0 connected, such that

`(Γ0) .
∑

Q∈GK

β2
K(Q)diam(Q) + diam(K)
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Result

Corollary:
For any set K ⊂ Hilbert Space

diam(K) +
∑

Q∈GK

β2
K(Q)diam(Q) ∼ `(ΓMST )

where ΓMST is the shortest curve containing K.
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Metric spaces

Menger curvature
Let x1, x2, x3 ∈ M be three distinct points. Take
x′

1, x
′
2, x

′
3 ∈ C such that dist(xi, xj) = |x′

i − x′
j | for

1 ≤ i, j ≤ 3. If x′
1, x

′
2, x

′
3 are collinear then define

c(x1, x2, x3) := 0.

Otherwise, let R be the radius of the circle going
through x′

1, x
′
2, x

′
3. In this case define

c(x1, x2, x3) :=
1

R
.
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Metric Spaces

Define β∞ (I. Hahlomaa)

β2
M,∞,K(Q)diam(Q) = diam(Q)3 sup

x1,x2,x3∈Q

dist(xi,xj )≥A−1diam(Q)

c2(x1, x2, x3).

draw triangle. hight and menger curvature...
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Metric Spaces

Thm 1’: ∀ connected Γ ⊂ H Thm 2’: ∀K ⊂ H, ∃ connected Γ0 ⊃ K, s.t.
P

Q

β2
Γ(Q)diam(Q) . `(Γ) `(Γ0) . diam(K) +

P

Q

β2
K(Q)diam(Q)

Theorem 2”: [I. Hahlomaa] There is an A > 1 such that, for any set
K ⊂ M, there exists E ⊂ [0, 1] and γ : E → K such that

‖γ‖Lip ≤ diam(K) +
∑

n

∑

Q=Ball(x,A2−n,x∈Xn)

β2
Xn

(Q)diam(Q).
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Metric spaces

Thm 1’: ∀ connected Γ ⊂ H Thm 2’: ∀K ⊂ H, ∃ connected Γ0 ⊃ K, s.t.
P

Q

β2
Γ(Q)diam(Q) . `(Γ) `(Γ0) . diam(K) +

P

Q

β2
K(Q)diam(Q)

When is the converse (i.e. Theorem 1”) true?

Not L1!

draw counter example.
length = 1 + Nδ
∑

∼ Nδ log(δ−1)

Off by a factor of log(δ−1).

Ferrari, Franchi and Pajot have a version of Theorem 2 for
the Heisenberg group. They use a different definition of
β.
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Go back in time...

A set K is called j-Ahlfors-David-regular if for all
r ≤ diam(K) and x ∈ K we have

1

C
· rj ≤ Hj(K ∩ Ball(x, r)) ≤ C · rj .

In the Euclidean setting:

Average deviation from j-plane. Let K be a
j-Ahlfors-David regular set and let µ = Hj |K .

βq,µ(B) =
1

diam(B)
inf

L= j-plane

{
∫

B
dist(y, L)q

dµ(y)

µ(B)

}1/q

.
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Go back in time...

Theorem 1”’ + 2”’:[David-Semmes]
Let K ⊂ Rd be a 1-Ahlfors-Regular set and 1 ≤ q ≤ ∞. TFAE:

K is contained in a connected 1-Ahlfors-Regular set.

Carleson conditon: for all z ∈ K and 0 < R < diam(K)

∫ R

0

∫

Ball(z,R)
βq,H1|K (Ball(x, t))2dH1|K(x)

dt

t
. R.

K has BPLI

K has BPBI

K is good for all K kernels.

(j-Ahlfors-Regular, Big Pieces, Singular integrals, Uniform Rectifiability)
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Theorem 1”’ + 2”’:[David-Semmes]
Let K ⊂ Rd be a j-Ahlfors-David-regular set and 1 ≤ q < 2j

j−2 for

j ≥ 2 and 1 ≤ j ≤ ∞ for j = 1. TFAE

Carleson condition: for all z ∈ K and 0 < R < diam(K)

∫ R

0

∫

Ball(z,R)
βq(Ball(x, t))2dHj |K(x)

dt

t
. Rj .

K has BPLI

K has BPBI (....note CS connection with embedabilty theorems)

K is good for all K kernels.

(j-Ahlfors-Regular, Big Pieces, Singular integrals, Uniform Rectifiability)
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BPLI-definition

A j-regular set K ⊂ M is said to have
BPLI (Big Pieces of Lipschitz Images)
⇐⇒
for any x ∈ K, and r < diam(K) we have a
L-Lipschitz map f : E → BallM(x, r) where
E ⊂ BallRj(x, r) and such that

Hj(f(E) ∩ K) ≥ θHj(BallM(x, r) ∩ K)
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BPBI-definition

A j-regular set K ⊂ M is said to have
BPBI (Big Pieces of BiLipschitz Images)
⇐⇒
for any x ∈ K, and r < diam(K) we have a
L,L−1-BiLipschitz map f : E → BallM(x, r) where
E ⊂ BallRj(x, r) and such that

Hj(f(E) ∩ K) ≥ θHj(BallM(x, r) ∩ K)
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good for all K kernels-definition

A j-regular set K ⊂ Rd is said to be
good for all K kernels iff
for any kernel k : Rd r {0} → R satisfying

(i) k odd,
(ii) |x|j+m|∇mk(x)| ∈ L∞(Rd r {0}) for m = 0, 1, 2, 3, ...

we have that
T ∗ := sup

ε>0
Tεf(x) = sup

ε>0

∫

y∈K

|x−y|>ε

k(x − y)f(y)dHj |K(y)

is L2(K,Hj |K) → L2(K,Hj |K) bounded.
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Question

Can we push the David-Semmes theorem into a metric
space setting??? (singular integrals aside)
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In the metric space setting:

*****j = 1*****:
Theorem 2””: [I. Hahlomaa, 2006] Let K be a 1-Ahlfors-Regular
set in a complete geodesic metric space M. Assume that for all z ∈ K

and R > 0
∫ ∫ ∫

c2(x1, x2, x3)dH1|K(x3)dH1|K(x2)dH1|K(x1) ≤ C0R

where the integral on the left hand side is over all triples
x1, x2, x3 ∈ K ∩ Ball(z,R) such that

A · dist(xi, xj) ≥ diam{x1, x2, x3}.

Then there is a 1-Ahlfors-Regular connected set Γ0 ⊃ K , whose con-

stant depends only on C0 (linearly) and on the 1-Ahlfors-Regularity con-

stant of K . (gives: Carleson condition =⇒ BPLI)
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In the metric space setting:

*****j = 1*****:
Theorem 1””’: [R.S.] Let Γ be a connected 1-Ahlfors-Regular set in a
metric space M with metric dist(·, ·). Then for all z ∈ Γ and R > 0

∫ ∫ ∫

c2(x1, x2, x3)dH1|Γ(x3)dH1|Γ(x2)dH1|Γ(x1) . R

with constant depending only on the 1-Ahlfors-Regularity constant of Γ,
where the integral on the left hand side is over all triples
x1, x2, x3 ∈ Γ ∩ Ball(z,R) such that

A · dist(xi, xj) ≥ diam{x1, x2, x3}.

(with a little work gives: BPLI =⇒ Carleson condition)
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In the metric space setting:

*****j ≥ 1*****:
Theorem: [R.S.] Let K ⊂ M be j-Ahlfors-David regular. If K

has BPLI then K has BPBI.

The converse is clear

*****j = 1*****:
Corollary:

Singular integrals aside, this gives, the David-Semmes
theorem in a metric space setting for j = 1, i.e.

Carleson condition ⇐⇒ BPLI ⇐⇒ BPBI for j = 1
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In the metric space setting:

*****j ≥ 1*****:
BPLI → BPBI follows from

Theorem: [R.S.] Let 0 < α < 1 and k ≥ 1 be given. There are
universal constants M = M(α, k), c1 = c1(k) and c2 such that
the following statements hold. Let M be any metric space.
Let f : [0, 1]k → M be a 1-Lipschitz function, i.e. such that

dist(f(x), f(y)) ≤ |x − y| .

Then there are sets F1, ..., FM ⊂ [0, 1]k so that for 1 ≤ i ≤ M ,
x, y ∈ Fi we have

α|x − y| ≤ dist(f(x), f(y)) ≤ |x − y| ,

hk(f([0, 1]k \ (F1 ∪ ... ∪ FM ))) ≤ c1α .

(define hk). (Jones ∼ 84 for M = Rd)
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Question which remain

What about the rest of the conditions for j > 1??
In particular:

What is the correct Carleson condition??

Can one replace the Ahlfors-David condition with a
doubling condition (lose IFF? lose log n factors?)

These questions are very related to CS embedability
questions, especially in the applied setting.
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