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Outline I

Pattern recognition

1 Spectral embeddings provide numerical tools for pattern
recognition:

Dimensionality reduction
Density invariant embeddings
Embedding extension scheme

2 Spectral embeddings can be interpreted in several ways:

Dimensionality reduction: geometric approach
Diffusion distances: Markov walks approach
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Outline II

Data adaptive basis and extension of functions over data
sets: signal processing over manifolds
Spectral relaxation of integer optimization problems:
graph/set alignment and set spaces
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Curse of dimensionality & Dimensionality Reduction

Density estimation is difficult
Computational cost of many
algorithms grows exponentially with
the dimension.
Certain signals are in essence
low-dimensional and their high
dimensional representation is due to
over sampling and noise.
The high dimensional representation
obscures the underlying low
dimensional structure.
Certain tasks only require
low-dimensional representations.

2
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Example: audio visual lipreading

Two input channels:

1 Video frames: R16000: 25fps.
2 Audio frames: each 40ms sampled in 32khz: R1280.

We aim to recognize a limited vocabulary: {“0”,“1”,...,“9”}.
Each word consists of a set of samples: set recognition
We can also consider the recognition of single samples.
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The role of random projections
[Johnson-Lindenstrauss84]

A fast algorithm for dimensionality reduction
n→ O (log (n)) while preserving the L2 distances.
In practice, since spectral embeddings schemes use L2
distances as inputs, n = O

(
104) at most.

This also applies to metric trees
[Liu,Moore,Gray,Yang2004].
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What’s wrong with L2 distances?

“Short distances good, long distances bad”

This is because the data lies on a low dimensional manifolds: in
this example the two rotation angles.
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Kernel methods

Definition
Given a dataset {xi}i=1..n:

1 Apply a p.s.d. kernel k to {xi} . For instance:

wij = exp(− d(xi ,xj)
ε ), ε > 0.

2 Compute the eigenvectors of W: wij = ∑
l≥0

λlψl(i)ψl(j) ,

3 The embedding is given by
Ψ(xi) : xi 7→

(
λ1ψ1(xi), λ2ψ

2
(xi), . . .

)
‖Ψt(xi)−Ψt(zi)‖2

L2
=

n−1

∑
l=0

λ2t
l (ψl(x)− ψl(z))2 =

wii + wjj − 2wij = D(x, z)2
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Kernel methods survey

MDS - Cox and Cox. Multidimensional Scaling. Chapman &
Hall, 2nd edition, 2001.
ISOMAP - Josh. Tenenbaum, Vin de Silva, John Langford
2000, A Global Geometric Framework for Nonlinear
Dimensionality Reduction
LLE - S. Roweis and L. Saul, Nonlinear Dimensionality
Reduction by Locally Linear Embedding, Science 2000
Hessian LLE - D. Donoho and C. Grimes, Hessian eigenmaps:
Locally linear embedding techniques for high-dimensional
data, PNAS 2003
Laplacian Eigenmaps - M. Belkin and P. Niyogi, Laplacian
Eigenmaps and Spectral Techniques for Embedding and
Clustering. NIPS2001
Diffusion maps - Geometric diffusions as a tool for harmonic
analysis and structure definition of data, PNAS2005
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Geometric interpretation: Laplacian
eigenmaps[Belkin-Nyogi, NIPS2002]

The embedding preserves the infinitesimal geometry of a low
dimensional manifold M. The distortion of an embedding f is
locally bounded by | f (z)− f (x)| ≤ dM(z, x) ‖∇M f (x)‖ and∫

M ‖∇M f ‖2 =
∫

M f · ∆M f ≈∑
i,j

Wij
(

fi − f j
)2 = f T L f

f = f T L f , s.t. f TD f = 1, f TD1 = 0
xi 7→

(
ψ1(xi), ψ

2
(xi), . . .

)
The Graph Laplacian becomes a natural choice for a kernel.
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Density invariant embeddings I
[Coifman,Lafon,et. al,PNAS2005],[Keller,Lafon,Coifman,PAMI2006]

Same manifold, same points in R3, different densities
⇓

different embeddings in R2
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Density invariant embeddings II
[Coifman,Lafon,et. al,PNAS2005],[Keller,Lafon,Coifman,PAMI2006]

Density invariant embedding

Given wij = exp(−‖xi ,xj‖2

ε ), define qi , ∑j wij ,and form the
new kernel w̃ij = wij

qiqj
.

Now continue with the regular graph Laplacian using w̃ij.

Curve Density Graph Laplacian Laplace-Beltrami
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Out of sample extension I
[Lafon,Keller,Coifman,PAMI2006]

1

2 Given the parametrization
{ψl} computed using N � 1
samples, extend the
embedding to the new point
y, without re-embedding the
N + 1 data set.

This is based on a Nyström extension with in an extension
kernel.
Differs from [Fowlkes, Belongie, Chung, Malik,PAMI2004].
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Out of sample extension II
[Lafon,Keller,Coifman,PAMI2006]

Spectral low pass extension

Given a p.s.d. symmetric k̃ with ε̃� ε and its eigensystem{
ψ̃l ,λ̃l

}
. ψ̃l can be approximated beyond x ∈ X̄ by

ψ̃l(y) = 1
λ̃l

∑
z∈X

k̃(y, z)ψ̃l(z), λl > C, ∀y

and used to extend {ψl}

ψl = ∑
l

〈
ψl , ψ̃l

〉
X ψ̃l, ∀y

The extension kernel k̃ differs from the embedding kernel k.
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Out of sample extension III
[Lafon,Keller,Coifman,PAMI2006]

The 1
λ̃l

term limits the number of eigenfunctions ψl that can be
extended, since the eigenvalues of the laplacian are decaying.
This is a natural MDL criterion for kernel based learning.

The width of the extension kernel ε̃
Kernel Approx. Extens. Task Learning set

ε̃→ 0 narrow good poor interpolation large
ε̃� 0 wide poor good extrapolation small

[Lafon-Coifman,ACHA2006]: Geometric harmonics: iterative
refinement of ε̃ by optimizing the trade-off between the
approximation and extension errors.
The approximation error depends on the extended function, ψl
in this case.
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Implementation issues for massive datasets

These schemes utilize two numerical workhorses:

Embedding
1 n by n Gauss transform
2 SVD: n× n matrix

Extension to m points
1 m by n Gauss transform

Solution
SVD: Random projections based approaches
[Tygert,Rokhlin,Martinsson]
Gauss transform: FMM, FGT [Greengard,Strain], IFGT
[Yang, Duraiswami, Gumerov], Dual trees [Gray,Moore]

17 / 51



Pattern Recognition in Diffusion Spaces

High dimensional data alignment
[Lafon,Keller,Coifman,PAMI2006]

β

α

Input: 3000 frames each being R10000.
Output: align the heads based on a common low dimensional
manifold.
Problem: each manifold is sampled with a different density→
Laplace Beltrami.
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The low-dimensional embeddings are then aligned.
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Audio-Visual lip reading I
[Lafon,Keller,Coifman,PAMI2006]

We split the learning process into two parts:

1 Embedding/learning the global manifold

2

1

6000 frames
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Audio-Visual lip reading II
[Lafon,Keller,Coifman,PAMI2006]

2 Using the labeled samples to compute signatures.

1

2

3 Identification

1

2
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Audio-Visual lip reading III
[Lafon,Keller,Coifman,PAMI2006]

Results

Channel “0” “1” “2” “3” “4” “5” “6” “7” “8” “9”
Visual 0.90 0.99 0.90 0.94 0.93 0.81 0.87 0.74 0.75 0.82
Audio 0.75 0.94 0.87 0.90 0.96 0.86 0.93 0.81 0.80 0.92

Remarks

We used the L2 metric for visual data and the cepstrum of
the auditory data.
Dimensionality reduction R16000 → R10.

Recognition based on Hausdorff distance in R10.
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Multisensor based recognition: lip reading I
[Keller,Lafon,Zucker2007]

Can we unify different sensors for signal recognition and
analysis?

The good: Multisensor data is often of complementary nature.
The bad:

[Irani-Anandan,ICCV1998]

Different sensors are related by unknown non-linear
relationships
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Multisensor based recognition: lip reading II
[Keller,Lafon,Zucker2007]

Correspond to a common low dimensional manifold.

Different sensors have different sampling rates and
resolutions
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Our approach
1 Embed each of the channels separately using the Laplace

Beltrami.
2 Append the embeddings to get new coordinates.
3 Apply a pattern recognition scheme.

Results

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”
Audio 0.75 0.94 0.87 0.90 0.96 0.86 0.93 0.81 0.80 0.92
Visual 0.90 0.99 0.90 0.94 0.93 0.81 0.87 0.74 0.75 0.82
Both 0.90 0.99 0.96 0.99 0.96 0.97 0.90 0.93 0.95 0.96
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Inducing Random walks on graphs I

Given a dataset {xi}:
1 Apply a p.s.d. kernel k to {xi} . For instance:

wij = exp(−‖xi ,xj‖2

ε ). ε > 0 is the scale factor.
wij describes the infinitesimal geometry of X up to 2

√
ε.

2 Compute the Markov matrix P = D−1W, dii = ∑
j

wij

3 Compute the eigenvectors of Pt = Pt:

pt(x, y) = ∑
l≥0

λt
lψl(x)φl(y) ,

The embedding is given by
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Inducing Random walks on graphs II

xi 7→ Ψt(xi) =
(

λt
1ψ1(xi), λt

2ψ
2
(xi), . . .

)
If W is symmetric and wij ≥ 0 then P and the graph Laplacian
L = D−W share the same eigenvectors.

Interpretations:
1 The mixing time of Markov random chains, Spectral Graph

Theory, Fan R. K. Chung.
2 Lumpable Markov chains and piecewise constant right

eigenvectors Meila and Shi, A random walks view of
spectral segmentation, AISTATS 2001.

3 Stability analysis, On Spectral Clustering: Analysis and an
algorithm, Y. Ng, M. Jordan, and Y Weiss, NIPS2001.

26 / 51



Pattern Recognition in Diffusion Spaces

Diffusion distances
[Lafon,Coifman]

What is the distance measure induced by using the graph
laplacian as a kernel?

‖Ψt(xi)−Ψt(zi)‖2
L2

=
n−1

∑
l=0

λ2t
l (ψl(x)− ψl(z))2 =

∑
y∈Ω

(pt(x,y)−pt(z,y))2

φ0(y) = Dt(x, z)2
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Clustering Vs. Pattern recognition
Different approaches answer different questions

Laplacian eigenmaps [Belkin,Nyogi] and Diffusion
distances [Lafon,Coifman]:

What is the meaning of spectral dimensionality reduction?
Applicable to pattern recognition.

Lumpable Markov chains[Meila,Shi], Spectral clustering
[Y.Ng,M. Jordan,Y. Weiss]:

Why does spectral clustering work?
Applicable to clustering.
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Revealed Markov models
[Keller,Singer,Coifman]

Given a time series x (t) t ∈ [t0, ..., tmax]
Initially, x (t) is considered a data set {x}t

Spectral embedding induces a random walk on the data -
each sample is mapped to a state.
The diffusion distance allows us to quantize the state
space optimally:
given the target states number, we minimize the L2
quantization distortion in the embedding space (KMEANS).
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Spectral embeddings and Markov walks II

We merge Markov states into K metastates:

6000 samples                            6000 states                                        K meta-states                                  

Now we can compute the transition probabilities
{

πij
}

,
i, j = 1..K
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Learning

We compute the state and transition probabilities: Learning

S1 S2 S3 S4

P(S1|S2) P(S2|S3) P(S3|S4)

P(S4|S3)P(S3|S2)P(S2|S1)

P(S1|X(t)) P(S2|X(t)) P(S3|X(t))

X(t) =
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Pattern recognition: Audio-Visual lip reading
Separating the state-space from the density

Two inputs:

1 The 6000 frames are recordings of the speaker reading an
article - used to model the state-space.

2 50 sequences of the speaker speaking the digits 1...10 -
used to learn the dynamics of each digit.

Similar to Bag-of-words models [Hoffman 1999; Blei, Ng &
Jordan, 2004; Teh, Jordan, Beal & Blei, 2004], documents are
represented as probability densities over the Bag-of-words (the
state space).
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Maximum likelihood classifiers I

Let: D = {d1, ..., d10} = {“1”, ..., “10”}
{Si}− a set of input states

Maximizing the state probabilities

k∗ = max
k

∑
i

log P (Si|d = dk)

Maximizing the transition probabilities

k∗ = max
k

∑
i

log P (Si|Si−1, d = dk)

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”
State 0.80 0.91 0.90 0.86 0.95 0.90 0.96 0.69 0.83 0.92
Trans 0.88 1.00 0.95 0.86 1.00 1.00 0.96 0.82 0.72 0.92
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Spectral embedding vectors as an adaptive basis
[Keller]

The kernel k is p.s.d, hence its eigenvectors (the embedding) form
an orthonormal system {ψi}.

Example

Given a periodic discrete signal x (n), n = 1 . . . N, and a time
invariant metric D (x (t1) , x (t2)) = D (|t1 − t2|)

X(t)

A circle is parameterized by e
2πi
N n, n = 1 . . . N.

For any kernel K, the Laplacian is a circulant matrix,
diagonalized by the Fourier basis.
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Sinc interpolation of periodic functions

Start with the Fourier basis {ψi} on the circle
f (x) = ∑

i
aiψi (x), where ai = 〈 f , ψi (x)〉

Extend {ψi} from X → y using the Nystrom extension
ψi (y) = 1

λi ∑
x

K (x, y) ψi (x)

Extend f from X → y
f (y) = ∑

i
aiψi (y) = ∑

i
ai

1
λi ∑

x
K (x, y) ψi (x) =

∑
x

K (x, y) ∑
i

1
λi

aiψi (x)

Set K (x, y) = sin(π(y−x))
sin
(

π(y−x)
N

) → λi = 1. K is the Dirichlet

kernel.
f (y) = ∑

x

sin(π(y−x))
sin
(

π(y−x)
N

) ∑
i

aiψi (x) = ∑
x

sin(π(y−x))
sin
(

π(y−x)
N

) f (x)
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Fourier bases on irregularly-shaped domains
[Saito2005]
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Pattern recognition as a Function extension problem

Definition

Let f be the classification function: f (x) =
{

x ∈ C 1
x /∈ C -1

Definition
Given a kernel k with and its eigensystem {ψl , λl} and a scalar
function f

1 Compute the inner products ai = 〈ψl , f 〉
2 Extend the eigenfunction ψ̃l(y) = 1

λl
∑

z∈X
k(y, z)ψl(z), y /∈ X

3 Extend the function f : f̃ = ∑
l

〈
ψ̃l , f

〉
X ψ̃l, ∀y
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Example: eye detection I

Features extraction: SIFT [Lowe2003]:

Strong translation and illumination invariance.
Weak rotation invariance.
Local scale estimation - strong scale invariance.
Dominant angle estimation - strong rotation invariance.
Estimation of local moments - affine invariance
[Schaffalitzky,Zisserman2002],

Do not learn what you already know
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Example: eye detection II

Learning

We consider each SIFT descriptor as a sample in R128.
We collect a learning set of {Pi}N

1 patches
{ fi}N

1 ∈ {−1, 1} .

Embed {Pi}N
1 and compute {ψk} .

Compute the inner products αk = 〈 f , ψk〉
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Example: eye detection III

Recognition

Given an input face, we extract the patches
{

P̂k

}N̂

1
.

{ψl} and { fi}N
1 are extended to

{
P̂k

}N̂

1
.

Use αk to extend { fk}N̂
1 to

{
P̂i

}N̂

1
.

The classification is given by
{

fk > 0 P̂k ∈ C
fk < 0 P̂k /∈ C

Show demo
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Example: eye detection IV

Comparison to Yann LeCun’s talk
Yann advocated using raw pixels:

The learning set becomes larger
The invariance is inserted later via the learning of the metric
It easy to normalize the intensity of patches - this is not the
general case: recall the 9 Vs. 4 example.

Holistic Vs. Gestalt approaches to pattern recognition.
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Other application: image colorization

Input Output Original
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Spectral embedding as a relaxation of integer
optimization problems
[Chertok,Keller]

Consider the following set alignment problem

We are given two sets of points: Sk k = 1, 2 and the relative
distances within each set: dk

i,j i, j = 1.. |Sk| .
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Definition
Alignment vector
x =

[
0 1 0| 1 0 0| 0 0 1

]T

Definition

Assignment Ciî : Si
1 → Sî

2

Definition
Assignment cost for pairs
d
(

Ciî, Cjĵ

)
= d

(
dij, dî ĵ

)
=
∣∣∣dij − dî ĵ

∣∣∣: what is the cost of both of
the assignments being valid?
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Definition

Assignment affinity matrix aiî,jĵ = exp
(
−d
(

dij, dî ĵ

)
/σ
)

, σ > 0

We can now define the total assignment affinity and maximize it:

x∗ = arg max
x

XT AX

where X is an assignment vector: binary + constraints
This is a difficult optimization problem: So Relax and solve

x∗ = arg max
x

XT AX, X ∈ R

X is the eigenvector corresponding to the largest eigenvalue.
It is easy to show that A is p.s.d.
x∗ is discretized into xd.

References

A spectral technique for correspondence problems using
pairwise constraints [Leordeanu-Hebert ICCV2005]
Balanced Graph Matching. Cour-Srinivasan-Shi [NIPS2006]
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A spectral clustering interpretation

1 Given a set of m1 and m2 points in Rn we constructed
m1 ·m2 pairings

{
Ciî

}
.

2 We computed the (m1 ·m2)× (m1 ·m2) affinity matrix and
the non-normalized cut.

3 We assume that true assignments form a well connected
component with in the graph.

46 / 51



Pattern Recognition in Diffusion Spaces

The importance of cross-set similarity measures

The dimensions of the assignment affinity matrix A grow
quadratically with the number of points. To align two 500 strong
sets, we get A5002×5002 .
But, in many applications we are given a cross set similarity
measure: d (xi, x̂i), and the number of possible assignment can
be reduced.

In images analysis: local descriptors such as SIFT[Lowe2003],
MSCR[Matas2002].

47 / 51



Pattern Recognition in Diffusion Spaces

Results
Assignment score

S = XT
d AXd.

We applied this approach to speech recognition (audio only) in
R10.

audio 87%
visual 86%
both 95.1
RMM (audio only) 93%
spectral (audio only) 96.3%

Recall that the L2 distances are diffusion distances.
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Work in progress: automatic eye inspection

Joint work with Sina Farsiu and Mohammed El Mallah (Duke).

Certain eyes diseases manifest themselves as geometric
deformations of blood vessels over years (5-10 years).
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Future work

Set spaces
Shape embedding
Shape recognition
Automatic translation
Non-rigid registration and tracking
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Thanks You!
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