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Pattern recognition

@ Spectral embeddings provide numerical tools for pattern
recognition:

e Dimensionality reduction
e Density invariant embeddings
e Embedding extension scheme

© Spectral embeddings can be interpreted in several ways:

e Dimensionality reduction: geometric approach
e Diffusion distances: Markov walks approach
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Outline I

e Data adaptive basis and extension of functions over data
sets: signal processing over manifolds

e Spectral relaxation of integer optimization problems:
graph/set alignment and set spaces
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Curse of dimensionality & Dimensionality Reduction

@ Density estimation is difficult

@ Computational cost of many
algorithms grows exponentially with
the dimension.

@ Certain signals are in essence
low-dimensional and their high
dimensional representation is due to
over sampling and noise.

@ The high dimensional representation
obscures the underlying low
dimensional structure.

@ Certain tasks only require
low-dimensional representations.
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Example: audio visual lipreading
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Two input channels:

@ Video frames: R'%0: 25fps.
@ Audio frames: each 40ms sampled in 32khz: R1280,
We aim to recognize a limited vocabulary: {“0”,“1”,...,“9"}.

Each word consists of a set of samples: set recognition
We can also consider the recognition of single samples.
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The role of random projections

[Johnson-Lindenstrauss84]

@ A fast algorithm for dimensionality reduction
n — O (log (n)) while preserving the L, distances.

@ In practice, since spectral embeddings schemes use L;
distances as inputs, n = O (10*) at most.

@ This also applies to metric trees
[Liu,Moore,Gray,Yang2004].
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What's wrong with L, distances?
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“Short distances good, long distances bad”
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This is because the data lies on a low dimensional manifolds: in
this example the two rotation angles.



Pattern Recognition in Diffusion Spaces

Kernel methods

Given a dataset {x;}

i=l.n-
@ Apply a p.s.d. kernel k to {x;} . For instance:
d(x,',x]'>

wij = exp(———%),e> 0.

@ Compute the eigenvectors of W: w;; = Y A, (1), (j)
1>0

© The embedding is given by

(x;) : x; (/\ﬂ[]l(xi),)\zlpz(xi),...)

n—1

['Fe(xi) — Tt(zi)Hiz = Z Ay (x) — ¢ (2))? =
1=0
wi; + w]‘]‘ — 2wij = D(X,Z)2
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Kernel methods survey

@ MDS - Cox and Cox. Multidimensional Scaling. Chapman &
Hall, 2nd edition, 2001.

@ ISOMAP - Josh. Tenenbaum, Vin de Silva, John Langford
2000, A Global Geometric Framework for Nonlinear
Dimensionality Reduction

@ LLE - S. Roweis and L. Saul, Nonlinear Dimensionality
Reduction by Locally Linear Embedding, Science 2000

@ Hessian LLE - D. Donoho and C. Grimes, Hessian eigenmaps:
Locally linear embedding techniques for high-dimensional
data, PNAS 2003

@ Laplacian Eigenmaps - M. Belkin and P. Niyogi, Laplacian
Eigenmaps and Spectral Techniques for Embedding and
Clustering. NIPS2001

@ Diffusion maps - Geometric diffusions as a tool for harmonic
analysis and structure definition of data, PNAS2005
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Geometric interpretation: Laplacian

eigenmaps[Belkin-Nyogi, NIPS2002]

The embedding preserves the infinitesimal geometry of a low
dimensional manifold M. The distortion of an embedding f is
locally bounded by |f(z) — f(x)| < dm(z, x) ||Vamf(x)|| and

S IVafI? = fou f-Buaf = X Wi (fi = )" = fTLf
Lj

f=fTLf, st fTDf; 1,TD1=0
xi e (1 (x0), 9, (), )

The Graph Laplacian becomes a natural choice for a kernel.
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Density invariant embeddings |
[Coifman,Lafon,et. al,PNAS2005],[Keller,Lafon,Coifman,PAMI2006]

Same manifold, same points in R3, different densities

4

different embeddings in R?
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Density invariant embeddings Il
[Coifman,Lafon,et. al,PNAS2005],[Keller,Lafon,Coifman,PAMI2006]

Density invariant embedding

2
Given w;; = exp(—M), define ¢; £ ¥; w;; ,and form the

€
new kernel @;; = ;’—qf
ij
Now continue with the regular graph Laplacian using w;;.

Curve Density  Graph Laplacian Laplace-Beltrami

.......
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Out of sample extension |
[Lafon,Keller,Coifman,PAMI2006]

Given the parametrization
{y,} computed using N > 1
samples, extend the
embedding to the new point
y, without re-embedding the
N + 1 data set.

@ This is based on a Nystrom extension with in an extension
kernel.

@ Differs from [Fowlkes, Belongie, Chung, Malik,PAMI2004].

14/51



Pattern Recognition in Diffusion Spaces

Out of sample extension Il
[Lafon,Keller,Coifman,PAMI2006]

Spectral low pass extension

Given a p.s.d. symmetric k with @ > ¢ and its eigensystem
{17’1,7\1}. ; can be approximated beyond x € X by

hiy) = E k@.2)i(2), A > C vy
and used to extend {¢,;}

Y, = Zl:<l/’1r17’l>x ¥, Vy

The extension kernel k differs from the embedding kernel k.

15/51



Pattern Recognition in Diffusion Spaces

Out of sample extension llI
[Lafon,Keller,Coifman,PAMI2006]

The % term limits the number of eigenfunctions ¢, that can be
1

extended, since the eigenvalues of the laplacian are decaying.
This is a natural MDL criterion for kernel based learning.

The width of the extension kernel z

Kernel Approx. Extens. Task Learning set
€¢— 0 narrow good poor interpolation  large
e>0 wide poor good extrapolation small

[Lafon-Coifman,ACHA2006]: Geometric harmonics: iterative
refinement of € by optimizing the trade-off between the
approximation and extension errors.

The approximation error depends on the extended function, v,
in this case.
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Implementation issues for massive datasets

These schemes utilize two numerical workhorses:

@ Embedding

@ 1~ by n Gauss transform
@ SVD: n x n matrix

@ Extension to m points

@ m by n Gauss transform

@ SVD: Random projections based approaches
[Tygert,Rokhlin,Martinsson]

@ Gauss transform: FMM, FGT [Greengard,Strain], IFGT
[Yang, Duraiswami, Gumerov], Dual trees [Gray,Moore]
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High dimensional data alignment
[Lafon,Keller,Coifman,PAMI2006]

TTE

Input: 3000 frames each being R1%0%

Output: align the heads based on a common low dimensional
manifold.

Problem: each manifold is sampled with a different density —
Laplace Beltrami.

The low-dimensional embeddings are then aligned.

18/51
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Audio-Visual lip reading |

[Lafon,Keller,Coifman,PAMI2006]

We split the learning process into two parts:

@ Embedding/learning the global manifold

6000 frames

19/51
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Audio-Visual lip reading Il

[Lafon,Keller,Coifman,PAMI2006]

© Using the labeled samples to compute signatures.

20/51
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Audio-Visual lip reading Il

[Lafon,Keller,Coifman,PAMI2006]

Results

Channel uou (51 ” 5127! 5(311 u4u (551! “6” 5(711 “8” (59!!
Visual | 0.90| 0.99| 0.90| 0.94| 0.93| 0.81| 0.87| 0.74| 0.75| 0.82
Audio | 0.75| 0.94| 0.87| 0.90| 0.96| 0.86| 0.93| 0.81| 0.80| 0.92

Remarks

@ We used the L, metric for visual data and the cepstrum of
the auditory data.
@ Dimensionality reduction R0 — R10,

@ Recognition based on Hausdorff distance in R1°.
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Multisensor based recognition: lip reading |
[Keller,Lafon,Zucker2007]

Can we unify different sensors for signal recognition and
analysis?

The good: Multisensor data is often of complementary nature.
The bad:

Vi J! "’h' el T
[Irani-Anandan,|CCV1998]

@ Different sensors are related by unknown non-linear
relationships

22/51
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Multisensor based recognition: lip reading |l
[Keller,Lafon,Zucker2007]

@ Correspond to a common low dimensional manifold.

@ Different sensors have different sampling rates and
resolutions

23/51
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Our approach

@ Embed each of the channels separately using the Laplace
Beltrami.

© Append the embeddings to get new coordinates.
© Apply a pattern recognition scheme.

Results

‘07 1 |27 | 37 | 4 | BT | e | 7| 8T Y

Audio | 0.75| 0.94| 0.87] 0.90| 0.96| 0.86| 0.93| 0.81| 0.80| 0.92
Visual | 0.90 0.99| 0.90| 0.94| 0.93| 0.81| 0.87| 0.74| 0.75| 0.82
Both | 0.90| 0.99| 0.96| 0.99| 0.96| 0.97| 0.90| 0.93| 0.95| 0.96

24 /51
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Inducing Random walks on graphs |

Given a dataset {x;}:

@ Apply a p.s.d. kernel k to {x;} . For instance:

2
wij = eXP(—M)- e > 0 is the scale factor.

w;; describes the infinitesimal geometry of X up to 2./e.

@ Compute the Markov matrix P = D~'W, d;; = ) _w;;
J
© Compute the eigenvectors of P, = P!:

pi(x,y) = Z /\54]1(x)4’1(y) ’

1>0

The embedding is given by

25/51
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Inducing Random walks on graphs Il

xi = i) = (Mg (), Asp, (30), )

If W is symmetric and w;; > 0 then P and the graph Laplacian
L = D — W share the same eigenvectors.

Interpretations:
@ The mixing time of Markov random chains, Spectral Graph
Theory, Fan R. K. Chung.

© Lumpable Markov chains and piecewise constant right
eigenvectors Meila and Shi, A random walks view of
spectral segmentation, AISTATS 2001.

© Stability analysis, On Spectral Clustering: Analysis and an
algorithm, Y. Ng, M. Jordan, and Y Weiss, NIPS2001.

26/51
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Diffusion distances

[Lafon,Coifman]

What is the distance measure induced by using the graph
laplacian as a kernel?

[¥e(xi) — Ye(zi ||L2 Z)‘Zt l/)l ( ))2 =
) —(ptw&(g)(zy)) = Di(x,2)*
yeQ

27/51
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Clustering Vs. Pattern recognition

Different approaches answer different questions

@ Laplacian eigenmaps [Belkin,Nyogi] and Diffusion
distances [Lafon,Coifman]:

e What is the meaning of spectral dimensionality reduction?
e Applicable to pattern recognition.

@ Lumpable Markov chains[Meila,Shi], Spectral clustering
[Y.Ng,M. Jordan,Y. Weiss]:

o Why does spectral clustering work?
e Applicable to clustering.
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Revealed Markov models

[Keller,Singer,Coifman]

@ Given atime series x (t) t € [to, ..., tmax]
@ Initially, x (t) is considered a data set {x},

@ Spectral embedding induces a random walk on the data -
each sample is mapped to a state.

@ The diffusion distance allows us to quantize the state
space optimally:
given the target states number, we minimize the L,
quantization distortion in the embedding space (KMEANS).

29/51
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Spectral embeddings and Markov walks |l

We merge Markov states into K metastates:

6000 samples 6000 states K meta-states

Now we can compute the transition probabilities {7;;},
ij=1K

X(r)e Rt

30/51
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Learning

We compute the state and transition probabilities: Learning

X(t) =

e Y

°
P(S2IX())

P(S1|S2) P(S2|S3) P(S3|S4)

S2

P(S2|S1) P(S3|S2) P(S4|S3)

31/51
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Pattern recognition: Audio-Visual lip reading

Separating the state-space from the density

Two inputs:

@ The 6000 frames are recordings of the speaker reading an
artlcle used to model the state-space

@ 50 sequences of the speaker speaklng the digits 1...10 -
used to learn the dynamics of each digit.

Similar to Bag-of-words models [Hoffman 1999; Blei, Ng &
Jordan, 2004; Teh, Jordan, Beal & Blei, 2004], documents are
represented as probability densities over the Bag-of-words (the
state space).

32/51



Pattern Recognition in Diffusion Spaces

Maximum likelihood classifiers |

Let: D = {dl,...,dlo} = {“1”,..., “10”}
{S;} — a set of input states

Maximizing the state probabilities

k* = m}leZlogP (Si|d = dy)
i

Maximizing the transition probabilities

k* = max ZlogP (Si|Si—1,d = dy)

HO” 551” “2” H3H “4” “5” 556” “7” H8” 559”
State | 0.80| 0.91| 0.90, 0.86| 0.95| 0.90| 0.96| 0.69| 0.83| 0.92
Trans | 0.88) 1.00| 0.95| 0.86| 1.00| 1.00| 0.96| 0.82| 0.72| 0.92

33/51
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Spectral embedding vectors as an adaptive basis
[Keller]

The kernel k is p.s.d, hence its eigenvectors (the embedding) form
an orthonormal system {¢,}.

Example

Given a periodic discrete signal x (1), n .N, and a time
invariant metric D (x (t1),x (t2)) = D (|t1 — t2])

X D(X(4),X (1)) =K (1.t

‘ (1))

@ A circle is parameterized by ezﬁm", n=1...N.
@ For any kernel K, the Laplacian is a circulant matrix,
diagonalized by the Fourier basis.

34/51
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Sinc interpolation of periodic functions

@ Start with the Fourier basis {¢,} on the circle
x) = ) aip; (x), where a; = (f,; (x))
° Extend {1,11 } from X — y using the Nystrom extension

¥ (y ZK x,y) §; (x)
° ExtendffromX—>y

_Za‘lpl Zal)\ ZK X, y 1‘/]1
ZK xy ZA ap; (x

° Set K (x,y) = S2t=0) _, 3. — 1. K s the Dirichlet

sin ( (VN X))
E ai; —(b 2 Sl’Il( [(y x))f (}:-)
> 1 3 ([(y X))

sm N

kernel.

f(y)ZZsm(

X sm
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Fourier bases on irregularly-shaped domains
[Saito2005]
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Pattern recognition as a Function extension problem

Let f be the classification function: f (x) = { i ; g _11
Definition

Given a kernel k with and its eigensystem {;, A;} and a scalar
function f

| \

@ Compute the inner products a; = (¥, f)
@ Extend the eigenfunction ¢,(y) = 1. L k(y,2)(2), v ¢ X
zeX

@ Extend the function f: f=Y_ (91, f), ¥1, Yy
1

37/51
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Example: eye detection |

Features extraction: SIFT [Lowe2003]:

@ Strong translation and illumination invariance.

@ Weak rotation invariance.

@ Local scale estimation - strong scale invariance.

@ Dominant angle estimation - strong rotation invariance.

@ Estimation of local moments - affine invariance
[Schaffalitzky,Zisserman2002],

Do not learn what you already know

38/51
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Example: eye detection Il

@ We consider each SIFT descriptor as a sample in R1%8.
@ We collect a learning set of {Pi}{\’ patches
{fill e {(~L1}.
@ Embed {P;}}’ and compute {1, } .
@ Compute the inner products ay = (f, §;)

39/51
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Example: eye detection Il

~ N
@ Given an input face, we extract the patches {P"}1 :

. N
o {y,} and {f;}; are extended to {Pk}1 .

5. (a1N
@ Use a to extend {fi}; to {P’}l

fi>0 PBeC
fi<0 P gC

@ The classification is given by {

Show demo

40/51
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Example: eye detection IV

Comparison to Yann LeCun'’s talk

@ Yann advocated using raw pixels:

e The learning set becomes larger

e The invariance is inserted later via the learning of the metric

e It easy to normalize the intensity of patches - this is not the
general case: recall the 9 Vs. 4 example.

@ Holistic Vs. Gestalt approaches to pattern recognition.

41/51
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Other application: image colorization

Input Output Original

42/51
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Spectral embedding as a relaxation of integer

optimization problems
[Chertok,Keller]

Consider the following set alignment problem

d12 d31
D12 d31

D23
D23

We are given two sets of points: S, k = 1,2 and the relative
distances within each set: d; i,j = 1..[S|.

43/51
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Definition

Alignment vector
x=[0 10 100 00 1]

Definition

Assignment C : Si — S}

Definition

Assignment cost for pairs
d (C”,C ) d (dlj,d > = |dij — d;].«‘: what is the cost of both of
the assignments being valid?

b
O—0

44/51
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Definition

Assignment affinity matrix agi; = exp (—d <d1-j, d;;) /U) ,0>0
We can now define the total assignment affinity and maximize it:
x* = argmaxXTAX
X

where X is an assignment vector: binary + constraints
This is a difficult optimization problem: So Relax and solve

x* = argmaxXTAX, X € R
X

X is the eigenvector corresponding to the largest eigenvalue.
It is easy to show that A is p.s.d.
x* is discretized into x;.

References

@ A spectral technique for correspondence problems using
pairwise constraints [Leordeanu-Hebert ICCV2005]
@ Balanced Graph Matching. Cour-Srinivasan-Shi [NIPS2006]
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A spectral clustering interpretation

@ Given a set of m; and m; points in IR” we constructed
my - my pairings {Cx}.

@ We computed the (m; - my) x (my - my) affinity matrix and
the non-normalized cut.

© We assume that true assignments form a well connected
component with in the graph.

46/51
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The importance of cross-set similarity measures

The dimensions of the assignment affinity matrix A grow
quadratically with the number of points. To align two 500 strong
sets, we get Asyp2 . 5002-

But, in many applications we are given a cross set similarity
measure: d (x;, x;), and the number of possible assignment can
be reduced.

In images analysis: local descriptors such as SIFT[Lowe2003],
MSCR[Matas2002].
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Results

Assignment score

S = XTAX,.

We applied this approach to speech recognition (audio only) in
R10,

audio 87%
visual 86%
both 95.1

RMM (audio only) 93%
spectral (audio only) 96.3%

Recall that the L, distances are diffusion distances.
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Work in progress: automatic eye inspection

Joint work with Sina Farsiu and Mohammed EI Mallah (Duke).

Certain eyes diseases manifest themselves as geometric
deformations of blood vessels over years (5-10 years).

49/51
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Future work

@ Set spaces

@ Shape embedding

@ Shape recognition

@ Automatic translation

@ Non-rigid registration and tracking
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Thanks You!
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